
Systematic Analysis of Energy and Delay Impact of Very Deep Submicron
Process Variability Effects in Embedded SRAM Modules

Hua Wang∗§, Miguel Miranda∗, Wim Dehaene‡, Francky Catthoor∗†, Karen Maex ∗†

∗ IMEC, Leuven, Belgium
wanghua,miranda,catthoor,maex@imec.be

‡ Dept. ESAT-MICAS, KUL, Leuven, Belgium
wim.dehaene@esat.kuleuven.ac.be

§ Also PhD student at the Katholieke Univ. Leuven, Belgium
† Also Professor at the Katholieke Univ. Leuven, Belgium

Abstract

Variability is becoming a serious problem in process
technology for nanometer technology nodes. The increas-
ing difficulty in controlling the uniformity of critical pro-
cess parameters (e.g. doping levels) in the smaller devices,
makes the electrical properties of such scaled devices much
less predictable than in the past. In this paper, we study
how these technology effects influence the energy and de-
lay of a SRAM module. Despite the implications in the cor-
rect operation of the module, in practically all cases the af-
fected memory implementations become also slower while
consuming on average more energy than nominally. This is
partly counter-intuitive and no existing literature describes
this in a systematic generic way for SRAMs. In this paper,
we identify and illustrate the different mechanisms behind
this unexpected behavior and quantify the impact of these
effects for on-chip SRAMs at the 65nm technology node.

1. Introduction
Technology process variations introduced during the fab-

rication of CMOS wafers such as mismatch in doping lev-
els and/or lack of uniformity of the gate oxide cause transis-
tor electrical characteristics to drift from their nominal val-
ues. For nanometer technologies (e.g., below 90nm) this is
reflected in a stochastic component of variability that be-
comes much more prominent than any other systematic ef-
fects [1]. Due to the extremely small dimensions of the tran-
sistors in nanometer technologies, the same variation in the
number of dopant atoms have a much higher impact in the
electrical properties of the device than in earlier technology
nodes. This makes digital circuits and systems more diffi-
cult to predict and control.

The analysis of the impact that this intra-die stochastic
component of variability has on the performance and energy
consumption of common IP blocks such as ALUs and other
arithmetic components is relatively new [2, 3]. For SRAMs
the focus has been mostly in functional yield and reliability

issues [4], where the sensitivity of the SRAM circuits, espe-
cially the SRAM cell stability (e.g. signal to noise margin)
and the design rules to compensate that has gained most at-
tention [5, 6]. However, parametric yield which is related
to meeting specific performance constraints for the mem-
ory library becomes even more critical than pure functional
yield. Indeed embedded SRAMs are performance and en-
ergy critical components in modern SoCs, contributing to
most of the delay and energy consumption of the system.
Thus, understanding the performance and energy behavior
of embedded SRAMs under the influence of process varia-
tion is key to achieving successful IP block and system de-
sign.

This paper investigates how the variability in the electri-
cal properties of the transistors (e.g. Vt and β) makes the ac-
tual energy and delay per SRAM (read/write) operation to
drift from the expected nominal value. Neighborhood tran-
sistors in the same die can make a simple circuit, such as
an inverter, to become faster or slower or consume more or
less energy hence leading to a ”variability cloud” in the En-
ergy/Delay (E/D) space with the nominal point centered in
it. However, even when such effects are expected to man-
ifest also in a similar way for more complex modules like
SRAMs, this is not the case. As we show in this paper, these
effects manifest at the SRAM level even more dramatic than
at the inverter level, resulting also in variation clouds. How-
ever, in the case of SRAMs (and memories in general) all
points become in practice slower and consume more en-
ergy in average than the memory not affected by variabil-
ity (hereafter called the ”nominal” memory).

Up to our knowledge, this is the first paper to analyze
the different (global) interactions originating from intra-die
stochastic variability effects inside and between the differ-
ent blocks of an SRAM in a systematic way. We also quan-
tify the impact that these effects have on both energy and
delay at the 65nm technology node. Experimental results
obtained from HSPICE simulations show that already for

1530-1591/05 $20.00 © 2005 IEEE

small size SRAMs, process variability increases the delay
and energy consumption up to a 40% above their nominal
values. This values are expected to grow both with the mem-
ory size and further scaled technology nodes.

