
Abstract
In this paper we present an approach to the design optimization of fault-
tolerant embedded systems for safety-critical applications. Processes are
statically scheduled and communications are performed using the time-
triggered protocol. We use process re-execution and replication for toler-
ating transient faults. Our design optimization approach decides the map-
ping of processes to processors and the assignment of fault-tolerant
policies to processes such that transient faults are tolerated and the timing
constraints of the application are satisfied. We present several heuristics
which are able to find fault-tolerant implementations given a limited
amount of resources. The developed algorithms are evaluated using exten-
sive experiments, including a real-life example.

1. Introduction
Safety-critical applications have to function correctly and meet their tim-
ing constraints even in the presence of faults. Such faults can be perma-
nent (i.e., damaged microcontrollers or communication links), transient
(e.g., caused by electromagnetic interference), or intermittent (appear and
disappear repeatedly). The transient faults are the most common, and their
number is continuously increasing due to the continuously raising level of
integration in semiconductors. 

Researchers have proposed several hardware architecture solutions,
such as MARS [14], TTA [15] and XBW [4], that rely on hardware repli-
cation to tolerate a single permanent fault in any of the components of a
fault-tolerant unit. Such approaches, can be used for tolerating transient
faults as well, but they incur very large hardware cost. An alternative to
such purely hardware-based solutions are approaches such as re-execu-
tion, replication, checkpointing.

Pre-emptive on-line scheduling environments are flexible enough to
handle such fault-tolerance policies. Several researchers have shown how
the schedulability of an application can be guaranteed at the same time with
appropriate levels of fault-tolerance [1, 2, 9, 21]. However, such approach-
es lack the predictability required in many safety-critical applications,
where static off-line scheduling is the only option for ensuring both the pre-
dictability of worst-case behavior, and high resource utilization [13]. 

The disadvantage of static scheduling approaches, however, is their lack
of flexibility, which makes it difficult to integrate tolerance towards un-
predictable fault occurrences. Thus, researchers have proposed approach-
es for integrating fault-tolerance into the framework of static scheduling.
A simple heuristic for combining together several static schedules in order
to mask fault-patterns through replication is proposed in [5], without con-
sidering the timing constraints of the application. This approach is used as
the basis for cost and fault-tolerance trade-offs within the Metropolis en-
vironment [16]. Graph transformations are used in [3] in order to intro-
duce replication mechanisms into an application. Such a graph
transformation approach, however, does not work for re-execution, which
has to be considered during the construction of the static schedules.

Fohler [7] proposes a method for joint handling of aperiodic and peri-
odic processes by inserting slack for aperiodic processes in the static
schedule, such that the timing constraints of the periodic processes are
guaranteed. In [8] he equates the aperiodic processes with fault-tolerance
techniques that have to be invoked on-line in the schedule table slack to
handle faults. Overheads due to several fault-tolerance techniques, includ-
ing replication, re-execution and recovery blocks, are evaluated.

When re-execution is used in a distributed system, Kandasamy [11]
proposes a list-scheduling technique for building a static schedule that can
mask the occurrence of faults, thus making the re-execution transparent.
Slacks are inserted into the schedule in order to allow the re-execution of
processes in case of faults. The faulty process is re-executed, and the pro-
cessor switches to a contingency schedule that delays the processes on the
corresponding processor, making use of the slack introduced. The authors
propose an algorithm for reducing the necessary slack for re-execution.
This algorithm has later been applied to the fault-tolerant transmission of
messages on a time-division multiple-access bus (TDMA) [12].

Applying such fault-tolerance techniques introduces overheads in the
schedule and thus can lead to unschedulable systems. Very few research-
ers [11, 16] consider the optimization of implementations to reduce the
overheads due to fault-tolerance and, even if optimization is considered,
it is very limited and does not include the concurrent usage of several
fault-tolerance techniques. Moreover, the application of fault-tolerance
techniques is considered in isolation, and thus is not reflected at all levels
of the design process, including mapping, scheduling and bus access op-
timization. In addition, the communication aspects are not considered or
very much simplified. 

