
Nonuniform Banking for Reducing Memory Energy Consumption∗

Ozcan Ozturk and Mahmut Kandemir
Department of Computer Science and Engineering

The Pennsylvania State University
University Park, PA, 16802, USA
{ozturk, kandemir}@cse.psu.edu

Abstract

Main memories can consume a large percentage of over-
all energy in many data-intensive embedded applications.
The past research proposed and evaluated memory banking
as a possible approach for reducing memory energy con-
sumption. One of the common characteristics/assumptions
made by most of the past work on banking is that all the
banks are of the same size. While this makes the formula-
tion of the problem easy, it also restricts the potential solu-
tion space. Motivated by this observation, this paper investi-
gates the possibility of employing nonuniform bank sizes for
reducing memory energy consumption. Specifically, it pro-
poses an integer linear programming (ILP) based approach
that returns the optimal nonuniform bank sizes and accom-
panying data-to-bank mapping. It also studies how data mi-
gration can further improve over nonuniform banking. We
implemented our approach using an ILP tool and made
extensive experiments. The results show that the proposed
strategy brings important energy benefits over the uniform
banking scheme, and data migration across banks tends to
increase these savings.

1. Introduction

Behavior of many data intensive embedded systems is
dictated by their data access pattern, making memory sys-
tem performance critical. In fact, the past research [1, 2]
showed that a significant portion of overall execution energy
(excluding input/output units) is spent in memory system.
While circuit level techniques targeting energy efficiency
are extremely important, high level approaches [3, 4, 5, 6]
at the architectural and software levels can also play a ma-
jor role in shaping the overall memory energy behavior and
optimizing it.

Recently,bankinghas been used as a popular method for
reducing memory energy consumption. In banking, mem-
ory space is divided into multiple banks, each of which can
be controlled independently of the others. Experiments per-

∗ This work is supported in part by NSF Career Award #0093082

formed by several research groups [7, 8, 9, 10] reported sig-
nificant reductions in memory energy due to banking. This
is mainly because each read/write access in a banked mem-
ory architecture experiences a smaller capacitance, as com-
pared to a monolithic unbanked memory system. Another
advantage of the banked architecture (especially in the con-
text of DRAMs) is low-power operating modes that can be
used to place a bank into the low-power mode if it is not be-
ing actively used. Several efforts were already made to de-
termine when and how the banks should be powered down,
and also which low-power mode to employ when more than
one mode are available. Broadly speaking, these methods
are either hardware [7] or software [8, 9] oriented.

One of the common characteristics/assumptions of these
prior banking related studies is that most of them assume
all the banks are of the same size, i.e., they are uniform.
While this makes the formulation of the problem easy, it
also prevents some further opportunities by restricting the
data mapping unnecessarily. In particular, in embedded sys-
tems that execute a single application, one can come up
with a customized banking strategy where the banks can be
of different sizes. Such a banking is referred to asnonuni-
form bankingin this paper. The first contribution of this pa-
per is to present an ILP (integer linear programming) based
approach that decides the best (nonuniform) bank archi-
tecture and accompanying data mapping for a given array
based embedded application. We show through experiments
that working with customized nonuniform memory banks
brings significant energy savings over an alternate strategy
that works with uniform bank sizes (which is also formu-
lated using ILP).

While our empirical evaluation of the nonuniform bank-
ing shows promising results, one can achieve further en-
ergy savings by not fixing the location of each data (i.e.,
its bank) for the entire execution, that is, by migrating data
across the banks during the course of program execution.
The second contribution of this paper is an ILP formula-
tion of the data migration problem in the nonuniform bank
architecture. Our experimental results with data migration
show that it brings additional energy savings over nonuni-
form banking.

This paper is organized as follows. Section 2 gives a brief
overview of banked memory architecture and explains our

1530-1591/05 $20.00 © 2005 IEEE

Operating Energy Resynchronization
Mode Consumption (nJ) Cost (cycles)
Active 3.570 0

Standby 0.830 2
Nap 0.320 30

Power-down 0.005 9000

Table 1. Energy consumptions (per cycle)
and resynchronization costs for our operat-
ing modes.

data access pattern extraction strategy. Section 3 describes
our ILP variables, constraints, and overall problem formu-
lation. Section 4 introduces the experimental platform, and
presents the results. Section 5 concludes with a summary of
the paper.

