
Distributed HW/SW-Partitioning for Embedded Reconfigurable Networks ∗

Thilo Streichert, Christian Haubelt, Jürgen Teich
University of Erlangen-Nuremberg, Germany

{streichert,haubelt,teich}@cs.fau.de

Abstract
In this paper, we propose a distributed online HW/SW-

partitioning strategy for increasing fault tolerance in
HW/SW-reconfigurable networked systems.

1. Introduction
Distributed and adaptive embedded hardware platforms

are becoming more and more important for applications in
the area of automotive, body area networks, ambient intel-
ligence, etc. In order to be able to cope with different time-
variant application demands or node defects, these systems
must be adaptive and be able to react to unforeseen chang-
ing requirements. Due to the possibilities provided by the
currently available technology, functionality implemented
in hardware (HW) or software (SW) can be dynamically as-
signed to resources in the network.

We therefore propose a distributed two-step strategy for
online HW/SW-partitioning, that consists of a HW/SW bi-
partitioning heuristic and a dynamic load balancing algo-
rithm.
All related work discusses either offline HW/SW partition-
ing algorithms [5] or load balancing approaches only but do
not consider the online HW/SW partitioning problem. One
publication [4] in this field describes load balancing on a
platform consisting of a microprocessor and reconfigurable
HW, but without an extension for networked systems.

2. Problem Definition
There are two possible scenarios where a (re)partitioning

of processes in a reconfigurable network becomes impor-
tant or even necessary: The first is the possible failure of
a computational node at a certain time. The second is for
optimality reasons in case of changes of the computational
demands of the running application due to either finishing
tasks or yet unknown arriving tasks.

The HW/SW partitioning problem is defined as an as-
signment of each task to a resource as well as an indication
whether the task is implemented in HW or SW. Here, we
propose a distributed algorithm which solves this problem
at runtime, leading to an online HW/SW partitioning prob-
lem. In the following, we will call the set of active resources
at timet theallocationα(t) and the assignment of tasks to
resources thebindingβ(t).
Our approach to online HW/SW partitioning tries to find a

∗Supported in part by the German Science Foundation (DFG) under
contract TE 163/10-1, SPP 1148 (Rekonfigurierbare Rechensysteme)

binding that optimizes the current bindingβ(t) with respect
to the following objectives:

1. load balance in the network: With this objective to be
minimized, the load in the network is balanced between the
nodes, whereas HW- and SW-tasks are treated separately:
max(max(wS

i)−min(wS
i),max(wH

i)−min(wH
i))∀i =

1..|N | with wS
i being the SW load on nodei andwH

i be-
ing the HW load on nodei. |N | is the number of resource
nodes.

2. hardware/software load balance: The load between
the HW- and SW-resources has to be balanced, i.e., we min-
imize

∣∣∣ ∑|N |
i=1 wS

i −
∑|N |

i=1 wH
i

∣∣∣.
3. minimization of total load: To avoid unnecessary

high computational load in the network, we minimize∑|N |
i=1 wS

i + wH
i .

With these objectives, our online HW/SW-partitioning
algorithm will then create most likely task assignments that
enable a goodload reserveon each active node which is im-
portant for achieving fast repair times in case of unknown
future node failures. In this paper, we assume constant
workload demands on each node, i.e.,wS(p) = wS

i (p)∀i =
1..|N | for a given processp.
The SW workloadwS

i (p) on nodeni of processp is the
fraction of execution time to its period and the HW work-
loadwH

i (p) is defined as the fraction of required area and
maximal available area, resp. configurable logic elements
in case of FPGA implementations.

3 Online Hardware/Software Partitioning
In figure 1 we present our methodology for handling un-

expected events. The goal of the fast repair phase is to
reestablish the functionality of the network. This part is
not covered in this paper. The second phase, the online
HW/SW partitioning tries to find an optimal binding of pro-
cesses to nodes so to optimize the above three objectives.
This is achieved by an online HW/SW partitioning strategy
consisting of a load balancing and a bi-partitioning phase.
While the load balancing step tries to find good solutions
with respect to the first objective, the local bi-partitioning
tries to optimize the second and third objective. Note that
this partitioning will run in a distributed and decentralized
manner in the network for reasons of fault tolerance.

