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Abstract mented in hardware to efficiently share the processing re-

Heterogeneous Multi-Processor SoC platforms bear the pseurces among multiple concurrent tasks. In analogy with to-
tential to optimize conflicting performance, flexibility and enday’s software operating systems (SW-OS), the HW-MT con-
ergy efficiency constraints as imposed by demanding sigresipt bears the potential to bring a disciplined management
processing and networking applications. However, in order tof processing resources to the data processing domain. From
take advantage of the available processing and communidae perspective of the functional tasks, this 'processing man-
tion resources, an optimal mapping of the application task&gement’ introduces a virtualization of the computational re-
onto the platform resources is of crucial importance. sources. This virtualization of the architectural elements repre-

In this paper, we propose a SystemC-based simulgents an efficient concept to cope with the complexity of MP-
tion framework, which enables the quantitative evaluatioB0oC platforms: now the system architect edlncateprocess-
of application-to-platform mappings by means of an ex@ag and communication resources in a deterministic way [5].
cutable performance model. Key element of our approach is However, the spatial and temporal mapping of the func-
a configurable event-driven Virtual Processing Unit to captional tasks to processing elements as well as the mapping of
ture the timing behavior of multi-processor/multi-threadedhe inter-task data exchange to a communication architecture
MP-SoC platforms. The framework features an XML-basauhile meeting performance and cost requirements is an unre-
declarative construction mechanism of the performang®lved challenge. In this paper we propose a SystemC based
model to significantly accelerate the navigation in large desimulation framework, which enables the system architect to
sign spaces. evaluate arbitrary task mappings by creating an abstract and

The capabilities of the proposed framework in terms of deret sufficiently accuratperformance modeif the considered
sign space exploration is presented by a case study of a coapplication together with the anticipated architecture.
mercially available MP-SoC platform for networking applica- The application is first represented as a set of untimed reac-
tions. Focussing on the application to architecture mappingive SystemC tasks communicating through an unified Trans-
our introduced framework highlights the potential for opti-action Level Modeling (TLM) [6] interface. Next the process-
mization of an efficient design space exploration environmeing requirements of each individual task are characterized by
1. Introduction annotating the delay budgets to the communication events. Fi-

. ) ) nally we introduce the concept of a Virtual Processing Unit

One of the most challenging tasks in modern System-o(yPU) to capture the impact of shared processing elements to
Chip design projects is to map a complex application ontothe SoCs performance. As an intermediate layer between the
heterogeneous architecture in adherence to the specified pigfied task network and the underlying event driven simula-
formance and cost requirements. The effective performancetigh kernel, the major purpose of the VPU is to compute tim-
processing elements is often confined by the communicatigfy of the multi-threaded task execution under the considera-
architecture, since memory access latency does not keep p@ge of task swapping and preemption.
with the increasing computational power. General purpose The major benefit of the outlined approach is thelar-
processors resolve the memory access bottleneck by usingg®re constructiorof the performance model: the individual
phisticated cache and memory hierarchies. Unfortunately thighing annotations as well as the mapping of the tasks onto
approach is often not applicable for embedded applicatiotie respective processing elements is specified by means of an
due to the poor memory locality of stream driven and packeitended Markup Language (XML) description. This generic
based data processing. . . _mapping mechanism significantly shortens the iterative explo-

Instead, embedded processor architectures are increasingbion cycle as well as improves model reuseability.
equipped with Hardware Multi-Threading (HW-MT) [1] to  After the subsequent discussion of related work, we present
perform task switches with virtually no performance overheaghe envisioned MP-SoC design flow and give an intuitive in-
By that, the application inherent Task Level Parallelism (TLR}oduction of the task model. The following section 4 intro-
is exploited with the purpose of hiding the memory access lauces the VPU concept and defines in detail the operational
tency. This effectively leads to a significant increase in procesemantic. The value of our approach is highlighted by a large
sor utilization. The HW-MT technique is already widely emscale case-study in the context of the networking application
ployed in the network processor domain [2] but recently findgomain.
its way into advanced multimedia [3] and wireless signal prq-
cessing platforms [4]. . Related Work

