
Synchronization Processor Synthesis for Latency Insensitive Systems

Pierre Bomel, Eric Martin, Emmanuel Boutillon
LESTER, Université de Bretagne Sud, Lorient, France

{pierre.bomel, emmanuel.boutillon, eric.martin}@univ-ubs.fr

Abstract
In this paper we present our contribution in terms of

synchronization processor for a SoC design methodology
based on the theory of the latency insensitive systems
(LIS) of Carloni et al[1]. Our contribution consists in IP
encapsulation into a new wrapper model which speed
and area are optimized and synthetizability guarantied.
The main benefit of our approach is to preserve the local
IP performances when encapsulating them and reduce
SoC silicon area.

1. Introduction
Modern integrated circuits (ICs), named ‘‘systems on

a chip’’ (SoCs), are the composition of several sub-
systems exchanging data. SoC size increase is such that
an efficient and reliable interconnection strategy is now
necessary to combine sub-systems and preserve, at an
acceptable design cost, the speed performances actual
very deep sub-micron technologies provide[2]. This
communication requirement can be satisfied by a LIS
communication network between IPs. The LIS methodol-
ogy enables to build functionally correct SoCs by 1) pro-
moting pre-developed IPs intensive reuse, 2) segmenting
inter-IPs interconnects with relay stations to break critical
paths and 3) bringing robustness to data stream latencies
to IPs by encapsulating them into synchronization wrap-
pers. These encapsulated IPs are called “patient proc-
esses”.

2. Related Works
Patient processes [3] are a key element in the LIS the-

ory. They are suspendable synchronous IPs (named
pearls) encapsulated into a wrapper (named shell) which
function is to make them insensible to the IO latency and
to drive the IP clock. The decision to drive or not the IP’s
clock is implemented very efficiently with combinatorial
logic. Figure 1 illustrates a patient process’ structure.
Nevertheless, the LIS approach relies on a simplifying,
but restricting, assumption: an IP is activated only if all

its inputs are valid and all its outputs are able to store a
result produced at next clock cycle. Now, it is frequent
that only a subset of the inputs and outputs are necessary
to execute one step of computation in a synchronous IP.

Combinatorial logic based synchronization wrapper

Combinatorial
logic

IP
Input
port

Output
port

stopout

voidoutvoidin

stopin

data_in data_out

enable clock

data

ctrl

data

ctrl

Figure 1 : Carloni et al.’s Patient Process Model

So as to limit the patient process sensitivity to a subset
of the inputs and outputs, Singh and Theobald [4] suggest
to replace the combinatorial logic that drives the clock by
a Mealy type FSM. This FSM tests the state of only the
relevant inputs and outputs at each cycle and drives the IP
clock only when they are all ready. This approach is an
extension of the LIS original model and has the advan-
tage to correspond to a more realistic communication
behavior. It can be implemented if one disposes of in-
put/output schedules that proves the IP communication
behavior is cyclic and not data-dependent : i.e. it is stati-
cally predictible. The major drawbacks of FSMs are their
synthezability and silicon size when communication sce-
narios are long and complex like in computing intensive
digital signal processing applications.

Finally, in order to reduce hardware cost, Casu and
Macchiarulo [5] prove that, if it is possible to determine a
static scheduling of all the IPs activation, then the relay
stations can be replaced by simple flip-flops and the syn-
chronization upstream and downstream protocol signals

1530-1591/05 $20.00 © 2005 IEEE

can be definitely removed. The IP activation static sched-
ule is implemented with shift registers which contents
drive the IP’s clock. This approach relies on the hypothe-
sis that there are no irregularities in the data streams: it is
never necessary to randomly freeze the IPs.

3. New Approach – a Smaller Wrapper
As 1) LIS methodology lacks the ability to dynami-

cally sense IO subsets, 2) FSMs can become too large as
communication bandwidth does, and 3) shift register
based synchronization targets only extremely rapid envi-
ronments, we propose to encapsulate IPs into a new syn-
chronization wrapper model which area is much less than
the FSM-based wrappers area, speed is enhanced (mostly
thanks to area reduction) and synthesizability is guaran-
teed whatever the communication schedule is.

