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Abstract

This paper presents an exploration approach for the re-
searcher to choose the suitable size of Scratch-Pad memory
(SPM) for maximal performance improvement of a specified
application. The approach uses an extended control flow
graph (ECFG) to describe the application and provides a
solution to reduce the additional overhead of moving nodes
to SPM. Experiments achieves on average 11% increase
in performance compared to the previous approaches and
44% decrease in the application’s runtime compared to
none SPM environment.

1. Introduction

As an important architectural consideration, SPM fills
up the increasing gap between high frequency of embed-
ded microprocessor cores and low access speed of off-chip
memories which results in a heavy fall of chip performance.
The decision about a suitable size of SPM has become an
important problem in SoC design. In none cache system, the
general solution tries to move the most frequently accessed
parts of the application to SPM and establish the relation-
ship between the SPM size and the application’s perfor-
mance. The relationship helps the researcher to choose the
suitable size. This method has been adopted in all the pre-
vious researches[2][3][4][5] in none cache system. To our
knowledge, only Steinke et al[4] analyze the instructions of
the application and divides each function into several nodes
according to the normal control flow graph (CFG). They
adopt knapsack algorithm to select suitable nodes. Unfortu-
nately, they ignore the relationships of nodes which have
considerable influence on space utilization of SPM. The
negative effect is caused by the strict limitations of address-
ing space of some ARM instructions[1], especially such
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as branch (B/BL) instruction and data-loading (LDR) in-
struction. Commonly, the huge address gap between SPM
and off-chip memory blocks single branch instruction’s free
jump. It should be replaced by a macro consisting of two
branch instructions and one data-loading instruction. Sim-
ilarly, some data-loading instructions in SPM need addi-
tional space to save their operating address. All of these
lead to an increase in size of nodes moved to SPM. How-
ever, if two related nodes are both selected, their total size is
likely reduced because of the decrease in the number of long
branch macros and additional space of data-loading instruc-
tions. Therefore, the neglect of the relationships of nodes
must decrease the space utilization of SPM and lead to a
minor decision about the SPM size.

2. Proposed Exploration Approach

To collect the application’s runtime information, our
target architecture model is built based on ARMula-
tor (ARM7TDMI)[1], including three parts, SPM, off-chip
memory (SDRAM) and instruction FIFO (IF). IF is used
to fetch instructions saved in SDRAM via burst read oper-
ation. The diagram in Fig. 1 shows the work flow of our
approach.

2.1. ECFG Generation

ECFG is built directly from the application’s execution
file and independent of input data. Besides detail informa-
tion of the normal CFG node, each ECFG node gives a de-
scription of its call graph and the global data variables ac-
cessed by it. ECFG transforms the whole application into a
directed graph consisting of nodes and relationships.

2.2. SPM Allocation Algorithm

A refined knapsack algorithm was adopted to solve the
problem during the process of SPM allocation. The setI(i)
is defined:I(i) = {I j},∀ j ∈ [1, i]. If n j has been selected,
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Figure 1. Work flow

I j = 1, otherwise it is zero.I(0) means none is selected.
P(ni+1, I(i)) andS(ni+1, I(i)) are the effect on runtime and
size caused by movingni+1 to SPM while some nodes has
been in SPM, respectively.

The algorithm works as follows: (1) Sort all nodes
descendingly by their priority, which is defined as:
priority(ni) = P(ni ,I(0))

S(ni ,I(0)) . (2) Check each node and cal-
culate the total saved runtime (TP) until SPM is filled
or no node is remained. The precondition of the selec-
tion is, S(ni+1, I(i))+ TS(i) ≤ TSSPM. TSSPM is the speci-
fied SPM size.

TP(i+1)= max

{
TP(i)+P(ni+1, I(i)), ni+1 is selected
TP(i), otherwise

3. Experiment and results

In Table 1, it clearly shows that our approach achieves
on average 11% increase in performance compared to the
previous approaches and 44% decrease in the application’s
runtime compared to none SPM environment.

Fig. 2 shows that the application’s runtime optimized by
the previous approaches using simple knapsack algorithm
is not always decreasing while the SPM size increases. The
reason is that the negative effect caused by the imported in-
structions exceeds the obtained profit of the selected nodes.
However, our approach avoids this bad situation and brings
a more decrease of runtime.

4. Conclusions

We presents an exploration approach to decide the suit-
able size of SPM in SoC design. The special analysis of
the relationships of nodes of the application leads to signif-
icant performance improvements compared to the previous
researches.

Benchmark T Tp To Rop Ro

Dijkstra 44.7 28.0 15.9 -43% -64%
Jpeg2bmp 191 141 121 -14% -37%
Gunzip 15.7 12.1 11.4 -6% -27%
MP3player 379 291 282 -3% -26%
Bubblesort 140 87.5 87.3 -0.2% -38%
CRC32 9.21 2.71 2.71 0 -71%
Average -11% -44%

Table 1. Performance [ 106cycles] compari-
son between the previous approach ( Tp) and
our approach ( To). SPM size is 2Kbyte. Rop =
To−Tp

Tp
×100%, T is the program’s original run-

time, and Ro = To−T
T ×100%
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Figure 2. Dijkstra: Runtime comparison, SPM
size(Byte) = 128×n, 1≤ n≤ 128
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