2. Stochastic model for variability

Process variation impacts many technology parameters.
In this paper, our focus is on the effects of the front-end de-
vices (e.g., transistors). The effect of variability in the in-
terconnect is neglected here since for SRAMs its impact in
the back-end processing is expected to be less dramatic than
in the front-end. This is true for the long interconnect lines
such as bit-lines, word-lines or decoder busses that are typ-
ically long enough so as to average variability effects [7].

Impact of variability at transistor level can be reflected
in a drift in the drain current (ID) from its nominal value. A
first order approximation shows that, variations in the drain
current are linearly related to variations in the current fac-
tor (β) and the threshold voltage (V t) [8]. The current factor
(β) depends on several physical parameters: β = CoxµW/L.
A first order analysis shows that the variabilities of these
two electrical parameters for MOSFETs are proportional to
the device dimensions [7]. Furthermore, they both follow
a Gaussian distribution with the following standard devia-
tion: σV t = ∆V t/

√
WL, σβ = ∆β/

√
WL, where W,L are the

width and length of the MOSFET device.
At the 65 nm, characterizations of that technology node

towards (intra-die) variability impact leads to the following
estimated values for ∆V t = 2.5mV µm and ∆β/β = 0.7% [9].
Given these estimates, one-sigma variation for the smallest
representative transistors of that technology leads to about
10% drift from their nominal value in both Vt or β. These
minimum sized transistors are very common in SRAMs in
order to achieve maximum density, making these memories
very vulnerable to the impact of process variability.

The transistor model used in our analysis is the BSIM4
model of Berkeley Predictive Technology Model [10]
and the interconnect parameters are taken from the ITRS
roadmap [11]. Both models are intended to reflect tech-
nology parameter specifications at the 65nm technology
node. As variabilities are uncorrelated between transis-
tors (stochastic effect dominant), every transistor in the
netlist is injected with an independent Vt and β values gen-
erated according to a Gaussian distribution as described
above.

In our experiments, we use HSPICE as transistor-level
netlist simulation environment. The modeling of variation
in V t is straightforward in HSPICE since it is a parameter
in the model card and an offset to that value can be explicitly
specified at the netlist level. However, β can only be mod-
eled in HSPICE via parameters of the device model. The
oxide capacitance (Cox) and mobility (µ) cannot be modi-
fied since they are correlated with other transistor parame-

ters like gate capacitance. Therefore we have opted to re-
flect changes in β by using the ratio of W/L given the pro-
portionality of β to that ratio while keeping the gate area
(W ×L) constant. This ensures that the first order contribu-
tion of the extrinsic load driven by the transistor acting as
driver does not become influenced by the variation in β.

3. SRAM architecture and model

The SRAM architecture we consider for analysis is the
partitioned cell-array architecture [12] typically used in in-
dustry with the cell-matrix partitioned into several subar-
rays. In this architecture, the row decoder is split into two-
stages, with a predecoder stage shared by all sub-arrays
and a post-decoder locally placed in each sub-array. In our
SRAM implementation, we use a set of three-input NAND
gates for the predecoder and a set of three-input NOR gates
for the postdecoder as illustrated in Figure 1.

The cell-array is made out of bitlines and wordlines with
the cells implemented using a classical 6T SRAM cell struc-
ture. The memory cells and periphery circuits are dimen-
sioned to perform stable operations at the 65 nm technology
node, together with several timing interfaces present be-
tween the different blocks of the critical path of the SRAM.
A very critical interface is the one devoted to activate the
wordline once the decoding process is finished. That inter-
fase is critical since the decoder is the first block in the
critical path and variability has a large impact in its delay
as shown in Section 5. That delay will be then propagated
to the rest of the memory. To properly reflect the impact
of this delay and specifically to the cell array, a self-timed
style [13] is used when building up such interface. Such cir-
cuit style also enables memory to be read or written only
when all the necessary blocks are ready so that the real vari-
ation in memory E/D can be reflected in the memory gener-
ated without affecting its functionality.

Clearly, the time consuming HSPICE simulations of the
full SRAM are not directly practical for analysis of the pro-
cess impact as many simulations are required to gather data
with reasonable statistical significance. To speed up sim-
ulation time without sacrificing much accuracy, a lumped
SRAM model is developed for this analysis. This model is
composed out of a full row decoder plus a simplified cell-
array where the number of wordlines is just a fraction of the
ones present in the full memory and they are equally dis-
tributed along the height of the cell-array. The details of this
model are left out since they are not the focus of this paper.
Still, it is worth to mention that the results from HSPICE
simulations indicate that this lumped model achieves more
than 97% accuracy in average with a factor of 12 reduction
in the simulation time compared to the full SRAM simula-
tion.