2. Architecture and Access Pattern
Extraction

Our architectural model is based on a multi-bank mem-
ory system, which is similar to RDRAM [11]. In this model,
each memory bank can be in one of four operating modes:
active, standby, napor power-down. These memory banks
can be placed into low-power modes independently. Mem-
ory access requests (read/write) are serviced only if the cor-
responding bank is active, that is, the bank is not in one
of the low-power operating modes (standby, nap, power-
down).

Each low-power mode has different energy consumption
(per cycle) and resynchronization cost, since low-power
operating modes are typically implemented by disabling
certain parts of the DRAM chip. Bringing a low-powered
memory bank back to the active mode causes a resynchro-
nization cost (wake-up penalty), which makes a tradeoff
analysis between performance and energy inevitable. En-
ergy consumption (per cycle) and resynchronization costs
for typical, RDRAM-like low-power operating modes are
given in Table 1. As can be seen from this table, when
choosing a low-power mode for an idle bank, a tradeoff
analysis between energy savings (by using a more aggres-
sive mode) and performance penalty (caused by this aggres-
sive mode due to increase in cycles) has to be performed. If
the bank in question is predicted to be idle for sufficiently
long time, a more power saving operating mode should be
selected. This follows from the fact that frequent transi-
tions between low-power and active modes may result in
non-tolerable performance penalties. Hence, a suitable low-
power operating mode should be selected based on bank
inter-access time (the time between successive accesses to
the same memory bank).

Embedded programs constructed using loop nests (with
compile time known bounds) and array accesses (with affine
subscript expressions) are the main focus in this paper. Such
codes frequently occur in embedded image/video process-
ing domain [1]. An optimizing compiler can analyze these
loop-intensive applications with regular data access pat-
terns. Since frequent transitions between low-power modes

and active mode can be very costly, one early design deci-
sion that we made is to perform these mode transitions at
well-defined program points. In our implementation, these
transition points, which delimit the boundaries of execution
phases, are expressed in terms of loop iterations. In this pa-
per, we adopted the concept of astepto define these tran-
sition points. Although, in theory, we have the flexibility
to assign any number of iterations between two transition
points, these points should be selected carefully. That is,in
moving from one point to another during execution, the data
access pattern should exhibit a significant change. To make
these steps explicit we need to modify the input code as ex-
plained below.

An example loop nest that accesses an arrayX through
two references with affine subscript expressionsX [i+2,j-
1] andX [i,j] is shown in Figure 1. The unit of data that
is being stored in banks (and also the unit of data migra-
tion across banks when migration is used) is adata block
(data tile). Figure 2 shows a two-dimensional array that is
logically divided into data blocks. All the data blocks have
the same size except possibly at the boundaries of the ar-
ray. The blocked (tiled) version of the original loop nest is
given on the right hand side of the Figure 1. In this code,
loopsi′ andj′ iterate over the data blocks, and are referred
to as theblock (inter-tile) iterators. Also,ii andjj are called
intra-tile iterators, and iterate over the elements of a given
data block. A main factor which effects the data access pat-
tern is the data block size. In our experiments, we manually
selected the suitable data blocks and their sizes. An opti-
mizing compiler can be used in the future to automate the
data access pattern extraction.

3. ILP Formulation

ILP provides a set of techniques that solve those opti-
mization problems in which both the objective function and
constraints are linear functions and the solution variables
are restricted to be integers. The 0-1 ILP (also known as
ZILP) is an ILP problem in which each (solution) variable
is restricted to be either 0 or 1 [12]. It is used in this paper
for determining the optimal bank sizes, data to bank map-
ping, and data migration pattern. Table 2 gives the constant

for i=1,N1, 1

for j=1, N2, 1

...X[i+2,j-1]...