Beside the immediate benefit of increased utilization, HW- System Level Design is considered the appropriate way
MT can be considered as a lean operating system impte-deal with the ever increasing complexity and heterogene-
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ity of SoC architectures [7]. Various actor-oriented frame3.1. Design Flow Overview

works are proposed to capture arbitrary Models of Computa- The overall flow follows the multi-level SoC design strat-
tion (MoC) for the purpose of system level modeling and to@gy proposed by Magarshack and Paulin [22], which separates

supported paths to exploration, implementation and/or verijip-SoC development into four distinctive phases.
cation [6, 8, 9]. The modeling strategy presented in this paper

can be implemented on top of any of these MoC generic frame-® The functional phasedeals with development of Hard-
works. We selected SystemC mainly because of the broad user Ware independent Software and application specific algo-
acceptance and commercial tool support. rithms. We assume, that this phase also comprises the par-

Complementary to our top-down refinement flow, the Com- titioning of the application into a set of loosely coupled
ponent Based Design paradigm [10] advocates the bottom-up }‘ulr)ctlonal blocks ?l”d th‘? extraction (ij Task Level Paral-
platform composition from a parameterizable IP library, con-  |€lism (TLP). fFor_t el per orlmance relevant data proﬁess'
taining off-the-shelf processing elements, communication fab- N9 Portion of typical signal processing and networking
rics and hardware dependent Software layers. This approach is 2Pplications, this architecture independent partitioning is
clearly advantageous for the rapid exploration and implemen- MOstly straight forward and can be immediately derived
tation of the general purpose portion of the application [11], oM the algorithmic block diagram.
whereas our approach is focused on application specific archi® The MP-SoC platform phasecovers the system-
tectures executing the data-processing part. architecture specification by integration of high level

The highest possible abstraction level for design space ex- P blocks, along with the spatial and temporal mapping
ploration and application mapping is static performance anal- Of the application to the MP-SoC platform. We particu-
ysis [12, 13]. Other approaches are closer related to simula- larly address this phase, which is concerned with the full
tion frameworks for top-down exploration and refinement like ~ functional and architectural complexity of MP-SoC plat-
ARTEMIS [14], MESH [15], STepNP [16] and work on ab- forms.
stract RTOS modeling [17, 18]. Additionally, high-level IP creatiorandbasic IP creationare

The ARTEMIS project [14] is focused on an automatedoncerned with the development of the individual SoC compo-
refinement of coarse-grain Kahn Process Network algorithnents like e.g. embedded processors or interconnect technolo-
models to fine-grain architecture models for the purpose of dgies. These two phases are not in the scope of this paper.
sign space exploration and synthesis. .

Similar to our approach, the Modeling Environment fos-2: MP-SoC Mapping Phase
Software and Hardware (MESH) [15] project is concerned As depicted in figure 1, our MP-SoC framework follows the
with modeling of heterogeneous MP-SoC platforms above thegll-known y-chart principle [23], where a set of functional
cycle-level accuracy. Here, schedulers are considered as aglication models is merged with a set of architecture mod-
central modeling element to capture the dynamic and dagls in a dedicated mapping step. As an extension of the general
dependent nature of MP-SoC platform mapping. _y.—chart paradlgm, In our case the timing Is separately spec-

The SystemC based STepNP [16] simulation framewoffied during the mapping phase to keep it independent from
also advocates the joint consideration of communication arciioth the functional model as well as the architecture model.
tecture and application specific processing elements. STepNFs mechanism is the key to enhance the reusability of archi-
is focused on the early integration of Instruction-Set Simul4ecture and application models as well as the flexibility dur-
tors (ISS) into cycle-level TLM platform models [19], wherea$ng design space exploration. In reference to the flexible and
in our approach processing elements and interconnect are Bighly abstracted mapping mechanism, the developed embod-
uated on a higher packet-level TLM abstraction layer. iment of the y-chart principle is calledirtual Architecture

Madsen et al. propose the combined modeling of NoC ahdapping (VAM)
RTOS scheduling at a yet higher abstraction level, where the
application tasks are only represented as set of timing budgets

Architecture Models

Application Models

for processing and communication without any functional in- [_processing oycles ] XML based
formation [17]. e

Work on RTOS modeling [18] and generation [20] em- | |
ploys similar modeling techniques as our approach, but par- D
ticularly addresses the selection and configuration of the Soft-
ware RTOS for general purpose processing. MP-SoC

