
Virtual Hardware Prototyping through
Timed Hardware-Software Co-simulation

Franco Fummi†

franco.fummi@univr.it

Mirko Loghi†

loghi@sci.univr.it

Stefano Martini†

martini@sci.univr.it

Marco Monguzzi#

monguzzi@sitek.it

Giovanni Perbellini†

perbellini@sci.univr.it

Massimo Poncino‡

massimo.poncino@polito.it

† Dipartimento di Informatica - Universitá di Verona

Strada Le Grazie, 15 37134 Verona, Italy
‡ Dipartimento di Automatica e Informatica - Politecnico di Torino

Corso Duca degli Abruzzi, 24 10129 Torino, Italy
SITEK S.p.A.

Via Monte Fiorino, 9 37057 S.G. Lupatoto - Verona, Italy

Abstract
Designers of factory automation applications increasingly
demand for tools for rapid prototyping of hardware ex-
tensions to existing systems and verification of resulting
behaviors through hardware and software co-simulation.
This work presents a framework for the timing-accurate co-
simulation of HDL models and their verification against
hardware and software running on an actual embedded de-
vice of which only a minimal knowledge of the current de-
sign is required.
Experiments on real-life applications show that early archi-
tectural and design decisions can be taken by measuring the
expected performance on the models realized using the pro-
posed framework.

1. Introduction
Co-simulation allows functional and/or timed verification of
mixed hardware-software systems. When a complete hard-
ware (HDL) model of the system is available, a wide range
of techniques and tools support designers in prototyping ad-
ditional hardware and software to extend the system itself.
In many situations, however, particularly whenever systems
are already on the market, designers may face requests for
extending systems that grew over time as merging of differ-
ent parts, some written with different modeling languages
and some others drawn as schematics; This complicates the
process of correctly reverse-engineering the project, or re-
quiring different tool versions setup (some of which not
more supported anymore, in some cases). Furthermore, de-
signers may not have access to some parts of the project be-
cause of intellectual property issues.
In this work, we propose a methodology for (i) extending
an hardware system that requires minimal knowledge of the
current design and (ii) allows an effective timing-accurate
simulation of the new project. Time-to-market may particu-
larly benefit from this approach to rapid prototyping, by in-
creasing the chance of success in a project where new hard-
ware has to extend actual systems. Furthermore, by sup-
porting timing-accurate co-simulation, the framework ful-
fills the severe timing requirements in verifying software
and hardware mixes for industrial control applications.

The proposed methodology explicitly targets the interaction
of a microprocessor-based board, which hosts an operating
systems and executes the software portion of the design,
and a hardware simulator, which models the device under
design. In that respect, it sensibly differs from other pre-
vious approaches, since the co-simulation must deal with
issues other than just the (timing-accurate) interaction be-
tween two applications (the SW and HW simulators), like
the OS support for co-simulation, as well as the remote in-
terface between the board and the HW simulator.
The proposed co-simulation framework has been success-
fully applied to the Ultimodule SCM2x0 platform for fac-
tory automation [1], a RISC system based on an user
configurable FPGA system on chip (SOC) and hosting a
RTOS [2] to allow real time operations, that delivers op-
timized, industry-ready solutions. The framework provides
designers with a low cost development tool to rapid proto-
typing model of new hardware, either to be driven from the
SCM2x0 or extending the module itself, thus actively inter-
acting with final customers during the requirements collec-
tion and shortening the process of new projects implemen-
tation.
The paper is organized as follows. Section 2 review existing
work on timed co-simulation; Section 3 describes the main
features of the proposed co-simulation framework, whose
technical issues are discussed in Sections 4 and 5. Finally,
Section 6 reports some experimental results, and Section 7
is devoted to concluding remarks.

2. Previous Work
The literature on HW/SW co-simulation is quite vast,
and covers many different involved aspects. Historically,
HW/SW co-simulation has been mostly focused on func-
tional simulation, in which timing information, when avail-
able, is obtained from a static timing analysis of the various
components.
Simulation performance was the strongest limitation to
the development of effective timing accurate co-simulation
strategies. This is particularly true for heterogeneous ap-
proaches, where a significant overhead is imposed by the
effort of keeping the synchronization between the two (the