...X[i,j]...

=⇒

for i′=1,N1, T1

for j′=1, N2, T2

for ii=i′, min(N1,i′+T1-1), 1

for jj=j′, min(N2,j′+T2-1), 1

...X[ii+2,jj-1]...

...X[ii,jj]...

Figure 1. An example loop nest written in
a pseudo high-level language (left) and its
blocked (tiled) version (right). Each data
block (tile) is of size T1 × T2 array elements,
and the transformed loop nest is structured
based on this tile size.

2T

1

N2

(Tile)
Block
Data

N
1T

Figure 2. Dividing a two-dimensional array
into data blocks (tiles).

terms used in our ILP formulation. Bank energies given in
this table (i.e.,AE, IE, IES , IEN andIEP) are shown as
energy consumption per step.

Our presentation is in two parts. In the first part, we are
partitioning the given memory space into nonuniform banks
in the most energy efficient way, and determine optimal lo-
cation (banks) for each data block. The second part incor-
porates data migration into the nonuniform bank strategy.
In both cases, data-to-bank mapping is optimized.

3.1. Memory Partitioning and Data Assignment

Our objective is to partition the available memory into
nonuniform (sized) banks to minimize the overall energy
consumption. We determine the number of banks and their
sizes based on the data access pattern and the total memory
size (to be partitioned) using 0-1 variables. For each possi-
ble bank size, we define 0-1 variables. By using these 0-1
variables, we determine the partitions (banks) and their con-
tents. Although, we restrict the possible sizes to be pow-
ers of two to simplify the problem, it can be extended to
cover all possible sizes. This way we keep the problem size
smaller (less variables and constraints) and by doing so, we
reduce the ILP solution time. If, for example, the memory
size in question is4k (assuming thatk is a power of two)
and the minimum bank size possible isk, then we will have
0-1 variables for one4k-bank, two2k-bank and 41k-bank.
If two of the four1k-bank variables and one2k-bank vari-
able are returned as 1 from the ILP solver, then we conclude
that the application in question will spend the minimum en-
ergy when the memory space is partitioned into three banks
of sizesk, k and2k. Our formulation also gives the opti-
mum mapping of the data blocks to these banks.

In our implementation, we identify memory banks with a
pair of attributes(l, n): l is used for its size (in terms of data
blocks it can hold), andn is used for distinguishing a bank
from the other banks that have the same size. For exam-
ple, with a memory of size8k, there can be two banks with
a size of4k, wherek is the minimum bank size possible.
These two banks can be expressed using the pairs(4k, 1)
and(4k, 2).

Assuming thatN denotes the maximum number of
banks possible if each bank holds only one data block
(which occurs when the minimum possible bank size
is used),S the number of steps,M the number of data

Constant Definition
N Number of memory banks
S Number of steps
M Number of data blocks
σ The rate of energy consumption by the size of bank

Rm,s Indicates whether blockm is accessed at steps
sizeblock Size of a data block

AE Energy consumed by an accessed memory bank per step
IE Energy consumed by a low-power memory bank per step
IES Energy consumed by astandbymemory bank per step
IEN Energy consumed by anapmemory bank per step
IEP Energy consumed by apower-downmemory bank per step
RE Energy consumed for reactivation of a memory bank
RES Energy consumed for activating astandbymemory bank
REN Energy consumed for activating anapmemory bank
REP Energy consumed for activating apower-downmemory bank
DE Energy consumed for deactivation of a memory bank
DES Energy consumed for switching tostandbymode
DEN Energy consumed for switching tonapmode
DEP Energy consumed for switching topower-downmode
ME Energy consumed for migrating a data block

Table 2. The constant terms used in our
ILP formulation. These are either architecture
specific or program specific.

blocks, we can use 0-1 variables to specify potential loca-
tion (L) of each data block. Specifically,

• Lm,l,n : indicates whether data blockm is residing in
bank(l, n).

