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Abstract potential solution to the memory space problenoisige
As compared to a large spectrum of performance data and code compression. _ _
optimizations, relatively little effort has beenditeated to Prior research in code compression studied botfc sta

optimize other aspects of embedded applications ssc ~ and dynamic compressions techniques, focusing in
memory space requirements, power, real-time particular on efficient compression/decompression
predictability, and reliability. In particular, mamodern strategies [1, 3, 4, 5, 7, 17, 18, 19]. One poatptioblem
embedded Systems Operate under t|ght memory SpaceWith most of these teChniqueS is that the Commesahd
constraints. One way of satisfying these conssaimtto decompression decisions are taken in an application
compress executable code and data as much aslpossib insensitive manner;  that is, the  same
While research on code compression have studied compression/decompression strategy is employedlfor
efficient hardware and software based code stesegi applications independent of their specific instimet

many of these techniques do not take applicatidvabier access patterns.

into account, that is, the same In this paper, we propose a control flow graph (FTFG
compression/decompression strategy is used irrdgpec ~ centric approach to reducing the memory space
of the application being optimized. This paper pres a consumption of executable binaries. The main icedral
code compression strategy based on control flophgra this approach is to keep basic blocks of the apptia in
(CFG) representation of the embedded program. d&éa i  the compressed form as much as possible, without
is to start with a memory image wherein all bagicks increasing the original ~execution cycle counts

are compressed, and decompress only the blockatbat ~ €xcessively. An important advantage of doing sthat
predicted to be needed in the near future. When the the executable code occupies less memory space at a

current access to a basic block is over, our agpradso given time, and the saved space can be used by some
decides the point at which the block could be cesped. ~ Other (concurrently executing) applications. 1 The
We propose several compression and decompressionProposed approach achieves this by tracking théc bas
strategies that try to reduce memory requiremeittsowt block accesses (also called the instruction acgatiern)
excessively increasing the original instruction leyc — at runtime, and by invoking
counts. compressions/decompressions based on the order in

which the basic blocks are visited. On the one harel

try to save as much memory space as possible. ©n th
other hand, we do not want to degrade the perfocenai

the application significantly by performing freqien

, compressions and decompressions, which could
Most embedded systems have tight bounds on memory hqtentially occur in the critical path during exgon.

space. As a consequence, the application desigresn  This paper makes the following major contributions:
to be careful in limiting the memory space demard o
code and data. However, this is not a trivial task,
especially for large-scale embedded applicationth wi

complex control structures and data access pattéms

1. Introduction

L Alternately, in embedded systems that executaglesapplication,
the memory space saved can enable the use of Eesmamory,
thereby impacting both form factor and overall coss a third option,
saved memory space can be used to increase emeiggsin banked
* This work was supported in part by NSF Career Aing0093082. memory architectures.
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It proposes a basic block compression strategyedall
the k-edge algorithm that can be used for compressing
basic blocks whose current executions are over.

e It proposes a set of basic blogke-decompression
strategies, wherein a basic block is decompressed
before it is actually needed, in an attempt to cedtlne
potential performance penalty that could be impdsed
the on-line decompression.

The rest of this paper is organized as follows tiSec

2 summarizes basic concepts regarding the cortral f

graph based code representation, and the assuspt®n

made about our execution environment. Sectionsd34an
discuss the basic block compression and decompressi

strategies, respectively, proposed in this papecti@ 5

gives the details of our implementation. Section 6

discusses related work on code compression. Seétion

concludes the paper by summarizing our contribstion

2. Program and

, Representation
Architecture
A control flow graph (CFG) is an abstract data
structure used in compilers to represent a
procedure/subprogram [20]. Each node in the CFG
represents &asic block, i.e., a straight-line piece of code
without any jumps or jump targets; jump targetststa
block, and jumps end a block. In this graph, junmpthe
control flow are represented by directed edgesrd hee
two specially designated blocks: thetry block, through
which control enters into the flow graph, and et
block, through which all control flow leaves. The CFG is
essential to several compiler optimizations based o
global dataflow analysis such as def-use chainind a
use-def chaining [20]. It should be emphasized ah@FG
is a static (and conservative) representation o th
program, and represents all the alternatives oftrabn
flow (i.e., all potential execution paths). As axample,
both arms of an if-statement are represented iIrCH@,
while in a specific execution (with a particularpirn),
only one of them could actually be taken. A cyclethe
CFG may imply that there is a loop in the applmati
code. Figure 1 depicts an example CFG fragmerit tha
contains two loops.