In this paper, we consider hard real-time safety-critical applications
mapped on distributed embedded systems. Both the processes and the mes-
sages are scheduled using static cyclic scheduling. The communication is
performed using a communication environment based on the time-trig-
gered protocol [14]. We consider two distinct fault-tolerance techniques:
re-execution of processes, which provides time-redundancy, and active
replication, which provides space-redundancy. We show how re-execution
and active replication can be combined in an optimized implementation
that leads to a schedulable fault-tolerant application without increasing the
amount of employed resources. We propose several optimization algo-
rithms for the mapping of processes to processors and the assignment of
fault-tolerance techniques to processes such that the application is schedu-
lable and no additional hardware resources are necessary.

The next two sections present the system architecture and the application
model, respectively. Section 4 introduces the design optimization problems
tackled, and Section 5 proposes a tabu-search based algorithm for solving
these problems. The evaluation of the proposed approaches, including a real-
life example consisting of a cruise controller are presented in Section 6. The
last section presents our conclusions.

2. System Architecture
2.1 Hardware Architecture and Fault Model
We consider architectures composed of a set N nodes which share a broad-
cast communication channel. Every node Ni ∈ N consists, among others,
of a communication controller and a CPU. Figure 1a depicts an architec-
ture consisting of four nodes.

Figure 1. System Architecture Example
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The communication controllers implement the protocol services and
run independently of the node’s CPU. We consider the time-triggered pro-
tocol (TTP) [14] as the communication infrastructure for a distributed
real-time system. However, the research presented is also valid for any
other TDMA-based bus protocol that schedules the messages statically
based on a schedule table like, for example, the SAFEbus [10] protocol
used in the avionics industry. 

The TTP has a replicated bus that integrates all the services necessary for
fault-tolerant real-time systems. According to the TTP, each node Ni can
transmit only during a predetermined time interval, the so called TDMA
slot Si, see Figure 1b. In such a slot, a node can send several messages
packed in a frame. A sequence of slots corresponding to all the nodes in the
TTC is called a TDMA round. A node can have only one slot in a TDMA
round. Several TDMA rounds can be combined together in a cycle that is
repeated periodically. The TDMA access scheme is imposed by a message
descriptor list (MEDL) that is located in every TTP controller. The MEDL
serves as a schedule table for the TTP controller which has to know when
to send/receive a frame to/from the communication channel.

In this paper we are interested in fault-tolerance techniques for tolerat-
ing transient faults, which are the most common faults in today’s embed-
ded systems. We have generalized the fault-model from [11] that assumes
that one single transient fault may occur on any of the nodes in the system
during the application execution. In our model, we consider that at most k
transient faults1 may occur anywhere in the system during one operation
cycle of the application. Thus, not only several transient faults may occur
simultaneously on several processors, but also several faults may occur on
the same processor. We consider that the transient faults can have a worst-
case duration of µ, from the moment the fault is detected until the system
is back to its normal operation, and that a fault is confined to a single pro-
cess and does not affect other processes.

2.2 Software Architecture and Fault-Tolerance Techniques
We have designed a software architecture which runs on the CPU in each
node, and which has a real-time kernel as its main component. The processes
are activated based on the local schedule tables, and messages are transmit-
ted according to the MEDL. For more details about the software architecture
and the message passing mechanism the reader is referred to [6]. 

The error detection and fault-tolerance mechanisms are part of the soft-
ware architecture. We assume a combination of hardware-based (e.g.,
watchdogs, signature checking) and software-based error detection meth-
ods, systematically applicable without any knowledge of the application
(i.e., no reasonableness and range checks) [4]. We also assume that all
faults can be found using such detection methods, i.e., no byzantine faults
which need voting on the output of replicas for detection. The software ar-
chitecture, including the real-time kernel, error detection and fault-toler-
ance mechanisms are themselves fault-tolerant.

We use two mechanisms for tolerating faults: re-execution and active rep-
lication. Let us consider the example in Figure 2, where we have process P1
and a fault-scenario consisting of k = 2 faults with a duration µ = 10 ms that
can happen during one cycle of operation. In Figure 2a we have the worst-
case fault scenario for re-execution, when the first fault happens at the end of
the process P1’s execution. The fault is detected and, after an interval µ, P1

can be re-executed. Its second execution is labeled with P1/2, which, in the
worst-case could also experience a fault at the end. Finally, the third re-exe-
cution of P1, namely P1/3, will execute without error. In the case of active rep-

lication, depicted in Figure 2b, each replica is executed on a different
processor. Three replicas are needed to tolerate the two possible faults and,
in the worst-case scenario depicted in Figure 2b, only the execution of P1/3 is
successful. In addition, we consider a third case, presented in Figure 2c,
which combines re-execution and replication for tolerating faults in a pro-
cess. In this case, for tolerating the two faults we use two replicas and one re-
execution: the process P1/1, which has P1/2 as a replica, is re-executed. 