There are possiblyN
l

banks of sizel (N
l

at most if all of
the banks are of sizel). We use a variable for each one of
these bank candidates. If this 0-1 variable is 1 then we con-
clude that the corresponding bank actually exists. We spec-
ify whether bank(l, n) actually exists (returned by our ILP
formulation) by usingEl,n.

• El,n : indicates whether data bank(l, n) exists.

In our ILP formulation, we use variableA to identify if the
bank is currently active.

• Al,n,s : indicates whether bank(l, n) is active at steps
due to a read/write operation on it.

Although it is better to have a bank in low-power operat-
ing mode from the energy perspective, depending on the
data access pattern, it might be better not to go to a low-
power operating mode for performance reasons. As a re-
sult, frequent switchings between low-power modes and ac-
tive mode in short intervals should be avoided. Our next set
of 0-1 variables are used to capture the switchings between
the active and low-power modes for a given bank. If a bank
is activated from a low-power mode, the following variable
is set to 1:

• Xl,n,s: indicates whether bank(l, n) is activated at step
s.

On the other hand, if a bank is switched to a low-power
mode,Yl,n,s will be set to 1. In other words,

• Yl,n,s: indicates whether bank(l, n) goes to the low-
power mode at steps.

After having defined our 0-1 integer variables, we can now
discuss our ILP formulations. The following constraints are

needed to capture the values ofXl,n,s andYl,n,s. A bank
(l, n) is activated at steps, if it is not active at step (s − 1)
and is active at steps:

Xl,n,s ≥ Al,n,s − Al,n,s−1, ∀l, n, s. (1)

A bank (l, n) goes to a low-power mode at steps if it is ac-
tive at step (s − 1) but it is not active at steps:

Yl,n,s ≥ Al,n,s−1 − Al,n,s, ∀l, n, s. (2)

In our experiments, we assume that bank sizes are restricted
to be powers of two. For example, if the memory in ques-
tion can hold at most 8 data blocks then this memory can
be partitioned into memory banks such that each bank can
hold 1,2,4 or 8 data blocks. Since available memory space
is partitioned among banks, the total size of the banks (de-
termined by the ILP solver) should be equal to the available
memory space:

log
2

N∑

i=0

N

2i∑

j=1

E2i,j × 2i = N. (3)

A data block can be residing in a bank only if the bank in
question exists:

El,n ≥ Lm,l,n, ∀m, l, n. (4)

Since a data block can be residing only in a single bank at
any given time, it must satisfy the following constraint:

log
2

N∑

i=0

N

2i∑

j=1

Lm,2i,j = 1, ∀m. (5)

The limited bank capacity forms the basis for the next con-
straint that needs to be satisfied. Assuming that the size of
a block issizeblock, the following expression can be writ-
ten for each possible bank sizel:

sizeblock ×
M∑

i=1

Li,l,n ≤ l, ∀l, n. (6)

A bank is currently active (at steps) if one of its data blocks
is accessed:

Al,n,s ≥ Rm,s × Lm,l,n, ∀m, l, n, s. (7)

Rm,s indicates whether blockm is accessed at steps. Its
value is extracted from the data access pattern.

Having specified the necessary constraints in our ILP
formulation, we next give our objective function. In our ex-
ecution model, there are four components of the total mem-
ory energy consumption:

• active: the energy consumed when a bank is
read/written.

• low-power: the energy consumed when a bank is in
the low-power mode.

• activation: the energy consumed to activate a bank
from the low-power mode.

• deactivation:the energy consumed to switch a bank to
the low-power mode.

Based on these, we can express memory energy con-
sumption (B) as follows:

B =

log
2

N∑

i=0

N

2i∑

j=1

S∑

k=1

(Ai,j,k × AE + (1 − Ai,j,k) × IE

+Xi,j,k × RE + Yi,j,k × DE) × σi. (8)

In this formulation,AE, IE, RE andDE correspond to ac-
tive energy, low-power energy, activation energy, and deac-
tivation energy, respectively. Note that,σ is used to capture
the energy consumption behavior of the banks with differ-
ent sizes. For example, if the size of the bank is doubled the
energy spent would beσ times of the original energy con-
sumption. Based on this formulation, our 0-1 ILP problem
can be defined as one of “minimizingB under constraints
(1) through (7).”