4. Methodology for capturing worst-case de-
lay and energy under process variability

This section describes a methodology to define the criti-
cal path of the memory and specifically that of the decoder
under process variability. The critical path of the SRAM
starts from the row decoder and ends at the output buffer
in the array. The delay of this path under process variations
can be obtained in the netlist by connecting the row decoder
critical path with the array and finding the delay of the slow-
est output out of all parallel outputs of the array.

4.1. Row decoder characterization

The task of finding the worst case decoder delay (hence
the critical path) under process variability is not trivial as the
decoder critical path depends not only on the selected row
but also on the transition from the previous address. The
reason for this is that the activated transition will change
the (dis)charge paths of the parasitic capacitances of the de-
coder gates [14]. Hence it will also affect the actual mea-
sured delay. In fact, for a nominal decoder, a worst case
transition exists but that one will not depend on the acti-
vated row. Under variability this is clearly not the case. The
reason is that many parallel decoding paths exist in the com-
binational decoder. Hence, the slowest decoding path that
determines the decoded row will have a different delay de-
pending on the variability. Finding this critical path for the
slowest decoded row implies also finding a worst case de-
lay transition that excites that row.

A first analysis on the number of possible combinations
leading to worst case response would require 22N simula-
tions for a N-input decoder and that for each netlist where
variability has been injected. Even for small decoders, this
characterization is unfeasible. Therefore a methodology is
required to find the critical path with the smallest possible
number of transition vectors.

For that purpose, we have developed a heuristic that is
based on decoupling the search for worst delay output for a
given address from that one for the worst delay transition, ir-
respective of the output being selected. Based on this, an ex-
perimental methodology is developed as follows:
Step1. Find the initial vector that activates a set of worst
case delay transitions for the decoder under process vari-
ability independently of the decoded row.
Step2. Identify the worst case address vector that excites
the slowest decoded row under variability.
Step3. Find the set of worst case delay transitions for the
full decoder by combining the initial vector to activate the
worst case transitions (Step1) with the worst case decoded
row address vector (Step2).

Step1: The goal of this step is to find the initial vec-
tor that activates a set of worst case delay transitions for

000
001
010
011
100
101
110

111

000
001
010
011
100
101
110

111

1st stage

precedent
vector

decoding
vector

001
010
011
100
101
110
111

000

001
010
011
100
101
110
111

000

precedent
vector

decoding
vector

2nd stage

Figure 1. Decoder structure and possible set of
worst case transitions for the (pre/post)decoder
blocks

the decoder independent of the decoded row. A method has
been developed for that by first finding the worst case tran-
sition set per building block of the decoder (e.g., address
driver, predecoder and postdecoder) and then combining
these transitions to find at the inputs of the decoder the worst
delay transition for each decoded row. This analysis is pos-
sible since the transition only influences the intrinsic capac-
itance of the current block. The extrinsic load from the next
block will not affect the relative ordering of each transition
according to their associated delay.

For the two-stage decoder of the SRAM, the building
blocks of the first stage is a set of three-input NAND gates
and that of the second stage is a set of three-input NOR
gates. According to the decoding feature of these gates (e.g.,
the input combination identifying one different output out
of all possible ones in their Karnaugh map), the NAND
and NOR gate will have only one decoding vector respec-
tively (e.g., 111 for the NAND gate and 000 for the NOR
gate). Hence, the set of transitions potentially leading to
worst case delay are, for the NAND gate, the transitions of
the type XXX → 111, while for the NOR gate these are of
the type XXX → 000 (see Figure 1). To find out which of
these transitions remain being the worst case under variabil-
ity, a significant number of simulations (each under a ran-
dom process variability scenario) has been performed. Fig-
ure 2 shows the results after simulations for the NAND gate.
It is clearly visible that at the 65nm technology node, only
the transition 000 → 111 remains worst case irrespective of
the variability scenario for a NAND gate. While the criti-
cal transition for the NOR gate, obtained in similar way as
that of the NAND, is the 011 → 000 one. Therefore, we can
safely conclude that the influence of process variability in
the internal (parasitic) loads of the netlist at 65nm is not yet
dominant enough so as to change the impact of the ”nomi-
nal” worst case transition.