1530-1591/05 $20.00 © 2005 IEEE

software and the hardware one) simulation engines ([3, 4, 5,
6]). Although homogeneous environments (in which a sin-
gle simulation engine is used) may make this task more
manageable, homogeneity is usually achieved by abstract-
ing away the distinction between hardware and software,
making the very notion of time quite imprecise ([7, 8]).
Only recently, some approaches have addressed this perfor-
mance bottleneck by explicitly targeting the timing accu-
racy of co-simulation.
One class of approaches borrows ideas from the theory of
distributed synchronization, using the similarity between
timed co-simulation and distributed event-driven simulation
algorithms. [9, 11, 12, 13]. All these approaches follow
an asynchronous paradigm, in which each simulator man-
ages its local time, and the local times evolve at different
speeds. They differ, however, in how the overhead required
by synchronization is managed; the solutions consider ei-
ther the use of rollback of the simulation (when one simu-
lator receives a past event from the other simulator – [9]),
or a proper alignment between the local clocks and global
clock, when rollback is not possible, allowing synchroniza-
tion to occur only when events are exchanged ([11, 12, 13]).
Another class of solutions is based on the construction of a
timing model for software, obtained by attaching timing an-
notations to the ISS (for instance, an execution time in cy-
cles for each executed instruction). Timing synchronization
between software and hardware is then achieved using the
accumulated delays for the software, and the cycle informa-
tion provided by a HDL simulator for the hardware [14, 15].
All the above approaches provide a reasonably effective so-
lution to the timed co-simulation problem. However, they
are explicitly targeted for the interaction of two (or more)
co-simulation engines, and are not thus suitable for our vir-
tual prototyping context, which requires the timing-accurate
interfacing of a simulator for hardware and a software pro-
gram running on an actual board, possibly hosting a RTOS.
In other terms, we need synchronization between actual
(i.e., not simulated) time (on the board side where SW is
executed) and simulated time (on the host computer side
where an HW model is simulated).
This requirement rules out many of the possibilities previ-
ously reviewed; options such as simulation rollback or the
use of instruction-based timing models, for instance, are ei-
ther infeasible or inadequate. In fact, the real-time execution
of the software on the board is based on the synchronization
given by the hardware timer which monotonically increases
its value. Moreover, the board may include some hardware
devices which synchronizes their work by exploiting the
timer value, thus rollback cannot be implemented, since it
would require the rollback of the behavior of such real hard-
ware components. The proposed co-simulation methodol-
ogy solves this problem by defining the concept of virtual
tick.

3. Co-Simulation Methodology
The objective of this work is the timed HW/SW co-
simulation of a system in which a portion of the hardware
is described in some HDL and the software is running on a
microprocessor-based board. Figure 1 shows the specific in-
stance of the system considered in this work.
The board includes a CPU, memory, and various hardware
devices; some devices are conventionally implemented in
hardware (ASICs), while some others by means of recon-
figurable hardware (a FPGA hosted on the board). The CPU
runs application software that accesses hardware function-
alities by using device drivers provided by a RTOS. A hard-
ware timer produces the signal that increments the clock
counter used by SW and HW functions to synchronize their
execution, thus allowing real-time behavior.

Socket

SystemC
Device

CPU Memory

FPGA

Bus

BOARD

Driver

RTOS

Embedded SW

ASIC

Virtual
Tick

Timer

Figure 1. Co-Simulation Methodology.

Virtual HW prototyping is implemented by executing the
hardware model on a host computer by means of simula-
tion of a given HDL model. We selected SystemC as HDL,
since it allows to model a hardware behavior at different
abstraction levels. Moreover, a synthesis flow easily trans-
forms HW models into HW devices.
Two are distinguishing features of the proposed co-
simulation methodology:

1. Communication between HW (the SystemC simulator)
and the SW (the board) is realized by means of a driver-
based scheme. More specifically, the SW accesses to
the HW device under design trough a device driver
used to send and receive data to/from the SystemC
model, viewed as any other device.

Such scheme implies that communication between
HW and SW occurs through the interrupt mechanism.
However, due to the “remote” nature of the virtual
HW device, the interaction between the board and the
hardware simulator on the host PC is implemented
by means of the network communication APIs of the
OS. Similarly to previous schemes ([19, 20]) the pro-
posed methodology uses the remote IPC to implement
the interaction between SW and HW models; how-
ever, the use of a real board and the requirement of
timed HW-SW co-simulation completely differentiates
the methodology proposed in this work. In particular,
our scheme can be viewed as a variant of the solu-
tion originally proposed in [20]; the details will be de-
scribed in Section 5. Moreover, with respect to the pa-
per [21] the proposed framework estabilishes a com-
plete timed co-simulation between the HW model and
all the SW running on the board, while [21] allows to
synchronize the HW model with the application SW
thread only. Performance estimation of the proposed
methodology are thus more accurate.