Our modeling framework addresses quantitative perfor- Performance Model
mance analysis during the early conceptualization of highly

complex Network-on-Chip (NoC) enabled MP-SoC platforms. Figure 1. Virtual Architecture Mapping
The unique transparent mapping mechanism presented in thiﬁ . . ,
paper combines the flexibility of non-functional performance N our previous work we have conceived a well defined

analysis with an accuracy within few percent of fully cycle acRacket-level TLM paradigm [24] for efficient modeling of em-
curate TLM simulation [21]. bedded applications and the anticipated communication archi-

tecture. The available set of generic, parameterizable on-chip
3. System Level Design Flow communication models cover shared buses as well as full scale

on-chip networks [25]. The simulation environment also con-

__We first give an overview of the complete flow, before weaing a comprehensive set of analysis tools for functional and
introduce the design space exploration framework. Then ‘étﬁ%rformance validation.

motivate the concept of task modeling, where we introduce One key aspect for efficient design space exploration is a
the Virtual Architecture Mapping methodology to capture theeclarative specification mechanism;, i.e. the following aspects
effect of task execution on dedicated hardware as well as ofithe MP-SoC architecture are defined by an XML based con-
single-threaded processor cores. figuration file, which contains:



e the configuration of the timing model (basically the number of Task 1 Task 2
required cycles per task execution),
e the number of available processors and number of supported
concurrent threads per processor. Aoy n Aliso Atoueyo s Ao
e the mapping of the application tasks to processors and threads, At At
e the instantiation, parameterization and interconnection of the respense Eresponse
communication nodes, Myyeyron Myg Alyeon My
e the instantiation and address mapping of the memory architec-
ture.
During the elaboration phase of the simulation, the archi-
tecture specification is extracted from the configuration files [ vPU ]
and bound to the application model by means of Virtual Archi-
tecture Mapping. During the simulation run, evaluation mod- == Mw A, Ao’ Mgy Mg Mgy, Abed
ules connected to the architecture models collect and aggre- s 1] ! ; ! ;
gate statistical information like resource utilization, latency, .., ! Ilbus e , :usy‘,wm
and throughput. On completion of the simulation, this statisti- : Co P
cal information is visualized by means of histogram and com-  *™ swapl suagl iswap} :
munication graph views. Based on the collected data, the sys- 0 10 15 30 35 45 50 6q, fme
tem architect may modify the MP-SoC architecture and/or the A T Y t b l
application mapping until the requirements are met. i S e e
3.3. Task Modeling
This paragraph introduces the task modeling. Tasks are rep- Figure 2. VPU Performance Model

resented by their pure functionality and an individual timing By guarding the activation of the tCEFSM during the busy
model. The functionality is pure C/C++ code, whereas the tinperiods and delaying the generated events, the externally vis-
ing model influences only the notification time of externallyble behavior of the tCEFSM corresponds to the task execu-
visible events. These annotated times characterize the argfiin on the anticipated processing element. Compared to non-
tecture implementation of the task and are derived from the emctional task representation by means of processing budgets,
quired processing time of the anticipated processing elemelr coarse-grain annotation of the functional SystemC pro-
to execute the task’s functionality. _ cesses yields a very accurate model of the timing character-
Following to the notation scheme of the Tagged Sign@dtic. Additionally the simulation speed is significantly faster
Model (TSM) [26] we will now introduce a formal represen-than on a target instruction set simulator.
tation of the timing annotation. After some fundamental defi- This modeling methodology enables mapping of functional
nitions, the modeling of a functional process is derived.  tasks to single-threaded processors as well as to dedicated
Elementary Definitions: An event e consists of a time hardware blocks. In the following section we introduce the
tag¢ € 7 and a valuev € Vapr. In our packet-level concept of a Virtual Processing Unit (VPU) to enhance the in-

TLM paradigm, a value is represented as an Abstract Daf@duced methodology to model shared processing resources.
Type (ADT), which is basically a C++ class object. Predefine VPU

members of this ADT are a priority, a delay and a state. T - ) ) )
tag and the value fields of the event are accessible by the point/Ve will now present the Virtual Processing Unit concept.
operator, i.ee;.value.priority denotes theriority field of ~ Firstwe introduce an intuitive introduction of the functionality
evente;. A signal sis a set of events, which can be viewed agnd in the following paragraph the operational semantic of this
a subset o x V. generic SystemC model is derived.

