
UML 2.0 - Overview and Perspectives in SoC Design

Tim Schattkowsky
University of Paderborn/C-LAB

Paderborn, Germany

Abstract
The design productivity gap requires more efficient

design methods. Software systems have faced the same
challenge and seem to have mastered it with the
introduction of more abstract design methods. The UML
has become the standard for software systems modeling
and thus the foundation of new design methods. Although
the UML is defined as a general purpose modeling
language, its application to hardware and
hardware/software codesign is very limited. In order to
successfully apply the UML at these fields, it is essential
to understand its capabilities and to map it to a new
domain.

1. Introduction
Today, electronic systems design has to cope with

shortened product cycles and steadily increasing system
complexity that are not yet complemented by a
comparable increase in design productivity. Thus, the
design productivity gap has become one of the most
important problems in electronic systems design. Design
methods allowing for increased abstraction as well as
better reuse and integration of IPs are necessary to cope
with this challenge.

The Unified Modeling Language (UML) has been
successfully applied in software systems engineering as
well as in some other domains. It has the capabilities to be
applied to the design of hardware systems as well. This
also promises an easy path to hardware/software codesign
through integration with existing practice in software
design. Furthermore, the notation has to be integrated with
a design process to get a complete design method like in
MDA. However, it is first necessary to understand, which
capabilities the UML provides and how these can be
employed in EDA design flows.

2. The Unified Modeling Language (UML)
The UML is a general purpose modeling language that

marks the result of the unification of elements from three
of the most significant object oriented design approaches

in the later 90s. UML 1.x essentially combined elements
from Booch [1], OOSE [3] and OMT [9]. Furthermore, it
was influenced by the ROOM method that later evolved
into UML-RT [10], a real-time profile for UML. At
present, the UML 2.0 specification is on its way to
finalization by the OMG. UML 2.0 includes significant
enhancements in all areas. It covers 13 diagram types to
describe various structural, behavioral and physical
aspects of a system.

The different diagrams serve different purposes during
the development process. It is important to note that the
UML only provides a multi purpose notation that needs to
be accompanied by a development process. This process
defines the actual application variants of a particular UML
diagram type.

The Class Diagram is probably the most well known
diagram. It describes structural aspects of a system in
terms of classes and associations between those classes. A
class may have attributes and operations. Furthermore,
interfaces and generalizations can be used to create object
oriented type hierarchies. Instances of a Class Diagram
are called an Object Diagram and describe how individual
class instances (objects) are related.

 Package Diagrams can be used to define packages,
which provide just a little more than a namespace for
classes that can be composed from other packages and
new classes.

Behavioral specification in the UML at the highest
level often starts by the identification of the use cases for
a system described in terms of involved actors. This is
depicted in Use Case Diagrams. However, detailed
behavioral specifications usually rely on State Machine
Diagrams that represent the UML StateChart [2] variant
and Activity Diagrams for describing control oriented
behavior (e.g., in states of a State Machine Diagram).
UML 2.0 introduces token semantics for these Activity
Diagrams that move them semantically close to high-level
Petri Nets. Furthermore, Interaction diagrams can be used
to model interactions as traces of exchanged messages.
These diagrams come in no less than four flavors
including the Sequence Diagram, which has been

1530-1591/05 $20.00 © 2005 IEEE

extended in UML 2.0 to be comparable to an SDL
Message Sequence Chart (MSC).

Finally, the Component Diagram and the Deployment
Diagram can be used to describe the composition and
physical deployment of a system.

Together, those diagrams can be used to provide a
detailed model of a complete system at various levels of
abstraction (e.g., starting from use cases down to activities
describing every detail of a certain behavior).

 However, the UML just provides a general notation
that fits many purposes. It must be tailored to be
effectively applied to a certain domain. The relevant
model elements of the UML need to be identified and may
be refined into a set of domain specific subtypes. This is
achieved using a UML profile that defines a relevant
domain-specific UML subset with semantic extensions for
the supported model elements. On example for such
profiles is the aforementioned UML-RT profile.