i3

Compress B @

Figure 1. An example CFG fragment. Assuming
that the execution takes the left branch following
Bo, the 2-edge algorithm (i.e.,, the k-edge
algorithm with k=2) starts compressing B; just
before the execution enters basic block B4

brings reductions in memory access latency (as @& n
to read less amount of data from the target memasy)
well as in the energy consumed in bus/memory aesess
However, a detailed study of these issues is beybed
scope of this paper.

Another important issue is that, while in most bét
cases discussed in this paper we do not put actésiron
the total memory space that could be used by the
application being optimized, our approach needy anl
slight modification to address this issue. Spealfic all
that needs to be done is to check before each bhsik
decompression whether this decompression couldt iasu
exceeding the maximum allowable memory space
consumption, and if so, compress one of the
decompressed basic blocks that are in the uncosgudes
form. One could use LRU or a similar strategy tece
the victim basic block when necessary.

3. Basic Block Compression

In this section, we discuss theedge algorithm in
detail. This algorithm compresses a basic block tizs

The approach proposed in this paper saves memory peen visited by the execution thread when tfeetige
space by compressing basic blocks as much as f®ssib following its visit is traversed. It is to be notéfat the k
without unduly degrading performance. We assume a parameter can be used to tune the aggressiveness of
software-controlled code memory either in the faian Compression_ Consequenﬂy, the k-edge a|gor|th|1maﬂgt
eXternaI DRAM or in the form Of an On-Chip SRAqu Speciﬁes a fam”y of a|gorithms (e'g.' 1_edge,dg.@ 10-

a scratch-pad memory [21]). It must be emphasihat edge, etc). For example, let us consider the CFG
our main objective in this study is to reduce themory illustrated in Figure 1. Assuming that we have teisi
space requirements of embedded applications. Haweve pasic block B and, following this, the execution has

if there is another level of memory in front of timemory traversed the edges marked as a and b, the 2-edge

where our approach targets (i.e., a memory betwleen  jigorithm (i.e., the k-edge algorithm with k=2) résa
target memory and the CPU), the proposed apprdaoh a



compressing B just before the execution enters basic
block B..

Selecting a suitable value for the k parameter is
important as it determines the tradeoff between argm
space saving and performance overhead. Specifidélly
we use a very small k value, we aggressively cossgpre
basic blocks but this may incur a large performance
penalty for the blocks with high temporal reuse(ih it
is beneficial from a memory space viewpoint). liest
words, if a basic block is revisited within a shpetiod of
time, a small k value could entail frequent compi@ss
and decompressions (note that a basic block can be
executed only when it is not in the compressed fofDm
the other hand, a very large k value delays the
compression, which may be preferable from the
performance angle (as it increases the chancesding
a basic block in the uncompressed form during ei@cu
when it is reached). But, it also increases the argm
space consumption.

Another important issue is how one can perform
compressions. Note that, in a single-threaded eacu
the compression comes in the critical path of etieou
and can slow down the overall execution dramaticall
Therefore, we propose anulti-threaded approach,
wherein there exists eompression thread (in addition to
the mainexecution thread), whose sole job is to compress
basic blocks at the background, thereby incurritmgjnmral
impact on performance. Specifically, the comprassio
thread utilizes the idle cycles of the executioredia to
perform compressions.

4. Basic Block Decompression

We have at least two options for performing basic
block decompressions. In the first option, callbd an-
demand decompression (also called the lazy
decompression), a basic block is decompressed only when
the execution thread reaches it. That is, basickblo
decompressions are performed on a need basis. bk m
important advantage of this strategy is that ieé&sy to
implement since we do not need an extra thread to
implement it. All we need is a bit per basic bldokkeep
track of whether the block accessed is currentlyhie
compressed form or not. Its main drawback is that t
decompressions can occur in the critical path, toug
degrade performance significantly. In the secontioap
referred to as there-decompression, a basic block is
decompressed before it is actually accessed. Tiunate
behind this approach is to eliminate (or, at leasice)
the potential delay that would be incurred as altes
decompression. In other words, by pre-decompresaing
basic block, we are increasing the chances that the
execution thread finds the block in the uncomprmsse
form, thereby not losing any extra execution cydias

Figure 2. An example CFG fragment that can be
optimized using pre-decompression

decompressing it. This pre-decompression basedreche
has, however, two main problems. First, we need a
decompression thread to implement it. Second, pre-
decompressing a basic block ahead of time canasere
the memory space consumption.