With active replication, the input has to be distributed to all the replicas.
Since we do not consider the type of faults that need replica agreement, our
execution model assumes that the descendants of replicas can start as soon
as they have received the first valid message from a replica. Replica deter-
minism is achieved as a by-product of the underlying TTP architecture [17].

3. Application Model
We model an application A as a set of directed, acyclic, polar graphs G(V,
E) ∈ A. Each node Pi ∈ V represents one process. An edge eij ∈ E from Pi

to Pj indicates that the output of Pi is the input of Pj. A process can be ac-
tivated after all its inputs have arrived and it issues its outputs when it ter-
minates. The communication time between processes mapped on the
same processor is considered to be part of the process worst-case execu-
tion time and is not modeled explicitly. Communication between process-
es mapped to different processors is performed by message passing over
the bus. Such message passing is modeled as a communication process in-
serted on the arc connecting the sender and the receiver process. 

The combination of fault-tolerance policies to be applied to each process
is given by two functions. FR: V → VR determines which processes are rep-
licated. When active replication is used for a process Pi, we introduce several
replicas into the process graph G, and connect them to the predecessors and
successors of Pi.. The second function FX: V ∪ VR → VX applies re-execu-
tion to the processes in the application, including to the replicas in VR, if
necessary, see Figure 2c. Let us denote the tuple <FR, FX> with F .

The mapping of a process graph G is given by a function M: V ∪ VR → N,
where N is the set of nodes in the architecture. For a process Pi ∈ V ∪ VR,
M(Pi) is the node to which Pi is assigned for execution. Each process Pi can
potentially be mapped on several nodes. Let NPi

 ⊆ N be the set of nodes to
which Pi can potentially be mapped. We consider that for each Nk ∈ NPi

, we
know the worst-case execution time CPi

Nk of process Pi, when executed on Nk.
We also consider that the size of the messages is given.

All processes and messages belonging to a process graph Gi have the
same period Ti = TGi 

which is the period of the process graph. A deadline DGi
≤ TGi

 is imposed on each process graph Gi. In addition, processes can have
associated individual release times and deadlines. If communicating pro-
cesses are of different periods, they are combined into a hyper-graph captur-
ing all process activations for the hyper-period (LCM of all periods).

4. Design Optimization Problems
In this paper, by policy assignment we denote the decision whether a cer-
tain process should be re-executed or replicated. Mapping a process
means placing it on a particular node in the architecture.

1. The number of faults k can be larger than the number of processors in the system. 
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There could be cases where the policy assignment decision is taken based
on the experience and preferences of the designer, considering aspects like the
functionality implemented by the process, the required level of reliability,
hardness of the constraints, legacy constraints, etc. We denote with PR the sub-
set of processes which the designer has assigned replication, while
PX contains processes which are to be re-executed. 

Most processes, however, do not exhibit certain particular features or
requirements which obviously lead to re-execution or replication. Let P be
the set of processes in the application A. The subset P+ = P \ (PX ∪ PR) of
processes could use any of the two techniques for tolerating faults. Deci-
sions concerning the policy assignment to this set of processes can lead to
various trade-offs concerning, for example, the schedulability properties
of the system, the amount of communication exchanged, the size of the
schedule tables, etc.

For part of the processes in the application, the designer might have al-
ready decided their mapping. For example, certain processes, due to con-
straints like having to be close to sensors/actuators, have to be physically
located in a particular hardware unit. They represent the set PM of already
mapped processes. Consequently, we denote with P* = P \ PM the processes
for which the mapping has not yet been decided.

Our problem formulation is as follows:
• As an input we have an application A given as a set of process graphs

(Section 3) and a system with a set of nodes N connected using the TTP. 
• The fault model is given by the parameters k and µ, which denote the

total number of transient faults that can appear in the system during one
cycle of execution and their duration, respectively.

• As introduced previously, PX and PR are the sets of processes for which
the fault-tolerance policy has already been decided. Also, PM denotes
the set of already mapped processes.
We are interested to find a system configuration ψ such that the k tran-

sient faults are tolerated and the imposed deadlines are guaranteed to be
satisfied, within the constraints of the given architecture N. 

