
Why Systems-on-Chip Needs More
UML like a Hole in the Head

Stephen J. Mellor, John R. Wolfe, Campbell McCausland

Accelerated Technologies
Embedded Systems Division of Mentor Graphics

Tucson AZ, USA

Abstract

Let’s be clear from the outset: SoC can most certainly
make use of UML; SoC just doesn’t need more UML, or
even all of it. The advent of model mappings, coupled with
marks that indicate which mapping rule to apply, enable a
major simplification of the use of UML in SoC.

1. The Need for an SoC Abstract Modeling
Language

At the beginning of an SoC project, it is common for
the hardware and software teams to work a specification
in parallel. Invariably, the two components do not mesh
properly. You can’t verify understanding until you have
something to execute; and once you have something that
executes, it costs a lot to change the interface.

Once the prototype runs, it is possible to measure the
performance, which may require changing the partition.
Partition changes are expensive, and are difficult to do
correctly.

Moreover, the system is usually “specified” only in
terms of implementation. We need a way to model a
system at an appropriate level of abstraction that does not
presume an implementation in software or hardware.
SystemC and Handel-C are low-level, and presume too
much implementation.

2. Executable and Translatable UML

The introduction of the Action Semantics enables
execution of UML models. The Executable UML profile
[1] defines a carefully selected streamlined subset of
UML and defines an execution semantics for it.

The essential elements are a set of classes and objects
with concurrently executing state machines. State
machines communicate only by sending signals. On
receipt of a signal, a state machine executes a set of

actions that runs to completion before the next signal is
processed. The actions in the destination state of the
receiver execute after the action that sent the signal. This
captures desired cause and effect.

A model can be executed independent of
implementation. No design details or code need be added,
so formal test cases can be executed against the model to
verify that requirements have been properly met.
Critically, Executable UML is structured to allow
developers to model the underlying semantics of a
problem without having to worry about whether it is to be
implemented in hardware of software.

Them’s the rules, but what is really going on is that
Executable UML is a concurrent specification language.
Rules about synchronization and object data consistency
are simply rules for that language, just as in C++ we
execute one statement after another and data is accessed
one statement at a time. We specify in such a concurrent
language so that we may translate it onto concurrent,
distributed platforms; hardware definition languages; as
well as fully synchronous, single tasking environments.

3. Marks

Marks describe models but they are not a part of them,
rather like sticky notes. A mark is a lightweight, non-
intrusive extension to models that captures information
required for mappings without polluting those models.
Mappings rules are applied to model elements that have
been marked to indicate which rule to apply—hardware or
software. An example is the mark isHardware, which may
be associated with some element to be implemented in
hardware. This allows for retargeting models to different
implementation technologies as they change. Mappings
and marks are described in [2].

4. Model Mappings

At system construction time, the conceptual objects are
mapped to hardware and software. Repeatable mappings

1530-1591/05 $20.00 © 2005 IEEE

are defined that produce compliable text (e.g., C, VHDL)
according to a single consistent set of architectural rules.
The mapping rules therefore guarantee that the interfaces
are consistent. A model compiler interprets the mapping
rules to maintain the desired sequencing specified in the
models, which it may do any manner it chooses so long as
the defined behavior is preserved.

The result is several text files of two (in this example)
types. One is all the C that is to be implemented in
software; the other is VHDL. The two halves are known
to fit together because the interface was generated.
Changing the partition is a matter of changing the
placement of the marks.

5. A Hole in the Head

Executable UML is a small, but powerful, subset of
UML enabling abstract specification of behavior.
Mappings enable interface definition in one place, so that
consistency is guaranteed. Marks enable late decision
making on the partition. That’s all we need; we need more
UML like a hole in the head.

References
[1] Mellor, S.; Balcer. M.: Executable UML: A Foundation for

Model-Driven Architecture, Addison-Wesley, 2003.
[2] Mellor, S.; Scott, K.; Uhl, A.; Weise, D.: MDA Distilled:

Solving the Integration Problem with the Model Driven
Architecture, Addison-Wesley, 2004.

	Main Page
	DATE'05
	Front Matter
	Table of Contents
	Author Index