The solution we suggest is functionally equivalent to
the FSMs. This is a specific processor that reads and exe-
cutes cyclically operations stored in a memory. We name
it a “synchronization processor” (SP). Figure 2 specifies
the new synchronization wrapper structure with our SP.

Processor based synchronization wrapper

Sync Processor

IP
Input
port

Output
portdata_in data_out

enable clock

data data

Operations
Memory

operation addressoperation word

pop

not empty

ctrl

push

not full

ctrl

Figure 2 : Patient Process Model
 with Synchronization Processor

The SP communicates with the LIS ports with FIFO-

like signals. These signals are formally equivalent to the
voidin/out and stopin/out of [1] and valid, ready and stall
of [4]. Number of input and output ports can be any. It
drives the IP’s clock with the enable signal. The SP
model is specified by a three states FSM: a reset state at
power up, an operation-read state, and a free-run state.
This FSM is concurrent with the IP and contains a data
path: this a “concurrent FSM with data path” (CFSMD).
Operation’s format is the concatenation of an input-mask,
an output-mask and a free-run cycles number. The masks
specify respectively the input and output ports the FSM is
sensible to. The run cycles number represents the number

of clock cycles the IP can execute until next synchroniza-
tion point. To avoid unnecessary signals and save area,
the memory is an asynchronous ROM (or SRAM with
FPGAs) and its interface with the SP is reduced to two
buses : the operation address and operation word. The
execution of the program is driven by an operation “read-
counter” incremented modulo the memory size.

4. Implementation and Results
Our SP has been successfully applied to the high-level

synthesis of Reed-Solomon (RS) and Viterbi decoder IP
cores with GAUT[6]. Table 1 gives comparative results
of FSM and SP physical synthesis and shows that very
important gains in area (up to 99 % saved) and speed (up
to 47% increase) can be obtained with our SP.

Complexity FSM SP Gain (%)

Port/wait/run Sli. Fr. Sli Fr. Sli. Fr.

Viterbi 5 / 4 / 198 494 105 24 105 -95 0
RS 4 / 2957 / 1 2610 71 24 105 -99 +47

Table 1 : Applicative Results

5. Conclusion
Our SP has an essential characteristic: its complexity

does not depend on the number of cycles the IP needs for
a whole computation but only on the number of ports.
Consequently its frequency and area are constant, for a
given number of ports. It allows to build SoCs with a LIS
based methodology, preserves IP frequencies and saves
silicon space to implement patient processes.

References
[1] L. P. Carloni, K. L. McMillan, and A. L. Sangiovanni-

Vincentelli, ‘‘Theory of Latency-Insensitive Design,’’ in.
IEEE Transactions on Computer Aided Design of Integra-
ted Circuits and Systems, 20(9) :18, Sept. 2001

[2] International Technology Roadmap for Semiconductors,
2003 edition.

[3] L. P. Carloni and A.L. Sangiovanni-Vincentelli, ‘‘Coping
with Latency in SoC Design,’’ in IEEE Micro, Special Is-
sue on Systems on Chip, 22(5) :12, Oct. 2002.

[4] M. Singh and M. Theobald, ‘‘Generalized Latency-
Insensitive Systems for Single-Clock and Multi-Clock Ar-
chitectures,’’ in Proceedings of the Design Automation and
Test in Europe Conference (DATE’04), Paris, Feb. 2004.

[5] M. R. Casu and L. Macchiarulo, ‘‘A New Approach to
Latency Insensitive Design,’’ in Proceedings. of the Design
and Automation Conference (DAC’04), San Diego, June
2004.

[6] GAUT, web site, http://web.univ-ubs.fr/gaut

	Main Page
	DATE'05
	Front Matter
	Table of Contents
	Author Index