Determining a system configuration ψ = <F, M, S> means:
1. finding a combination of fault-tolerance policies F for each processes

in P+ = P \ (PR ∪ PX);
2. deciding on a mapping M for each processes in P* = P \ PM;
3. deriving the set S of tables for each processor and the MEDL for TTP.

4.1 Fault-Tolerance Policy Assignment
Let us illustrate some of the issues related to policy assignment. In the ex-
ample presented in Figure 3 we have the application A1 with three process-
es, P1 to P3, and an architecture with two nodes, N1 and N2. The worst-case
execution times on each node are given in a table to the right of the archi-
tecture. Note that N1 is faster than N2. The fault model assumes a single
fault, thus k = 1, with a duration µ = 10 ms. The application A1 has a dead-
line of 160 ms depicted with a thick vertical line. We have to decide which
fault-tolerance technique to use. In Figure 3 we depict the schedules1 for
each node, and for the TTP bus. Node N1 is allowed to transmit in slot S1,
while node N2 can use slot S2. A TDMA round is formed of slot S1 followed

by slot S2, each of 10 ms length. Comparing the schedules in Figure 3a1

and 3b1, we can observe that using (a1) active replication the deadline is
missed. In order to guarantee that time constraints are satisfied in the pres-
ence of faults, re-execution slacks have to finish before the deadline. How-
ever, using (b1) re-execution we are able to meet the deadline. However, if
we consider application A2 with process P3 data dependent on P2, the dead-
line is missed in Figure 3b2 if re-execution is used, and it is met when rep-
lication is used as in Figure 3a2. 

Note that in Figure 3b1 processes P1 and P2 can use the same slack for
re-execution. Similarly, in Figure 3b2, one single slack of size C3 + µ is
enough to tolerate one fault in any of the processes. In general, re-execu-
tion slacks can be shared as long as they allow a re-execution of processes
to tolerate faults.

This example shows that the particular technique to use, has to be care-
fully adapted to the characteristics of the application. Moreover, the best
result is most likely to be obtained when both techniques are used together,
some processes being re-executed, while others replicated. Let us consider
the example in Figure 4, where we have an application with four processes
mapped on an architecture of two nodes. In Figure 4a all processes are re-
executed, and the depicted schedule is optimal for re-execution. 

We use a particular type of re-execution, called transparent re-execution
[11], that hides fault occurrences on a processor from other processors. On a
processor Ni where a fault occurs, the scheduler has to switch to a contingen-
cy schedule that delays descendants of the faulty process. However, a fault
happening on another processor, is not visible on Ni, even if the descendants
of the faulty process are mapped on Ni. For example, in order to isolate node
N1 from the occurrence of a fault in P1 on node N2, message m2 from P1 to
P3 cannot be transmitted at the end of P1’s execution. Message m2 has to ar-
rive at the destination even in the case of a fault occurring in P1, so that P3

can be activated on node N2 at a fixed start time, regardless of what happens
on node N1, i.e., transparently. Consequently, m2 can only be transmitted af-
ter a time C1 + µ passes, at the end of the potential re-execution of P1, depict-
ed in grey. Message m2 is delivered in the slot S2 of the TDMA round
corresponding to node N2. With this setting, using re-execution will miss the
deadline. Once a fault happens, the scheduler in N2 will have to switch to a
contingency schedule, depicted with thick-border rectangles.

However, combining re-execution with replication, as in Figure 4b where
process P1 is replicated, will meet the deadline. In this case, message m2 does
not have to be delayed to mask the failure of process P1. Instead, P2 and P3

will have to receive m1 and m2, respectively, from both replicas of P1, which
will introduce a delay due to the inter-processor communication on the bus.

4.2 Mapping and Bus Access Optimization
For a distributed system, the communication infrastructure has an impor-
tant impact on the mapping decisions [20]. Not only is the mapping influ-
enced by the protocol setup, but the fault-tolerance policy assignment
cannot be done separately from the mapping design task. Consider the ex-
ample in Figure 5. Let us suppose that we have applied a mapping algo-
rithm without considering the fault-tolerance aspects, and we have

1. The schedules depicted are optimal.

Figure 4. Combining Re-execution and Replication
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obtained the best possible mapping, depicted in Figure 5a. If we apply on
top of this mapping a fault-tolerance technique, for example, re-execution
as in Figure 5b, we miss the deadline. The re-execution has to be consid-
ered during the mapping process, and then the best mapping will be the one
in Figure 5c which clusters all processes on the same processor in order to
reduce the re-execution slack and the delays due to the masking of faults.

