
A Memory Hierarchical Layer Assigning and Prefetching Technique to
Overcome the Memory Performance/Energy Bottleneck∗

Minas Dasygenis
mdasyg@ee.duth.gr

Erik Brockmeyer
Erik.Brockmeyer@imec.be

Bart Durinck
Bart.Durinck@imec.be

Francky Catthoor
Francky.Catthoor@imec.be

Dimitrios Soudris
dsoudris@ee.duth.gr

Antonios Thanailakis
thanail@ee.duth.gr

Abstract

The memory subsystem has always been a bottleneck
in performance as well as significant power contributor in
memory intensive applications. Many researchers have pre-
sented multi-layered memory hierarchies as ameansto de-
sign energy and performance efficient systems. However,
most of the previouswork do not explore trade-offs sys-
tematically. We fill this gap by proposing a formalized tech-
nique that takes into consideration data reuse, limited life-
time of the arrays of an application and application specific
prefetching opportunities, and performs a thorough trade-
off exploration for different memory layer sizes. This tech-
nique has been implemented on a prototype tool, which was
tested successfully using nine real-life applications of in-
dustrial relevance. Following this approach we have able
to reduce execution time up to 60%, and energy consump-
tion up to 70%.

1. Description of our work

We overcome the performance and energy bottleneck
that memory imposes at the system by developing the Mem-
ory Allocation and Layer Assignment [1] with time exten-
sions (MHLA with TE) technique. Our technique targets
at the data reuse opportunities, found in most multimedia
and image processing applications,arrayin-place optimiza-
tions and optimum memory transfer scheduling. By exploit-
ing data reuse, a part of an array is copied from one layer
to a lower layer, closer to the processor. As a result, en-
ergy and performance can be improved since most accesses
take place on the smaller copy and not on the large more
energy consuming and slower higher memory layer. TE en-
ables us to increase the performance of a system, with mini-
mal cost. They enable the selective prefetching of copy can-

∗ This work was sponsored by a scholarship from Public Benefit Foun-
dation of Alexander S. Onassis and from Marie Curie Host Fellowship
project HPMT-CT-2000-00031.

didates from off-chip memory layers to on-chip memory
layers, exploiting the lifetime information of copies. Time
extensions, need the support of a memory transfer engine
(like DMA engine or data mover) that allows simultaneous
the CPU to continue processing data and the engine to copy
off-chip data to on-chip layers. The goal of time extensions
is to hide as much as possible the cycles required in ac-
cessing off-chip memory, respecting data dependencies and
on-chip size requirements. In case that our architecture does
not support a memory transfer engine, TE are not applica-
ble.

2. MHLA and Time Extensions

The MHLA technique with time extensions has been im-
plemented in a tool with the same name (MHLA), which is
able to find all the optimal trade-off points, given some ar-
chitecture specificconstraintsand models. The exploration
flow can be divided into two distinct steps: A selection and
assignment step and a time extension step. Every step has
a number of substeps. When we first presented the MHLA
technique [1], it did not consider TE. We present a new ver-
sion of our MHLA technique with the major contribution
the support of TE. In our technique TE is the second step in
MHLA.

Time extensions are done in an iterative process (Figure
1). We examine every DMA Block Transfer (BT) and we
try to schedule earlier the initiating of the DMA, obeying
dependencies and on-chip memory size.

We iterate over the list of BTs in the greedy order and try
to perform prefetching. We evaluate whether the increase in
lifetime of the copy candidate, due to the extension of the
DMA one loop before, is valid or not. If the increase in life-
time increases on-chip memory size over the user-defined
on-chip memory constraint, then this extension is not valid
and no further actions are performed for this BT. Otherwise,
TE for one loop before is valid for this BT.

1530-1591/05 $20.00 © 2005 IEEE

foreach BT(i) {
if (is_DMA(BT(i))) {

BT_list+=BT(i);
/* Estimate Cycles */
BT_time(i)=compute_time(BT(i));
BT_sort_factor(i)=

BT_time(i)/size(BT(i));
deps=dep_analysis(BT(i));
BT_freedom_loops(i)=

loops_between(deps, BT(i));
}}
sort(BT_list, BT_sort_factor);
foreach BT(i) in BT_list {
/* Initially no TE */
extended_cycles=0;
forearch loop in BT_freedom_loops(i) {

if (fits_size(BT(i), loop)) {
/* Take next BT */
break; }

cpu_cycles=compute_loop_cycles();
ext_cycles+=cpu_cycles;
if (ext_cycles>=BT_time(i)) {

/* Fully time extended */
break; }

}
dma_priority();

Figure 1. The TE step performs an applica-
tion specific prefetching.

3. Experimental Results

The usefulness and feasibility of the MHLA technique is
demonstrated using nine real life applications of motion es-
timation, video encoding, image and audio processing do-
main. Although, we only consider single threaded applica-
tions, we plan to extend our technique to multiple tasks with
multiple threads.

MHLA technique performs exploration in two steps. Af-
ter deciding and placing on memory layers, arrays and
copies the step of time extensions is applied. On the ap-
plications considered, the first step boost performance from
40% to 60% compared to the out of the box code (Figure 2)
for specific memory sizes. An optimum memory allocation
and assignment can also reduce energy consumption signif-
icantly up to 70% (Figure 3).

The MHLA second step tries to perform prefetching on
the copies that have been decided in the previous step. This
step can boost performance of up 33%, if there are a lot
of processing loops that can hide prefetching block trans-
fers. This step pushes performance towards the ideal case
where ever block transfer can be hidden from the proces-
sor (0 wait cycles block transfer time) (Figure 2). Energy
consumption in both steps remains the same, because in our
models we only consider accesses to the memory hierar-

Figure 2. MHLA improves performance up to
60%. MHLA with TE can boost performance
even more.

Figure 3. In addition to performance improve-
ments, MHLA technique benefits energy con-
sumption as well.

chy. Though, it is expected that the reduced execution time
will result in lower energy consumption.

4. Conclusions

We have addressed the performance/energy consump-
tion bottleneck problem by developing a a formalized tech-
nique of memory allocation and assignment. This tech-
nique, exploits data-reuse opportunities, in-place optimiza-
tions and application specific prefetching, which should be
used during the early system design steps. This technique
has been implemented in a prototype tool, which is part of
the ATOMIUM framework, and has allowed us to do fast,
accurate and automatic exploration of nine real-life appli-
cations. We found significant performance and energy con-
sumption gains on every application, illustrating the impor-
tance of our technique in the early design phases.

References

[1] E. Brockmeyer, M. Miranda, H. Corporaal, and F. Catthoor.
Layer assignment techniques for low energy in multi-layered
memory organizations.Proceedings of DATE, pages 1070–
1075, 2003.

	Main Page
	DATE'05
	Front Matter
	Table of Contents
	Author Index