3.2. Data Migration

Further energy improvements can be achieved by mi-
grating data blocks among banks during the course of ex-
ecution. In particular, in some cases, instead of activat-
ing/deactivating a bank, it might be more beneficial to trans-
fer the data block to an already active bank. To incorporate
data migration into our ILP formulation, several modifica-
tions to the original problem have to be made.

Since the location of a data block is no longer restricted
to be the same throughout the execution of the program
(due to migration), we have to include the step parameter,
s, in the location variable,L. For this purpose,Lm,l,n is re-
placed withLm,l,n,s to indicate whether blockm is resid-
ing in bank(l, n) at steps.

Equations (4),(5) and (6) should also be written for ev-
ery step to capture bank existence constraint, data block lo-
cation constraint (a data block can be in a single bank at any
time) and bank size constraint. Equation (7), on the other
hand, does not require any change except for the variable
renaming, since it is already expressed for every steps.

Migration behavior of data blocks needs to be captured
as well. We useZm,s to serve for this purpose. A data block
m migrates (at steps) if its current location (bank) is differ-
ent from its previous location (i.e., the one in the previous
step):

Zm,s ≥ Lm,l,n,s − Lm,l,n,s−1, ∀m, l, n, s. (9)

Although data migration can reduce the energy consump-
tion (as it can empty banks which can be placed into the
low-power mode), it also brings additional energy con-
sumption due to migrating data blocks. This overhead has
to be included in the ILP formulation:

T =

M∑

i=1

S∑

j=1

(Zi,j × ME). (10)

Then, our new 0-1 ILP problem can be defined as “mini-
mizingB+T under constraints (1) through (7) and (9).”

4. Experimental Evaluation

4.1. Setup

We performed several experiments with five array-
intensive benchmarks to test the effectiveness of our
ILP-based approach. Table 3 lists the benchmark codes
used in this study and their important characteristics
(taken from the Spec and Perfect Club benchmark suites).
The second column gives the total size of the data pro-
cessed by each benchmark, and the third column shows
the data block size used. The last column gives the num-
ber of arrays for each benchmark. The default simulation
parameters used in our experiments are given in Ta-
ble 4. Note that, the energy values given in Table 4 are nor-
malized to power-down energy. The low-power energy
values given in this table reflect the actual energy consump-
tion values from Table 1. For example, the ratio between
the power-down bank energy and the active bank en-
ergy is 1:714, which corresponds to 0.005 nJ / 3.570 nJ.
During activation (from a low-power mode to the ac-
tive mode) and deactivation (from the active mode to a
low-power mode),3

4
of the active mode energy is as-

sumed to be spent.
We performed experiments with three different execu-

tion models for each benchmark code in our experimental
suite:

• Uniform Banking:This in a sense is the conventional
memory space management strategy which has a fixed bank
size and that does not use any data migration. Data blocks
are placed into uniform memory banks and they do not
move during the course of execution. Even though banks are
uniform, we still implement this scheme using ILP to ob-
tain the optimum data-to-bank mapping and minimum en-
ergy under this banking. The only difference from our ini-
tial ILP formulation is in selecting the bank sizes and the
number of banks. Specifically, the bank sizes and the num-
ber of banks are given as constants to the ILP tool. In this
case, Equation (3) and Equation (4) become unnecessary,
and the start and end values of index variablesi andj in
Equation (5) and Equation (8) need to be changed such that
they include only the specified bank size and the given num-
ber of banks.

Benchmark Total Data Data Block Number of
Name Size (KB) Size (KB) Arrays

adi 468.8 39.1 6
apsi 78.2 19.5 17
bmcm 234.4 19.5 11

btrix 75.0 11.7 29
wss 70.8 17.7 10

Table 3. The benchmark codes used in this
study.