In this paper, we will consider the assignment of fault-tolerance policies
at the same time with the mapping of processes to processors. However,
to simplify the presentation we will not discuss the optimization of the
communication channel. Such an optimization can be performed with the
techniques we have proposed in [19] for non fault-tolerant systems.

5. Design Optimization Strategy
The design problem formulated in the previous section is NP complete.
Our strategy is outlined in Figure 6 and has three steps:
1. In the first step (lines 1–3) we decide very quickly on an initial bus

access configuration B0, and an initial fault-tolerance policy assignment
F0 and mapping M0. The initial bus access configuration (line 1) is
determined by assigning nodes to the slots (Si = Ni) and fixing the slot
length to the minimal allowed value, which is equal to the length of the
largest message in the application. The initial mapping and fault-
tolerance policy assignment algorithm (InitialMPA line 2 in Figure 6)
assigns a re-execution policy to each process in P+ and produces a
mapping for the processes in P* that tries to balance the utilization
among nodes and buses. The application is then scheduled using the
ListScheduling algorithm outlined in Section 5.1. If the application is
schedulable the optimization strategy stops. 

2. The second step consists of a greedy heuristic GreedyMPA (line 4),
discussed in Section 5.2, that aims to improve the fault-tolerance policy
assignment and mapping obtained in the first step. 

3. If the application is still not schedulable, we use, in the third step, a tabu
search-based algorithm TabuSearchMPA presented in Section 5.2. Finally,
the bus access optimization is performed.
If after these three steps the application is unschedulable, we conclude

that no satisfactory implementation could be found with the available
amount of resources. 

5.1 List Scheduling
Once a fault-tolerance policy and a mapping are decided, as well as a com-
munication configuration is fixed, the processes and messages have to be
scheduled. We use a list scheduling algorithm for building the schedule ta-
bles for the processes and deriving the MEDL for messages. 

Before applying list scheduling, we merge the application graphs into one
single merged graph Γ, as detailed in [18], with a period equal to the LCM
of all constituent graphs. List scheduling heuristics are based on priority
lists from which processes are extracted in order to be scheduled at certain
moments. A process Pi is placed in the ready list L if all its predecessors
have been already scheduled. All ready processes from the list L are inves-
tigated, and that process Pi is selected for placement in the schedule which
has the highest priority. We use the modified partial critical path priority
function presented in [6]. At the same time with placing processes in the
schedule, the messages are also scheduled using the ScheduleMessage
function from [6]. The ListScheduling loops until the ready list L is empty.

During scheduling, re-execution slack is introduced in the schedule for
the re-executed processes. The introduction of re-execution slack is dis-
cussed in [11] where the total amount of slack is reduced through slack-
sharing, as depicted in Figure 3b2, where processes P1 to P3 can share the

same slack for re-execution in the case of a fault. 
However, the notion of “ready process” in [11] is different for us in the

case of processes waiting inputs from replicas. In that case, a process can be
placed in the schedule as soon as we are certain that at least one valid mes-
sage has arrived from a replica. Let us consider the example in Figure 7,
where P2 is replicated. In the worst-case fault-scenario, P2 on processor N1
can fail, and thus P3 has to receive message m2 from the P2 replica on pro-
cessor N2. Thus, P3 has to be placed in the schedule as in Figure 7a. How-
ever, our scheduling algorithm will place P3 as in Figure 7b instead,
immediately following P2 on N1. In addition, it will create a contingency
schedule for P3 on processor N1, as depicted in Figure 7b using a rectangle
with a thicker margin. The scheduler on N1 will switch to this schedule only
in the case of an error occurring in P2 on processor N1. This contingency
schedule has two properties. First, P3 starts such that the arrival of m2 from
the P2’s replica on N2 is guaranteed. Up to this point, it looks similar to the
case in Figure 7a, where P3 has been started at this time from the beginning.
However, the contingency schedule has another important property: al-
though P3’s failure is handled through re-execution, the contingency sched-
ule will not contain any re-execution slack for P3. That is because,
according to the fault model, no more errors can happen. Thus, the deadline
is met, even if any of the processes will experience a fault.