In the following considerations functional SystemC pro ;
cesses are representedtimsed Communicating Extended 21.1T.h V\F;FL)JLJntrO%Lle“Or? hi . . h
Finite State Machines (tCEFSM)to reason about the timing e enables the system architect to investigate the

annotation and mapping mechanism. A tCEFSM is a 7-tupfaPpPing of the application tasks with respect to space and
(Z,0, 2, f,U, Dyusy, Diciay) With time. Spatial mapping denotes the assignment of a task to one
’ 9 v My usyY elay

of the physical processing elements in the MP-SoC platform.

e e 561 of ol e Puteven® € TXVApT  Temporal mapping refers to the allocation of a time budget
o asetof variabled/ = (u1, ...), which represent the implicit state.  (derived from the number of processing cycles) on this partic-
e astate transition functiofi : Z* x Z — Z* x O , whereZ* denotes Ular processing element. Note that the task itself remains un-

the set of all implicit and explicit states touched and no recompilation is required to explore the design
o asetof busy periodByusy = {Atpusy,i} space, as the total simulation environment is configured by an
o asetof processing delaficiay = {Ati,a} XML description during the simulations initialization phase.

The tCEFSM is activated on the arrival of a new input event An example depicted in figure 2 illustrates the timing anno-
and instantaneously responds with a state transition and ptaion and VPU mapping mechanism. The upper part of figure
sibly the generation of one or more output events. To mod2lshows two tasks and their individual timing characteristic,
the busy time of the task during the processing of the statghich are spatially mapped to a single VPU instance. The bot-
transition, the next activation is not possible before the timtem of figure 2 shows the resulting timing in response to an
Atyysy has elapsed as illustrated in the upper part of figusssumed scenario. In the following we discuss the event se-
2. Additionally the generated events are projected into the fguence to illustrate the impact of the VPU:
ture to account for the periodt; ; between task activation  First task 1 is activated by the exterrialit T event, ex-
and event generation. Note that this scheme is sufficiently eeeutes the first portion of its functionality, and generates the
pressive to capture the notion of pipelined processing elemestdernalrequest T event after 10 time units . In the mean-
with Aty,sy < At 4, i.€. the processing of a new input eventime, the activation eventnit T, has already occurred, but
starts before the generation of the result. task 2 cannot start execution before the first task is finished



and swapped out. The VPU takes this additional delay into ac
count and notifies the external event to activate the executig
of task 2 at the correct time. In the given scenario, the co
munication request from task 1 returns before task 2 has f
ished the first portion of its functionality. Since task 1 is co
figured to have a higher priority, task 2 is preempted and ny
resumed before task 1 has completed its functionality. The

Sypu,al

1

Increment
due_date Aty

communication
architecture

guest generated by the functionality of task 2 is delayed by t ™~ :

additional preemption time, thus the externally visible eve Sveu.ng ‘ TN s e e

of this request is notified at the corresponding time of concu ‘/\ VPU j functional tasks
(tCEFSMs)

rent task execution. _ o _
Of course, the new task mapping capabilities are compliant

with our existing communication models. As outlined in the Figure 3. Virtual Processing Unit (VPU)

previous chapter, the complete MP-SoC platform phase is now — fPQ.activate beINg SENSitive to external events on the signals

supported by a versatile exploration framework. Sy pu.c1 connected to the communication network

4.2. Operational Semantic L ing sensilve o events on the S1g diera
According to the Tagg?d Signal Mo.deI (TSM) we Intro- cgr%ggéziattgthe associated functional tasks rer

duce a formal representation of the timing annotation and the — fDQ_update bEING SENSitive to the internal evenb g update

VPU mapping mechanism. In the following we elaborate the operational semantics of

The concept of a VPU generalizes the modeling of a SWsa'\/py functions and illustrate the work-flow of the VPU
OS as well as HW-MT processing elements. Following the Vitsodel by means of the example depicted in figure 3.