Parameter Value
Number of Banks 4
Data Block Size : Memory Bank Capacity 1:1,1:2,1:4,1:8
σ 1.3
Bank Energy (Power-down) 1
Bank Energy (Nap) 64
Bank Energy (Standby) 166
Bank Energy (Active) 714
Bank Activation Energy 535.5
Bank Deactivation Energy 535.5
Data Migration Energy 142.8

Table 4. The default simulation parameters.

• Nonuniform Banking:This is the integer linear pro-
gramming based strategy discussed in this paper wherein
banks with different sizes are employed. The data blocks
frequently accessed together can be placed in a larger bank,
whereas a single data block (without any access pattern re-
lationship with other data blocks) can be placed in a smaller
sized bank to optimize the energy consumption in active
banks and during bank activations/deactivations.

• Migration: This is an extension to the previous strat-
egy (see Section 3.2) where data migration is employed to
decrease the energy consumption further. An accessed data
block is migrated to an active bank if doing so is profitable
from the energy consumption point of view. The rationale
behind this scheme is to transfer the data block being ac-
cessed to one of the active memory banks, thereby cutting
the number of active memory banks as much as possible.

4.2. Results

Table 5 gives the results based on power-down operat-
ing mode (i.e., when, as a low-power mode, we use only the
power-down mode). Note that, all the values are relative to
the ratios given in Table 4. Energy improvement brought by
the Nonuniform Banking version over the Uniform Bank-
ing version for different bank sizes are given in columns
two through five. Bank sizes are given as ratios to a data
block size as given in Table 4. For example, in the third col-
umn (titled ’2’), we compare our approach with the Uniform
Banking strategy with banks that have fixed sizes of2k (as-
suming that a data block size isk). In our approach, a to-
tal of 8k memory is partitioned nonuniformly. However, in
uniform banking scheme, memory is composed of four dif-
ferent banks where all of the banks are of size2k. The sixth
column gives the average improvement brought by our ap-
proach over the uniform banking scheme. We see that the
overall average reduction in energy consumption is 10.4%,
showing the benefits of nonuniform banking. ILP solution
times for our approach range from 163 sec (btrix) to 64 min
(bmcm). As it was stated earlier, we used also ILP to obtain
the results for the Uniform Banking approach in order to
make a fair comparison against our approach. Performance
results are given in Figure 3. These values are given as im-
provements brought by the Nonuniform Banking approach
over the Uniform Banking scheme with different bank sizes.
Negative values indicate that there is a performance over-
head if our approach is used. The average performance im-

-23%

-13%

-3%

7%

17%

27%

adi apsi bmcm btrix wss

P
er

fo
rm

an
ce

 Im
pr

ov
em

en
t

1
2
4
8

Figure 3. Percentage improvements in per-
formance brought by the Nonuniform Bank-
ing approach over the Uniform Banking ap-
proach.

provement values are -5%, 14%, 7%, 13% and -4% for adi,
apsi, bmcm, btrix and wss, respectively. One can observe
from this figure that the maximum overhead brought by our
approach is 22% for wss with a bank of size 8. On the other
hand, maximum improvement brought by our approach is
28% for btrix with a bank of size 1. In general, the larger the
bank size, the better the performance is. This follows from
the fact that the number of banks to activate (if the corre-
sponding bank is in a low-power operating mode) decreases
if a larger bank size is preferred. Figure 4 shows the reduc-
tion in energy consumption forbtrix benchmark when
only Nonuniform Banking is used, when Uniform Banking
is used with data migration, and when Nonuniform Bank-
ing is used along with data migration. Each bar represents
percentage reduction in energy over the Uniform Banking
scheme without data migration. We see that Nonuniform
Banking reduces energy by 15% and data migration (on
a uniform bank) reduces by 20% when used separately. If
these two approaches are combined to form the Nonuniform
Banking scheme with data migration strategy, then the en-
ergy reduction reaches 38% on average.