5.2 Mapping and Fault-Policy Assignment
For deciding the mapping and fault-policy assignment we use two steps,
see Figure 6. One is based on a greedy heuristic, GreedyMPA. If this step
fails, we use in the next step a tabu search approach, TabuSearchMPA. 

Both approaches investigate in each iteration all the processes on the
critical path of the merged application graph Γ, and use design transfor-
mations (moves) to change a design such that the critical path is reduced.
Let us consider the example in Figure 8, where we have an application of
four processes that has to tolerate one fault, mapped on an architecture of
two nodes. Let us assume that the current solution is the one depicted in
Figure 8a. In order to generate neighboring solutions, we perform design
transformations that change the mapping of a process, and/or its fault-tol-
erance policy. Thus, the neighbor solutions generated starting from
Figure 8a, are the solutions presented in Figure 8b–8e. Out of these, the
solution is Figure 8c is the best in terms of schedule length.

The greedy approach selects in each iteration the best move found and ap-
plies it to modify the design. The disadvantage of the greedy approach is that
it can “get stuck” into a local optima. To avoid this, we have implemented a
tabu search algorithm, presented in Figure 9.

The tabu search takes as an input the merged application graph Γ, the ar-
chitecture N and the current implementation ψ, and produces a schedulable
and fault-tolerant implementation xbest. The tabu search is based on a neigh-
borhood search technique, and thus in each iteration it generates the set of
moves Nnow that can be reached from the current solution xnow (line 7 in
Figure 9). In our implementation, we only consider changing the mapping
or fault-tolerance policy of the processes on the critical path, denoted with
CP in Figure 9. We define the critical path as the path through the merged
graph Γ which corresponds to the longest delay in the schedule table. For
example, in Figure 8a, the critical path is formed from P1, m2 and P3.Figure 6. The General Strategy

OptimizationStrategy(A, N)
1 Step 1: B0 = InitialBusAccess(A, N)
2 ψ0 = InitialMPA(A, N, B0)
3 if S0 is schedulable then stop end if
4 Step 2: ψ= GreedyMPA(A, N, ψ0)
5 if S is schedulable then stop end if
6 Step 3: ψ = TabuSearchMPA(A, N, ψ)
7 return ψ

end OptimizationStrategy

Figure 7. Scheduling Replica Descendants
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The key feature of a tabu search is that the neighborhood solutions are
modified based on a selective history of the states encountered during the
search. The selective history is implemented in our case through the use
of two tables, Tabu and Wait. Each process has an entry in this tables. If
Tabu(Pi) is non-zero, it means that the process is “tabu”, i.e., should not
be selected for generating moves, while if Wait(Pi) is greater than the
number of processes in the graph, |Γ|, the process has waited a long time
and should be selected for diversification. Thus, lines 9 and 10 of the al-
gorithm, a move will be removed from the neighborhood solutions if it is
tabu. However, tabu moves are also accepted if they are better than the
best-so-far solution (line 10). In line 12 the search is diversified with
moves which have waited a long time without being selected.

In lines 14–20 we select the best one out of these solutions. We prefer a so-
lution that is better than the best-so-far xbest (line 17). If such a solution does
not exist, then we choose to diversify. If there are no diversification moves, we
simply choose the best solution found in this iteration, even if it is not better
than xbest. Finally, the algorithm updates the best-so-far solution, and the se-
lective history tables Tabu and Wait. The algorithm ends when a schedulable
solutions has been found, or an imposed time-limit has been reached.

Figure 8 illustrates how the algorithm works. Let us consider that the
current solution xnow is the one presented in Figure 8a, with the corre-
sponding selective history presented to its right, and the best-so-far solu-
tion xbest is the one in Figure 4a. The generated solutions are presented in
Figure 8b–8e. The solution (b) is removed from the set of considered so-
lutions because it is tabu, and it is not better than xbest. Thus, solutions (c)–
(e) are evaluated in the current iteration. Out of these, the solution in
Figure 8c is selected, because although it is tabu, it is better than xbest. The
table is updated as depicted to the right of Figure 8c in bold, and the iter-
ations continue with solution (c) as the current solution.