tual Architecture Mapping (VAM) mechanism, the VPU map- "Eyenis arriving on the incoming signal pu o activate

ping is achieved by manipulation of the externally visible event, fUNCtON fpo_activate. This function inserts the arriving

tags. Before the incorporation of any specific Real Time O%’v&nt into the Priority Quell#»o and in case of preemption

erating System (RTOS), our transparent mapping scheme < : :
parameterizable VPU enables the efficient design space ex%%tﬁgeasrtr?\}ggrg%?u directly activates the further processing

ration without modifying of the functional tasks. _ function f ol
By mapping different functional tasks represented as timed Uno 7;2;;?6“’“@ );
CEFSMs to one VPU, the VPU guards the activation of all ifF("(;mew Zi[‘fﬁé,gl.value.pm‘omy) | (pusy))

tasks against incoming events as illustrated in figure 3. In or- epQ update n0ti fy();
der to calculate the tags of all incoming and generated events, } _ _
the VPU maintains two data structures: The function fv pu, pQ_update handles the tag manipu-

The Priority Queue Upq, is a list of events; € 7 x V, lation of both pending events for activation of the mapped
which stores incoming events. By that the individual bustasks as well as outgoing events generated by the tasks.
times Aty ; Of the associated tasks are taken into account. function fp Oupdatel

The associated meth(sdhedule,processes(UPQ) schedules 1 remove._finished_processes(Upq);
the next active task from the list of pending events in the Pri- if (Upg-notEmpty()) {
ority Queuel{pg without removing the event from the queues if(etmp = schedule_process(Upq)) {
An additional methodremove_finished_processes(Upg) % if (etmp-value.state == init) {
removes the activating event of a finished task from the Pnoét- CVPU,FO = Etmp; .
. nbr_cycles = ey py, o -notify(Atswap);
ity Queuelfpg,. . . . Atpysy = nbr_cycles * clock_period
usy = -

A Delay Queueldp, is a list of eventg; € 7 x V), which comp value.state — busy:
projects generated events into the future according to thgir etmz walue.due.date — now & Atpuey + Atswap;
tags. The event tags are calculated with respect to the indi- Winit = true;
vidual delay annotationAt ge;qy ;- 11 }

Additionally the VPU calculates the delay penalty of task2 if (Mbusy) { o
swapping and task preemption. Along these lines we defind&a Ubusy = True; Upriority = etmp-value.priority;
VPU to be a 7-tuple 1‘51 }e,l]f(e({ - e priovity) | (usmie)) {

- 1f ((Upriorit etmp-value.priority Uinit
Pvpu = (S1,80; Ernternal,Urq:Upq,Uv pu, v pur) 16 Il preemption "
e a set of input signal§; = SVPU,CI U SVPU,FI: WhereSVpU,c] 17 for((all eventsin PQ )&&(state == busy))
denotes a set of input signals connected to the on-chip communicatit® event.value.due_date += Atpysy + Atswap;
network andSy py, pr denotes a set of input signals connected to thgg for(all eventsin DQ)
associated functional tasks. 20 event.value.due_date += Aty,sy + Atswap;
e asetof output signalSo =_SVPU,CO USv pU,FO, Whe“?SVPU,CO_ 21 Upriority = €tmp-value.priority;
denotes a set of output signals connected to the on-chip communicatign Uinst = false;
network andSy py, Fo denotes a set of output signals connected to thgs } else { I/ resume task
associated functional tasks. 24 for((all eventsin PQ )&& (state == busy))
e asetofinternal event;piernai = { €PQ,update, €DQ,update } 25 event.value.due_date += Atswap;
e a Priority Queuellpg C 7 € V and a Delay Queue 2 for(all eventsin DQ)
Upg CT eV 27 event.value.due_date += Atgyap;
e a set of internal variabledly py = { Upusy; Upriority Atswap), 28 Atpysy = etmp-value.due_date — now;
where 29 Upriority = €tmp-value.priority;
— astate variabley,, s, Which is initialized as false 30
— avariableuy,;ority retains the priority of the active process 31 }
— aswapping time\ts.qp depending on the VPU's status 32 epQ,update-NOtifY(Atpysy + Atswap);

e aset of functions'y, py: 33



34 }else{ =
35 Upusy = false; Upriority — —1; p ==
36 1 e
On every execution OfVPU PQ_update Wlth a non_empty : 1x VPU 2x VPU lj(VPU . l.xVPU X VPU X VPU
priority queue, the VPU checks whether a new task needs {d (b) Context pipeline
be scheduled from the set of pending events in the Priorit
Parser