To find the initial vector that exercises a worst case tran-
sition for any decoded output, we just have to backtrack the
gate-level worst case transitions all the way, from the post-
decoder (NOR gate) through the predecoder (NAND gate),
to the inputs of the address driver in the full decoder netlist.

Step2: The goal of this step is to identify the worst case
address vector that excites the slowest decoded row. For this

we could simply excite all decoder outputs one by one and
detect the slowest one. However, due to the CPU time ineffi-
ciency of HSPICE that would also be expensive as the num-
ber of combinations grows as 2n, being n the number of ad-
dress decoder inputs. To avoid an expensive search, a tech-
nique based on exciting all decoder outputs at the same time
and finding the slowest of them by using only one address
vector has been developed.

This can be done by modifying the decoder input driver
circuitry under test mode such that all input address bits and
their complemented bits (see Figure 1) are supplied with the
same “0 → 1” transition simultaneously irrespectively on
whether a particular input should be complemented. This
functionality of the address driver will violate the decod-
ing principle by applying under test mode a 1...1 combi-
nation to the predecoder gates, hence activating all the de-
coder rows simultaneously. By monitoring the difference in
delay of all the rows, the slowest one can be easily identi-
fied. Based on this, the worst delay vector can be obtained to
activate that row under normal decoding operation. The in-
put address transition will not play a role in the determina-
tion of this vector since the same transition (0 → 1) is gen-
erated in all outputs.

NAND delay of different transitions under variation

0.00E+00

5.00E-12

1.00E-11

1.50E-11

2.00E-11

2.50E-11

3.00E-11

3.50E-11

4.00E-11

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41

variation number

d
el

ay
(s

)

"000"

"001"

"010"

"011"

"100"

"101"

"110"

Figure 2. Impact of variability in delay for the set
of potential worst case transitions for a NAND
gate at the 65nm technology node.

Step3: The goal of this step is to find the set of worst
case delay transitions for the full decoder. For this we sim-
ply combine the initial vector activating the worst case tran-
sitions obtained in Step1 with the worst case decoded row
address vector obtained in Step2. This will lead to a set of
two-address vectors where first vector is the initial vector
exercising the worst case transition irrespectively of the de-
coded output, followed by the vector selecting the worst
case output.

To capture the worst case energy of the decoder, the set
of vectors we select is different although still based on the
set found for delay characterisation. Since energy is also
proportional to the switched capacitances involved in the

decoding process, the worst case decoder transition for en-
ergy can be also obtained by applying two vectors. In this
case, the first vector should be the same as the one found for
delay in order to activate the worst-case load conditions of
the gate’s parasitic capacitances. The second vector is ob-
tained by complementing the the bits of the vector identify-
ing the slowest row. That should lead to an opposite switch-
ing direction in the nodes of the netlist hence maximizing
the activity of these nodes.

4.2. Full memory characterization

Similar to the decoder, finding the delay of the array un-
der process variability using a full search of all the cells,
Sense Amplifiers (SA), and other related periphery is im-
practical. Hence, there is no better alternative than using a
local search where decoder and cell-array interactions are
neglected. However, in practice given enough Monte-Carlo
simulations are made, the worst case delay range of both
decoder and the cell-array when simulating both together is
still captured.

For that purpose, the delay of the SRAM is obtained as
follows:
Step A: Generate the nominal netlist of the target memory
row decoder (see Section 3) and inject stochastic variability
on the transistors of that netlist, hence generating a netlist
for a given variability scenario. Then characterise the row
decoder worst case delay and energy following the method-
ology described in Section 4.1. As a result the worst-case
activated wordline both for energy and delay is also identi-
fied.
Step B: Generate the full memory lumped netlist (see Sec-
tion 3) by connecting the critical rows with one of the word-
lines of the lumped cell-array netlist.
Step C: Simulate the netlist generated in the previous step
and measure the worst-case energy and delay of the write
and read operations. The write operation worst case delay
is measured from the moment the input address is given to
the moment when the last cell in the accessed bitlines be-
comes stable. The read operation is performed right after the
write operation and its associated worst case delay is mea-
sured from the time the address is given to the time when
the slowest data bit is read out among the all the parallel
bitlines.

To capture the SRAM energy/delay with enough accu-
racy, 200 simulations have been performed by each time
generating a different process variability scenario. Given
Monte-Carlo analysis, this should bring a confidence fac-
tor above the 99% since that one is inversely proportional
to the square root of the number of experiments.