6. Experimental Results
For the evaluation of our algorithms we used applications of 20, 40, 60,
80, and 100 processes (all unmapped and with no fault-tolerance policy
assigned) implemented on architectures consisting of 2, 3, 4, 5, and 6
nodes, respectively. We have varied the number of faults depending on the
architecture size, considering 3, 4, 5, 6, and 7 faults for each architecture
dimension, respectively. The duration µ of a fault has been set to 5 ms. Fif-
teen examples were randomly generated for each application dimension,
thus a total of 75 applications were used for experimental evaluation. We
generated both graphs with random structure and graphs based on more
regular structures like trees and groups of chains. Execution times and
message lengths were assigned randomly using both uniform and expo-
nential distribution within the 10 to 100 ms, and 1 to 4 bytes ranges, re-
spectively. The experiments were done on Sun Fire V250 computers.

We were first interested to evaluate the proposed optimization strategy in
terms of overheads introduced due to fault-tolerance. Hence, we have imple-
mented each application, on its corresponding architecture, using the Optimi-
zationStrategy (MXR) strategy from Figure 6. In order to evaluate MXR, we
have derived a reference non-fault tolerant implementation, NFT. The NFT
approach is an optimized implementation similar to MXR, but we have re-
moved the moves that decide the fault-tolerance policy assignment. To the
NFT implementation thus obtained, we would like to add fault-tolerance with
as little as possible overhead, and without adding any extra hardware resourc-
es. For these experiments, we have derived the shortest schedule within an im-
posed time limit: 10 minutes for 20 processes, 20 for 40, 1 hour for 60, 2 hours
and 20 min. for 80 and 5 hours and 30 min. for 100 processes.

The first results are presented in Table 1a, where we have four columns:
the third column presents the average overheads introduced by MXR com-
pared to NFT, while the second and fourth columns present the maximum
and minimum overhead, respectively. Let δMXR and δNFT be the schedule
lengths obtained using MXR and NFT, respectively. The overhead is de-
fined as 100 × (δMXR – δNFT) / δNFT. We can see that the overheads due to
fault-tolerance grow with the application size. MXR approach can offer
fault-tolerance within the constraints of the architecture at an average
overhead of approximately 100%. However, even for applications of 60
processes, there are cases where the overhead is as low as 52%.

We were also interested to evaluate our MXR approach in the case the
number of faults and their length varies. We have considered applications
with 60 processes mapped on four processors, and we have varied the
number k of faults from 2, 4, 6, 8, to 10, using a constant µ = 5 ms. Table
1b shows that the overheads increase substantially as the number of faults
that have to be tolerated increase. This is to be expected, since we need

Figure 8. Moves and Tabu History
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Figure 9. The Tabu Search Algorithm

 TabuSearchMPA(Γ, N, ψ)
 1 -- given a merged application graph Γ and an architecture N produces a policy
 2 -- assignment F and a mapping M such that Γ is fault-tolerant & schedulable 
 3 xbest = xnow = ψ; BestCost = ListScheduling(Γ, N, xbest) -- Initialization
 4 Tabu = ∅; Wait = ∅ -- The selective history is initially empty
 5 while xbest not schedulable ∧ TimeLimit not reached do
 6 -- Determine the neighboring solutions considering the selective history
 7 CP = CriticalPath(Γ); Nnow = GenerateMoves(CP)
 8 -- eliminate tabu moves if they are not better than the best-so-far
 9 Ntabu = {move(Pi) | ∀ Pi ∈CP ∧ Tabu(Pi)=0 ∧ Cost(move(Pi)) < BestCost}
 10 Nnon-tabu = N \ Ntabu

 11 -- add diversification moves 
 12 Nwaiting = {move(Pi) | ∀ Pi ∈ CP ∧ Wait(Pi) > |Γ|}
 13 Nnow = Nnon-tabu ∪ Nwaiting

 14 -- Select a solution based on aspiration criteria
 15 xnow = SelectBest(Nnow); 
 16 xwaiting = SelectBest(Nwaiting); xnon-tabu = SelectBest(Nnon-tabu)
 17 if Cost(xnow) < BestCost then x = xnow -- select xnow if better than best-so-far
 18 else if ∃ xwaiting then x = xwaiting -- otherwise diversify
 19 else x = xnon-tabu -- if no better and no diversification, select best non-tabu
 20 end if
 21 -- Perform selected move
 22 PerformMove(x); Cost = ListScheduling(Γ, N, x)
 23 -- Update the best-so-far solution and the selective history tables
 24 If Cost < BestCost then xbest = x; BestCost = Cost end if
 25 Update(Tabu); Update(Wait)
 26 end while
 27 return xbest

 end TabuSearchMPA



more replicas and/or re-executions if there are more faults. Similarly, we
have kept the number of faults constant to 3, and varied µ: 1, 5, 10 15 and
20 ms, for 20 processes and two processors. We can observe in Table 1c
that the overhead also increases with the increase in fault duration. How-
ever, the increase due to the fault duration is significantly lower compared
to the increase due to the number of faults.