3.1 Load Balancing
For the load balancing, we apply a diffusion based algo-

rithm which moves load entities along the links in the net-
work to other nodes. Characteristic to a diffusion-based al-
gorithm, introduced first by Cybenko [3], is that iteratively,

1530-1591/05 $20.00 © 2005 IEEE

bipartitioning

repartitioning
optimization

event(t)

allocation(t), binding(t)

allocation’(t), binding’(t)

Is
partition

ok?
yes

fast repair

no

allocation’(t), binding’’(t)

discrete diffusion

Figure 1. Phases of HW/SW partitioning

each node is allowed to move any size of load to each of its
neighbors. Communication is only allowed along edges in
the network. Although diffusion algorithms have received
a considerable amount of attention throughout the last cou-
ple of years, see, e.g., [1], they have two negative charac-
teristica: They work with real-valued portions of load and
they have alternating behaviour. Therefore, we proposed
a diffusion scheme that migrates only full tasks between
nodes. For this discrete diffusion algorithm we have proven
that it does not exceed optimality constraints concerning the
amount of migrated tasks in the continuous case and we are
able to show theoretically maximal deviations with respect
to the quality of the load balance, cf. [2].

3.2 Local Bi-Partitioning
The bi-partitioning algorithm first determines the load

ratio between a HW and a SW implementation for each
process: wH(pi)/wS(pi). According to this ratio, the
algorithm selects one task and implements it either in HW
or SW. Due to such a local strategy, we can guarantee that
the total load will be minimized, but to reach an optimal
HW/SW balance, we calculate the total SW load and the
total HW load on each node. If the total HW load is less
than the total SW load, the algorithm selects a task which
will be implemented in HW, and the other way round.
Due to these competing objectives, tasks with a ratio larger
than one can be assigned to hardware and tasks with a ratio
less than one are assigned to software. In order to undo this
suboptimal task assignment, we migrate these tasks at first
in the diffusion step.
The run time complexity of this algorithm is
O(|Pj |log2(|Pi|+ |Pj |)), where |Pi| is the number of
processes bound onto nodeni and |Pj | is the number of
new processes on the same node.

4 Experimental Evaluation
In the following evaluation, we are comparing the results

obtained with our distributed approach with the results of a
methodology which is based on an Evolutionary Algorithm

Figure 2. Shown is the distance d(s) to a refer-
ence solution over the iteration of the HW/SW-
partitioner. a) Optimal partitioned tasks with
a certain load on a node. b) Randomly dis-
tributed tasks in a network

(EA) and possesses global knowledge, i.e., a centralized op-
timization strategy is used. Using the EA, we determine a
setR of reference solutions and calculate the shortest nor-
malized distanced(s) from the solutions found by the on-
line algorithm to any reference solutionr ∈ R.
In the first experiment, we are starting from a network
which is in an optimal state, such that all tasks are imple-
mented optimally according to all objectives. Now, we as-
sume that new SW-tasks arrive on one node. Starting from
this state, Figure 2a) shows how the algorithm performs for
different load values. In the second experiment, the initial
binding of tasks and load sizes were determined randomly.
For this case, which is comparable to an initialization phase
of a network, we generated process sets with 10 to 1000 pro-
cesses, see Figure 2b). In this figure, we can clearly see that
the algorithm improves the distribution of tasks already with
the first iteration leading to the best improvement. Note that
Figure 2 presents the distance after each bi-partition and dif-
fusion step. We can see in Figure 2 that the failure of one
node causes a high normalized error. Interestingly, the algo-
rithm finds global optima but due to local information our
online algorithm cannot decide when it finds a global opti-
mum.

5 Conclusions and Future Work
In this paper, we have presented a first approach to online

HW/SW partitioning in networked embedded systems. The
proposed two-level algorithm increases the load reserves on
each node in order to compensate node defects.
In the future work, we will try to find a sufficient termina-
tion criteria and will investigate real-time capabilities.

References
[1] R. Els̈asser and A. Frommer and B. Monien and R. Preis, “Optimal

and Alternating-Direction Loadbalancing Schemes,”Proc. of Euro-
Par 99, Parallel Processing, 1999

[2] T. Streichert and Ch. Haubelt and J. Teich, “Online HW/SW-
Partitioning in Networked Embedded Systems,”Proc. of ASP-DAC
05, 2005

[3] G. Cybenko, “Dynamic Load Balancing for Distributed Memory
Multiprocessors,”Jour. of Parallel and Distributed Computing, 1989

[4] R. Lysecky and F. Vahid, “A Configurable Logic Architecture for Dy-
namic Hardware/Software Partitioning”,Proc. of DATE’04, 2004

[5] M. L ópez-Vallejo and J. C. Ĺopez, “On the Hardware-Software Par-
titioning Problem: System Modeling and Partitioning Techniques”,
Trans. on Design Automation of Electronic Systems, 2003

2

	Main Page
	DATE'05
	Front Matter
	Table of Contents
	Author Index