5. Conclusion

Memory system can be a major energy consumer in em-
bedded systems. Therefore, recent years have witnessed
several studies that target at reducing memory energy con-
sumption. Banking is such a scheme and has received a lot
of attention recently from both hardware and software com-
munities. One of the common characteristics/assumptions

Benchmark Bank Size Average
1 2 4 8

adi 6.0% 1.4% 7.2% 8.2% 5.7%
apsi 8.8% 16.2% 9.2% 19.0% 13.3%
bmcm 6.7% 9.9% 9.2% 11.1% 9.2%

btrix 17.4% 13.4% 8.4% 19.4% 14.7%
wss 10.3% 8.0% 8.9% 9.2% 9.1%

Table 5. Percentage reductions in energy
brought by Nonuniform Banking approach
over the Uniform Banking approach with
varying (fixed) bank sizes.

0%

5%

10%

15%

20%

25%

30%

35%

40%

1 2 4 8

P
er

ce
nt

ag
e

R
ed

uc
tio

n
in

 E
ne

rg
y

nonuniform migration nonuniform+migration

Figure 4. Percentage reductions in energy
brought by different schemes.

made by most of the past work on banking is that all the
banks are of the same size. While this makes the formula-
tion of the problem easy, it also restricts the potential so-
lution space. This paper investigates the possibility of em-
ploying nonuniform bank sizes for reducing memory energy
consumption. We show through experiments that working
with customized nonuniform memory banks brings impor-
tant savings over the uniform banking strategy. The sec-
ond contribution of this paper is a formulation of the data
migration problem. Our experiments with data migration
show that it brings additional energy savings over nonuni-
form banking.

References

[1] F. Catthoor et al.,Custom Memory Management Methodology,
Kluwer Academic Publishers, 1998.

[2] K. I. Farkas, J. Flinn, G. Back, D. Grunwald, J. M. Anderson, “Quan-
tifying the energy consumption of a pocket computer and a Java vir-
tual machine,” In Proc.2000 ACM SIGMETRICS international con-
ference on Measurement and modeling of computer systems, 2000.

[3] Y. Cao, H. Tomiyama, T. Okuma, H. Yasuura, “Data memory de-
sign considering effective bitwidth for low-energy embedded sys-
tems,” In Proc.the 15th international symposium on System Synthe-
sis, 2002.

[4] A. Sudarsanam, S. Malik, “Simultaneous Reference Allocation in
Code Generation for Dual Data Memory Bank ASIPs,”ACM Trans-
actions on Design Automation of Electronic Systems, Vol. 5, pp. 242-
264, 2000.

[5] M. A. R. Saghir, P. Chow, C. G. Lee, “Exploiting dual data-memory
banks in digital signal processors,” In Proc.International conference
on Architectural Support for Programming Languages and Operat-
ing Systems, 1996.

[6] P. R. Panda, “Memory Bank Customization and Assignment in Be-
havioral Synthesis,” In Proc.IEEE/ACM international conference on
Computer-aided design, 1999.

[7] V. Delaluz, M. Kandemir, N. Vijaykrishnan, A. Sivasubramaniam,
M. J. Irwin, “DRAM energy management using software and hard-
ware directed power mode control,” In Proc.the 7th International
Conference on High Performance Computer Architecture, 2001.

[8] A. R. Lebeck, X.Fan, H. Zeng, C. S. Ellis, “Power aware page allo-
cation,” In Proc.the 9th International Conference on Architectural
Support for Programming Languages and Operating Systems, 2000.

[9] V. Delaluz, M. Kandemir, U. Sezer, “Improving Off-Chip Memory
Energy Behavior in a Multi-processor, Multi-bank Environment,” In
Proc. the 14th Annual Workshop on Languages and Compilers for
Parallel Computing, 2001.

[10] A. H. Farrahi, G. E. Tellez, M. Sarrafzadeh, “Memory Segmentation
to Exploit Sleep Mode Operation,” In Proc.the 32nd conference on
Design automation,1995.

[11] 128/144-MBit Direct RDRAM Data Sheet, Rambus Inc., 1999.
[12] G. Nemhauser, L. Wolsey.Integer and Combinatorial Optimization,

Wiley-Interscience Publications, 1988.

	Main Page
	DATE'05
	Front Matter
	Table of Contents
	Author Index