As a second set of experiments, we were interested to evaluate the qual-
ity of our MXR optimization approach. Thus, together with the MXR ap-
proach we have also evaluated two extreme approaches: MX that
considers only re-execution, and MR which relies only on replication for
tolerating faults. MX and MR use the same optimization approach as
MRX, but besides the mapping moves, they consider assigning only re-
execution or replication, respectively. In Figure 10 we present the average
percentage deviations of the MX and MR from MXR in terms of over-
head. We can see that by optimizing the combination of re-execution and
replication, MXR performs much better compared to MX and MR. On av-
erage, MXR is 77% and 17.6% better than MR and MX, respectively.
There are also situations, for graphs with 60 processes, for example,
where MXR is able to reduce the overhead with up to 40% compared to
MX and 90% compared to MR. This shows that considering re-execution
at the same time with replication can lead to significant improvements.

In Figure 10 we have also presented a straightforward strategy SFX,
which first derives a mapping without fault-tolerance considerations (us-
ing MXR without fault-tolerance moves) and then applies re-execution.
This is a solution that can be obtained by a designer without the help with
our fault-tolerance optimization tools. We can see that the overheads thus
obtained are very large compared to MXR, up to 77% more on average.
This shows that the optimization of the fault-tolerance policy assignment
has to be addressed at the same time with the mapping of functionality. In
Figure 10 we also see that replication (MR) is worst than even the straight-
forward re-execution (SFX). However, by carefully optimizing the usage
of replication alongside re-execution (MXR), we are able to obtain results
that are significantly better than re-execution only (MX).

Finally, we considered a real-life example implementing a vehicle cruise
controller (CC). The process graph that models the CC has 32 processes, and
is described in [18]. The CC was mapped on an architecture consisting of
three nodes: Electronic Throttle Module (ETM), Anti-lock Breaking System
(ABS) and Transmission Control Module (TCM). We have considered a
deadline of 250 ms, k = 2 and µ = 2 ms. 

In this setting, the MRR produced a schedulable fault-tolerant implementa-
tion with a worst-case system delay of 229 ms, and with an overhead compared
to NFT of 65%. If only one policy is used for fault-tolerance, as in the case of
MX and MR, with 253 and 301 ms, respectively, the deadline is missed.

7. Conclusions
In this paper we have addressed the optimization of distributed embedded
systems for fault-tolerance hard real-time applications. The processes are
scheduled with static cyclic scheduling, while for the message transmis-
sion we use the TTP. We have employed two fault-tolerance techniques
for tolerating faults: re-execution, which provides time-redundancy, and
active replication, which provides space-redundancy.

We have implemented a tabu search-based optimization approach that de-
cides the mapping of processes to the architecture and the assignment of

fault-tolerance policies to processes. Our main contribution is that we have
considered the interplay of fault-tolerance techniques for reducing the over-
head due to fault-tolerance. As our experiments have shown, by carefully op-
timizing the system implementation we are able to provide fault-tolerance
under limited resources. 
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(a) Application size (b) Number of faults 
60 procs., µ=5 

(c) µ 
20 procs., k=3 

procs. k %max %avg. %min k %max %avg. %min µ %max %avg. %min 

20 3 98.36 70.67 48.87 2 52.44 32.72 19.52 1 78.69 57.26 34.29 

40 4 116.77 84.78 47.30 4 110.22 76.81 46.67 5 95.90 70.67 48.87 

60 5 142.63 99.59 51.90 6 162.09 118.58 81.69 10 122.95 89.24 67.58 

80 6 177.95 120.55 90.70 8 250.55 174.07 117.84 15 132.79 107.26 75.82 

100 7 215.83 149.47 100.37 10 292.11 219.79 154.93 20 149.01 125.18 95.60 
 

 Table 1. Overheads of MXR compared to NFT Figure 10. Comparing MXR with MX, MR and SFX
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