5. Analysis of variability results

To evaluate the impact that process variability has at the
SRAM level, a 1KB SRAM has been simulated following
the methodology defined in Section 4. The circuits of this
SRAM and especially the associated timing interfaces have
been designed for nominal operation. Hence, no particu-
lar safety design margins have been taken when designing
these circuits.

The experimental results shown in Figure 3 indicate that
the decoder, under process variability tend to have larger de-
lay than the nominal one. The large impact in decoder delay
is due to the fact that the slowest path of the affected de-
coder will be slower than the nominal one for most of the
cases. The energy increases also marginally and this is due
to the existence of fanout paths initiated at the predecoder
stage that reconverge at the input of the postdecoder gates.
The delay of these paths are different depending on the ac-
tual variability scenario, hence leading to glitching activity
at the input of the postdecoder gates. This is wasted energy
that leads to a spread in decoder energy.

Decoder E/D of 1KB SRAM

0.70

0.76

0.82

0.88

0.94

1.00

1.06

0.52 0.58 0.64 0.70 0.76 0.82 0.88 0.94 1.00

delay (relative)

E
n

er
g

y
(r

el
at

iv
e)

E/D of
nominal case

E/D under
variability

Figure 3. Decoder energy and delay under
process variation

The delay/energy cloud of the memory for read and write
operation are shown in Figure 4 and Figure 5 respectively.
These Figures clearly indicate that the delay of both opera-
tions tend to become slower in most of the simulations. This
increase in delay mostly comes from longer decoder delay
but, also from the cell array. This is the case for small size
SRAMs, since the decoder contribution in the overall de-
lay is significant [15]. Also, as Figure 3 shows this is signif-
icantly affected by variability.

In the read operation, apart from the decoder, the cell ar-
ray also tends to have larger delay because in most cases the
slowest bitline (incl. the SA) among the ones being read will
become slower than nominally. The increase in delay is re-
lated to a larger time required by the sense amplifiers to am-
plify the smaller-than-nominal voltage swing on this partic-
ular bitline to a full-rail voltage. This smaller swing is due
to several effects, even a combination between them. For in-

E/D of read operation, 1KB SRAM

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2

Delay (relative)

E
n

er
g

y
(r

el
at

iv
e)

E/D of nominal case

E/D under variation

40%

42
%

Figure 4. SRAM energy/delay for read operation
under process variation

stance, the bitline discharge current can be reduced due to
the difference in time when the pass transistors start activat-
ing the selected cell. This time can become later than nomi-
nally e.g., due to an increase in the V t value of these transis-
tors. Also, the inverters in the cell can have less driving ca-
pability due to the impact of variability in both Vt and β.
Statistically, it is very much likely to have one of the bit-
lines reacting slower than the nominal case, hence the delay
of the read operation is also in most cases larger than nom-
inal.

E/D of write operation, 1KB SRAM

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2

Delay (relative)

E
n

er
g

y
(r

el
at

iv
e)

E/D of nominal case

E/D under variation

30%

42
%

Figure 5. SRAM energy/delay for write operation
under process variation

The energy variation of the read operation is dominated
by the energy consumed on the bitlines, including the ac-
tive ones (e.g., these being selected by the column muxes),
the passive ones (e.g., these not being selected) and the SA.
When bitlines have larger swing than nominal, they will
also consume also more energy than in the nominal case
due to the larger discharge current in the global bitline ca-
pacitance and this up to a level where the SA can amplify
that swing up to a full rail. When the bitlines have less volt-
age swing, they will also consume less energy due to the
smaller discharge in the associated bitline capacitances. In

this case, even when the SA needs more time, hence more
energy to amplify this smaller swing to full rail, that one
is not yet big enough (in their global contribution) so as to
compensate the decrease in energy obtained in the bitlines
due to the smaller discharge current. This balance is illus-
trated in Table 1 for both a nominal memory and one af-
fected by variability showing less overall energy.

Table 1. Array read energy breakdown under
variation where total energy is less than nominal

Relative Active Passive SA Total
energy bitlines bitlines

nominal 0.163 0.6 0.237 1
variation 0.07 0.51 0.26 0.84

In the write operation, delay has the same trend as in
the read operation for similar reasons. For instance, one
end (e.g. n1 in Figure 6) of the cell being written is di-
rectly grounded by the write circuit in a very short time
while in the other end (e.g. n2 in Figure 6) of the cell, the
bit stored there has to be flipped by one of the inverters in
that cell. That inverter may have under variability less driv-
ing capability than in the nominal case, which would re-
sult in a longer time for the cell to modify its state. Indeed,
we would require all bitlines to react faster than the nomi-
nal bitline and that gain in delay to become larger than the
excess in the decoder delay so as to have an overall mem-
ory with a faster reaction time than the nominal memory.
That is in fact extremely unlikely to happen as simulation
results confirm.