It is easy to see that a pre-decompression based
scheme can be implemented in different ways. Is thi
paper, we study this issue by focusing on two chffie
dimensions. First, we have a choice in selectimghthsic
block(s) to pre-decompress. Second, we have a elhioic
selecting the time to pre-decompress tHehhese two
choices obviously bring associated performance/nmgmo
space tradeoffs. For example, pre-decompressinge mor
basic blocks increases the chances that the negk b
be visited will be in the uncompressed form (whish
preferable from the performance viewpoint providieat
we are able to hide the decompression cost); balso
increases the memory space consumption. Similpréy,
decompressing basic blocks early (as compared éo pr
decompressing them at the last moment) involves a
similar tradeoff between performance and memorygepa
consumption.

In this paper, we explore this two-dimensional pre-
decompression search space using two techniques, Fi
to determine the point at which we initiate
decompression, we use an algorithm similar to keedig
this algorithm (also calleck-edge), a basic block is
decompressed (if it is not already in the uncongeés
form) when there ar@t most k edges that need to be
traversed before it could be reached. As befores &
parameter whose value can be tuned for the desired
memory space — performance overhead tradeoff. An
example is depicted in Figure 2. Assuming k=3, his t
figure, basic block Bis decompressed at the end of basic

2 At this point, the analogyy between pre-decompoesand software-
initiated data/code pre-fetching should be notdek fivo choices
mentioned in the text correspond to selecting theks to prefetch and
timing of prefetch in the context of prefetching.
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Figure 3. The decomposition design space
explored in this work. For compression, we
always use the k-edge algorithm
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block B (i.e., when the execution thread exits basic block
B1, the decompression thread starts decompressihg B
This is because, from the end of B the beginning of B
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Execution
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Figure 4. The cooperation between the three
threads during execution. The execution thread
follows the decompression thread, and the
compression thread follows the execution thread

there are at most 3 edges that need to be traversedexecution thread and decompresses the basic biocks

Second, to determine the basic block(s) to decosspre
we use aprediction-based strategy. The idea is to
determine the basic block that could be accessedame

to pre-decompress it ahead of the time. In thisspawe
discuss two different prediction-based strategiasthe
first strategy, called pre-decompress-all, we pre-
decompress all basic blocks that are at most kedgay
from the exit of the currently processed block.the
second strategy, callgote-decompress-single, we select
only one basic block among all blocks that are astnk
edges ahead of the currently processed basic bltidk.

to be noted that while pre-decompress-all favors
performance over memory space consumption, pre-

so that the execution thread finds them directlythia
executable state. The compression thread, on ther ot
hand, follows the execution thread and compressek b
the basic blocks whose executions are over. The k
parameters control the distance between the threads

5. Implementation Details

In implementing the compression/decompression-
based strategy described, there is an importantecige
that needs to be addressed. Specifically, whemasic b
block is compressed or decompressed, the branch

decompress-single favors memory space consumption instructions that target that block must be updaled

over performance. To demonstrate the differencevdot
these two pre-decompression based strategies,
consider the CFG fragment in Figure 2 again, assgmi
this time, for illustration purposes, that blockg Bs, B,
and B are currently in the compressed form, all other
blocks are in the uncompressed form, and the eiecut
thread has just left basic block.BAssuming further that
k=2, in the pre-decompress-all strategy, the
decompression thread decompresse®B Bg, and B. In
contrast, in the pre-decompress-single strategypredict

the block (among these four) that is to be the rikesly

one to be reached than the others, and decompnéss o
that block. Figure 3 shows the decompression design
space explored in this paper.