Thus, to apply UML to SoC design, it is important to
define such a domain specific subset of the UML and its
semantics as well as the diagram types to be used.

3. Model Driven Architecture (MDA)
The OMG MDA is essentially based on providing

system specifications as a Platform Independent Model
(PIM), which is to be more or less automatically
transformed to a Platform Specific Model (PSM) for a
different platform using a platform-specific mapping. This
can be regarded as an enhancement to platform-based
design. Both models are UML models at different levels
of abstraction. The Platform Specific Model is then used
for complete code generation. However, how these steps
are accomplished is up to the actual MDA tool.

There already exist methods that follow the MDA
approach. The Executable UML (xUML) approach [8]
includes a complete development methodology. It is based
on the Action Specification Language (ASL), which is
essential as it describes notation and semantics for single
actions like operation calls and assignments in UML
models and thus closes the last gap to complete system
specification. ASL has been integrated into the OMG-
adopted UML Standard for precise action semantics [5]
and is also used in the eXecutable and Translatable UML
approach (X

TUML) which has been developed by Project
Technology based on Mellor’s approach to executable
UML [4]. Both approaches use code generators to
produce the actual implementations from the UML
models. However, the application of such code generation
for hardware descriptions still needs to be demonstrated.

4. Perspectives for SoC Design
The UML is quite appealing for application in

hardware design, as digital hardware and software have

quite a lot in common. At a reasonable level of
abstraction, both already have similar structural (e.g.,
software components and IP cores) and behavioral models
(e.g., StateCharts, Petri Nets). Application of UML to
hardware systems promises to close the design gap
between hardware and software systems by providing
inherent interfaces that should lead to full
interchangeability between hardware and software.
Furthermore, the early prototyping and inherent software
simulation capabilities of such an approach are appealing,
as they promise cost and time savings. Finally, the
application of the MDA concept also to hardware finally
promises large scale reuse and portability.

However, while the UML is by definition a general
purpose modeling language, it cannot be instantly applied
to hardware design. As it is just a notation, meaning must
be given to all the relevant language elements. It is
necessary to the tailor the UML in a way that the domain
specific significant requirements like seamless integration
of existing IP can be met.

Thus, the real world things that need to be represented
have to be identified and consistently put into the right
context as UML model elements. The relation between the
concepts used in the UML and real circuits has to be
clarified. For example, the notion of class, object and
component have to be aligned in this context and the
structural semantics of operations need to be defined.

Furthermore, the application of the different diagrams
in the design process needs to be clarified. Many ideas
can be derived from the existing methods for software and
hardware design. In the context of MDA, the integration
with a design process can be achieved.

References
[1] Booch, G.: Object-Oriented Analysis and Design, with

Applications (2nd ed.), Benjamin/Cummings, 1994
[2] Harel, D., Namaad, A.: The STATEMATE Semantics of

Statecharts. ACM Transactions on Software Engineering
and Methodology, Vol. 5, No. 4, 1996.

[3] Jacobson, I.: Object-Oriented Software Engineering: A Use
Case Driven Approach. Addison Wesley, 1992.

[4] Mellor, S.J., Balcer, M.J.: Executable UML - A Foundation
for Model-Driven Architecture Addison-Wesley, 2002.

[5] The Object Management Group: Action Semantics for the
UML. OMG ad/2000-08-04, 2000.

[6] The Object Management Group: Model Driven
Architecture (MDA). OMG ormsc/2001-07-01, 2001.

[7] The Object Management Group: Unified Modeling
Language: Superstructure. OMG ad/2003-08-01, 2003.

[8] Raistrick, C., Francis, P., Wright, J.: Model Driven
Architecture with Executable UML. Cambridge University
Press, 2004.

[9] Rumbaugh, J., et al.: Object-Oriented Modeling and
Design, Prentice Hall, New York, 1991.

[10] Selic, B., Rumbaugh, J.: Using UML for Modeling
Complex Real-Time Systems, 1998.

	Main Page
	DATE'05
	Front Matter
	Table of Contents
	Author Index