Queueldpq (line 3). In case an event has been scheduled for
the first time (line 4), the delayed activation of the functional
task takes the penalty for task swapping into account (line 6  Funetior! piveline
and 7) 4x VPU

Recall that the activation of a functional task always re- (¢) Mixed pipeline
turns immediately and the VPU performs the required timing Figure 4. Software Pipelines
manipulation of the events. The product of the return value . )
nbr_cycles and the VPUs:lock_period denotes the individ- functionality and demonstrate the framework’s exploration ca-
ual timing annotation of the activated task (line 7). At th@abilities during a case study of a state-of-the-art Network Pro-
same time the new events generated during the task actig@ssing Unit (NPU) platform.
tion are inserted into the Delay Queldg . These events re- .
main inside this queue until the}:/ir tag is dQue. As depicted in fig5-'1' Referenpe Archlte'cture
ure 3, sending of the projected events is handled by the func-The capability of the introduced methodology has been
tions fpQ,update ANAfDQ activate- evaluated in the context of the Intel IXP2400 NPU [27]. The

Task preemption occurs when the current task has a lowi@sk characterizations in terms of memory accesses as well as
priority than the selected task. In this case all generated evef@nputation cycles are taken from the original Intel documen-
in the Delay Queué/p and the tags of already activated protation [2] and are illustrated in table 1. _ _
cesses in the Priority Queuéro have to be delayed (lines The reference architecture of Intel consists of 8 RISC-like
17 — 20). The preemption time is calculated from the busy tinffocessing elements each implementing 8 concurrent hard-
Aty Of the displacing processes and the required swappiM%fe threads. These processors have been modeled as VPUs,
time At syap- where each VPU instantiates 8 functional tasks to model the

Figure 2 illustrates a typical execution sequence in case®fthreads of each processor. Since HW-MT processors swap
preemption. At time 30 the response of task 1 displaces the éksks within a single clock cycle the VPU swap tithé,,,q, is
ecution of task 2. Originally evemtquest T would occur at  one cycle. The communication network of the IXP2400 archi-
time 15 + Ato 40 = 15 + 25 = 40. Instead, the event is de-tecture comprises 7 exclusive next-neighbor connections and
layed by Atq 41 + Atswap = 15 time units. Resuming task 3 global shared buses. To achieve the required OC-48 perfor-
2 at time 45 causes anothét,,,, tag increment of event mance (corresponding to 2.5 Gbit/s) the timing budget to pro-
request Ty, which finally occurs at time 60. cess a minimum size 48 Byte packet is only 147ns.

Coming back to the discussion $f p, po_update, the tag I this section, we illustrate the exploration capabilities of
incrementation of already generated events in case of task @& framework, focussing on the task mapping of the IPv4 ap-
suming is performed in lines 24 — 27. Finally the next actiplication to the Intel architecture.
vation of fy pu. po_update OCCUrS after the current task is fin- . .
ished, i.e. after the busy time of the active procass,., plus 2-2- Design Space Exploration .
the swapping penalt\t,.,q, (line 32). If no events are pend-  The mapping of the application tasks onto various VPU
ing in the priority queue, the VPU switches to idle state angonfigurations reveals the impact of processing element fea-

waits for the arrival of new events (line 35). tures like execution speed and HW-MT support. To achieve
As already mentioned the functiongpg upaate and @ fair comparison between the considered task mappings, the
fDQ activate Maintain the Delay Queuépq, where: processing and communication requirements of all functional
o The fUNCtON fo activare INSENts the incoming events at thet@sks are tied to the values in table 1. All VPUs are modeled
functional signal into the Delay Quet&o. with a frequency of 600 MHz. _ _ L
e The functionf e updare Manages the sending of due events to 1 hree alternative spatial task mappings depicted in figure
the architectural signals of the VPU. 4 are evaluated: according to the functional software pipeline

figure 4a) each VPU concurrently executes the whole appli-
ation. Second, figure 4b shows a context software pipeline,
Ghere each VPU concurrently executes 8 instances of the same
sk. The third option depicted in figure 4c represents a mixed
nctional/context pipeline.