Prechargewordline

Cell

n1 n2
"0" "1"

"1" "1"passive
bitline

discharge
path

Figure 6. Simplified passive bitline structure in
the Write (1) operation

The impact in energy in write operation is also similar
to that in the read operation. Apart from the marginal en-
ergy increase in the decoder, the array consumes, in most
cases, more energy due to the interaction between passive
bitline and the active bitlines. Different from the array read
delay which is mainly composed of bitline delay and SA
delay, the array write delay is mainly determined by the bit-
line delay (the time the cell being written to become stable).
When it becomes larger than nominal, the passive bitlines
have more time to discharge through the pass transistors of
the cells (see Figure 6). This will lead to a larger than nom-

inal voltage swing on them which consequently increases
their energy consumption. On the other hand, the active bit-
lines can also consume more energy due to larger swing on
them and due to short circuit or leakage effects in the cells
being activated. When the write operation becomes faster
than the nominal case the energy associated becomes also
smaller because of a similar mechanism.

6. Conclusion

SRAMs tend to be slower and consume more energy on
average than their nominal implementation in most cases
under variability. This is partly counter-intuitive so in this
paper we have identified and illustrated the different mecha-
nisms behind this unexpected behavior and quantify the im-
pact of these effects for on-chip SRAMs at the 65nm tech-
nology node.

Acknowledgments

The authors gratefully acknowledge the fruitful discus-
sion held with colleagues of IMEC’s System Level Integra-
tion project as source of inspiration for the material pre-
sented here. In particular we thank to Antonis Papanikolaou
and Jeroen Croon for their feedback.

References

[1] J. Bastos, et.al, Mismatch characterization of submicron MOS tran-
sistors Analog Integrated Circuits and Signal Processing, vol. 12, no.
2, pp. 95-106, 1997

[2] T.W.Chen, J.Gregg; A low cost individual-well adaptive body bias
(IWABB) scheme for leakage power reduction and performance en-
hancement in the presence of intra-die variations Prod. DATE 2004,
pp240-245

[3] C.Visweswariah, et.al, First-order Incremental Block-Based Statisti-
cal Timing Analysis Prod. DAC2004,pp331 - 336

[4] R. Heald; Managing variability in SRAM designs. ISSCC04 uP Fo-
rum.

[5] D.Burnett, et. al, Implications of fundamental threshold voltage vari-
ations for high-density SRAM and logic circuits Proc. Symp. VLSI
Tech, pp,15-16, June 1994

[6] A.Bhavnagarwala, et.al, The impact of intrinsic device fluctuations
on CMOS SRAM cell stability IEEE Journal. of Solid-State Circuits,
Vol.36,pp.658-665, April 2001

[7] Pelgrom, et.al., Matching properties of MOS transistors. IEEE Jour-
nal. on Solid-State Circuits, 24(5):1433–1439, 1989.

[8] J.Croon, et.al, An easy-to-use mismatch model for the MOS transis-
tor IEEE Journal of Solid-State Circuits, vol.37, pp.1056-1064, 2002.

[9] B.Tavel, et.al, Thin oxynitride solution for digital and mixed-signal
65nm CMOS platform, IEDM 03 Technical Digest. pp:27.6.1 - 27.6.4

[10] Y. Cao, et. al., New paradigm of predictive MOSFET and intercon-
nect modeling for early circuit design. Proc. of CICC, June.

[11] International technology roadmap for semiconductors, 2004.
[12] B. Prince Semiconductor Memories: A handbook of design, manu-

facture, and application, second edition John Wiley and Sons, 1991
[13] Steve Furber; Asynchronous design for tolerance to timing variabil-

ity. ISSCC04 Advanced Solid State Circuits Forum.
[14] J. Rabaey, et.al, Digital Integrated Circuits: a design perspective 2nd

Edition Pearson Education international, 2003
[15] B.S. Amrutur, M.A. Horowitz; Speed and power scaling of SRAM’s

IEEE Trans. Solid-State Circuits Vol.35, No.2, Feb,2000

	Main Page
	DATE'05
	Front Matter
	Table of Contents
	Author Index