Figure 4 summarizes our approach to code
compression for reducing memory space consumption.
is assumed that the highlighted path is the oné itha
currently taken by the execution thread. In thaidmase,
the decompression thread traverses the path béfiere

addition, the saved memory space (as a result of

wecompressions) should be made available to the fise o

other applications with minimum overhead. In padae,
one may not want to create too much memory
fragmentation. This is because an excessively feaujeal
free space either cannot be used for allocatingelar
objects or requires memory compaction to do so.
Therefore, our current implementation slightly degs
from the discussion so far, in particular when
compressions are concerned. Specifically, we st a
memory image, wherein all basic blocks are stored i
their compressed form. Note that this is the mimmu
memory that is required to store the applicatiodeccAs
the execution progresses, we decompress basic sblock
(depending on the instruction access pattern amd th
decompression strategy adopted, as discussedrgaatid
store the decompressed (versions of the) blocka in
separate location (and keep the compressed veramns
they are). Later, when we want to compress thekblalt
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Figure 5. An example CFG fragment and the contents of the instruction
memory when the basic block access pattern is By, By, Bg, B1, and B;

we need to do is to delete the decompressed version
this way, the compression process does not takentaxn
time. In addition, the memory space is not fragredrivo
much as the locations of the compressed blocksado n
change during execution. We illustrate the ideagishe
example in Figure 5 with on-demand decompressibe. T
figure shows an example CFG fragment, and traces th
sequence of events for a particular execution saena
Initially, all the basic blocks are in the compebgorm

maintain a “remember set” that records the addsee$e
the branch instructions that jump to this block.

Another issue is how to keep track of the fact that
edges have been traversed so that we can delete the
decompressed version of the blocks. Our current
implementation works as follows. For each basack]
we maintain a counter, which is reset to zero wthen
basic block is executed. At each branch, the courite
each (uncompressed) basic block is increased bydl a

and stored in the compressed code area. The program(the decompressed versions of) the basic blocksseho

counter (PC) points to the entry of the first bdslock,
which is B in this case (1). Fetching an instruction from
the compressed code area triggers a memory pratecti
exception.

The exception handler decompresses blogkn® By
and sets PC to the entry of B2). Assuming that block
B, is the one that follows B after the execution of block
B, the PC points to the entry of block ). Since B is
in the compressed code area, the exception haisller
invoked to decompress;Bnto B;' and update the target
address of the branch instruction ig &d set the PC to
the entry of B' (4). Let us now assume that the execution
thread next visits B again. Consequently, after the
execution of B, we branch to the entry of,B5). At this
time, we do not need to decompressdBce again. The
exception handler updates the target address ofaste
branch instruction of block Bto the entry of B, and
subsequently sets PC to the entry @f @). Following
By, the execution thread can branch tq' Hirectly
without generating any exception (7). Let us assnowe
that the execution next visits;BConsequently, the PC
points to the entry of this basic block (8). Assngithat
our compression strategy uses k=2, at this poiatjelete
the decompressed version ofy Bwhich is B), and
decompress Binto By as illustrated in (9). It is to be
noted that, when we discard a decompressed bloek, w
also need to update the target addresses of thmetbra
instructions (if any) that jump to the discardeddi. For

counter reaches k are deleted.

6. Discussion of Related Work

Many embedded systems rely on special hardware to
execute compressed code, such as Thumb for ARM
processors [2], CodePack [14] for PowerPC processor
and MIPS16 [13] for MIPS processors. However, the
requirement for special hardware limits their gaher
applicability. Lefurgy et al [16] propose a hybrid
approach that decompresses the compressed cotle at t
granularity individual cache lines. Kirovski et H5]
present a procedure-based compression strategy that
requires little or no hardware support. There hasnba
significant amount of work that explores the
compressibility of program representations [12].eTh
resulting compressed form either must be decomgdess
(or compiled) before execution [7, 11, 8], or ithche
executed without decompression [5, 9]. A hybrid
approach is to use an interpreter to execute the
compressed code [10, 22]. Compared to the direct
execution approach, the interpreter-based approach
usually allows more complex coding schemes, and,thu
achieves smaller memory consumption for the
compressed code. However, the interpreter itsalfijpies
memory space.

Debray and Evans [6] present a code compression

this purpose, for each decompressed block, we also strategy that operates at a function granularitg,, i
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