In summary, the VPU enables the transparent ma
ping of multiple functional tasks onto a shared processing
source. The configurabl&t,.,., parameter models of the im-
pact on performance during task swapping of a slow SW-
compared to hardware supported HW-MT. The modular im-

plementation of the framework allows the customizing jine T func. | busy cycles] SRAM | DRAM | no. alloc.
the task scheduling algorithm by overloading the func- task (Aty,.,) | accesse§ accesses tasks
tion schedule,pvjocess(upg). This enables the incorpora- o Parcor 2 3 > 5
tion and early investigation of the RTOS scheduling pol- | RLU 160 10 1 24
ICY. 2| Meter 80 2 0 4
5. NPU Case Study 3| Dropper | 80 2 0 8
To demonstrate the fidelity of the outlined approach, this 5 | scheduler 100 0 0 4
section presents the results of a design project accomplished 6 CSIX 80 3 1 8

with the introduced design methodology. We have selected an

IPv4 forwarding application with Quality of Service (QoS) Table 1. Reference Mapping



Our traffic scenario is a typical IP traffic profile with an ef-plete design space spread by multiple heterogeneous process-

fective data rate of 2.06 Gbit/s. Investigation of the three iring

elements and complex communication architectures.

troduced software pipelines shows, that the functional Our exploration framework has been successfully applied
pipeline falls short to achieve the throughput requirement® the customization of an MP-SoC platform, which performs
as a throughput of appr. 1.89 Gbit/s is reached. Therd? forwarding with Quality of Service support. This complex
fore in the following discussion the functional pipeline will becase study illustrates the potential of the exploration capabili-
omitted, whereas the context and mixed pipeline will be futies of the developed framework.

ther investigated.

Our future work will focus on the incorporation of RTOS

The impact of temporal task mapping is examined bgpecific services and the additional deployment of analytical
means of the context- and the mixed-pipeline systems and taalysis- and optimization-techniques.
different VPU configurations. First a non priority based simReferences

ulation and second a priority based simulation is evalup
ated. Depending on the QoS class of each received IP@
packet the priority is determined, e.g. video and voice pack:
ets are of high priority, whereas flooding packets are of lovigl
priority. This scheduling mechanism influences the tempo-
ral execution of the different tasks mapped to each VPU. Pr n
ferring higher priority packets, task preemption as well a ]
task stalling occurs to speed up the processing of high prioE
ity packets. ]

6]
[7]
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Figure 5. Latency Measurements [11]

The simulation results depicted in figure 5 show, that prit2]
ority based task scheduling in the VPUs achieves a significant
reduction of approximately 40% in the latency of high priorgi3]
ity voice packets. As a tradeoff the average latency of all pro-
cessed packets rises by a factor2df. These tradeoff illus- [14]
trates the crucial impact of this kind of system architecture de-
cisions on the system performace. [15]

In summary the results of the case-study demonstrate the
capabilities of the simulation framework in terms of flexibility[1e]
for design space exploration as well as high simulation speed.
As soon as the SystemC model of the application is availahiej
a single engineer can carry out the task mapping experiments
within a few hours or days, as only configuration files have
to be modified. The simulation speed of this highly complei®!
MP-SoC architecture model for IP forwarding is in the rangeg]
of 100,000 cycles per second on a 2.0 GHz Linux host, which
is roughly 2 orders of magnitude faster than the ISS based sim-
ulator in the Intel Software Development Kit [27]. [20]

6. Conclusion 1]

We propose a system level simulation framework for early
investigation of MP-SoC platform architectures in the contexiz)
of the application. The major contribution of this paper is;a
highly flexible timing annotation and task mapping mecha-
nism to capture the performance impact of single- and muI&-4
threaded processing elements. Here the concept of a Virt a‘
Processing Unit enables the rapid exploration of spatial and
temporal application mappings to arbitrarily complex multigs]
processor platforms with no design overhead.

The major advantage of our modeling approach is the comes)
bination of high simulation speed, modeling efficiency and ac-
curacy to rapidly evaluate architectural alternatives. Together
with the Network-on-Chip simulation environment [25] the re-
sulting MP-SoC framework covers the exploration of the com-
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