2. Timing synchronization is realized using the notion of
virtual tick. The latter term identifies the fact that the
co-simulation is driven by the SystemC simulated time
(a virtual time), rather than the real time of the timer on
the board. This implies thus that (i) SystemC becomes
the master of the co-simulation, and (ii) the real-time
behavior of the HW/SW components of the board will
actually depend on the SystemC virtual clock rather
than the actual clock counter that is updated by the
RTOS timer interrupt routine. In other terms, in hard-
ware terms, it is the (SystemC) device that determines
the advance of time.

Given the different natures of the two times, the
continuous-time evolution of the timer (on the board)
becomes a discrete-time evolution based on the simu-
lated time.

4. Timing Synchronization Protocol
The previous section has described the main features of the
proposed timed co-simulation methodology. In this section,
we concentrate on the timing issues of the co-simulation,
and in particular on how to synchronize the hardware timer
with the simulated time of the SystemC kernel.

4.1. Enforcing Timing Synchronization
The hardware timer hosted on the board generates periodic
pulses (HW ticks); software operations on the board are syn-
chronized with respect to a SW tick, which is derived by in-
terrupting the system after a specified amount of HW ticks.
When the interrupt occurs, a timer interrupt service routine
is invoked, which increments the SW tick counter and takes
care of the alarms, and eventually calls the scheduler to pro-
vide it with the time-slice use for scheduling decisions.
The key point of our approach is that timing-accurate
cosimulation is realized by altering the way the SW tick is
updated; rather than modifying it any time the HW timer
generates an interrupt, the changes are driven by the Sys-
temC clock.
The idea, summarized in Figure 2, is that the SystemC sim-
ulator sends, in correspondence of each SystemC clock cy-
cle, a “message” to the board to force the update of the SW
tick. The message actually appears to the board as a regu-
lar device-driven interrupt request. When the message has
been sent, the SystemC simulator must wait for a response
message before starting the next simulation cycle.

SW tickHW tick

BOARD SystemC

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

1

0 0

1

2

15

16

17

18

idle time

SystemC
normal

execution

SystemC
normal

execution

timer tick
(normal execution)

timer tick
(normal execution)

Figure 2. Co-Simulation timing view.

In order to implement this idea, however, it is essential to
observe that the interval between two HW ticks (1 ms in
the Figure 2) can be shorter than the time required to send
a message (via socket) from the host running the SystemC
simulator to the board.
Therefore, after one SW tick, the board must spend some
time (denoted with idle time in the following) for waiting
the arrival of the message from the SystemC simulator. Dur-
ing this idle time, the board must put all system and user
threads into a sleep step, but those that are necessary to keep
the socket connection between the Board and SystemC ac-
tive.

4.2. Reducing IPC Overhead
In the previous description, the SW tick is incremented
for each increment of the SystemC clock. This scheme is
clearly highly inefficient, because it requires an excessive
amount of synchronization. To reduce the communication
overhead, we limit the number of required synchronization
points. This can be achieved by having SystemC to send the
synchronization message only after n clock cycles. This im-
plies that the board (actually, the OS), upon arrival of this
“multiple-tick” message, must run for n SW ticks.
We call synchronization time (Tsync), the interval (mea-
sured in SystemC clock cycles) between two synchroniza-
tion events which are sent from SystemC to the board.
This is obviously possible only if there no exchange of data
between the board and the SystemC simulator occurs dur-
ing normal execution.

5. Implementation Details
The implementation of the proposed methodology requires
three main tasks. First, the definition of the communication
interface; second, the modification of the OS running on the
board, in order to support the board, and, third, the modifi-
cation of SystemC simulation kernel, in order to setup the
proper synchronization commands. In such a way the syn-
chronization (but also the exchange of data) between the
two components is properly managed. This section details
the three above issues.

5.1. Implementing the Communication
The generic architecture of the proposed methodology
shown in Figure 1 shows a generic socket-based connec-
tion between the two actors involved in the communication.
The latter is specifically implemented through three TCP/IP
ports: A (DATA PORT), used to exchange data, An inter-
rupt port (INT PORT), which carries the signal interrupt,
and a clock port (CLOCK PORT), which takes care of the
exchange of the timing information that keep the two sys-
tems synchronized.
Whenever a synchronization event goes from the SystemC
kernel to the board, the OS running on the board advances
the application for Tsync cycles. At the same time the Sys-
temC kernel advances its simulation for Tsync cycles and
then it waits an answer from the board. Therefore, when
a time packet is exchanged between the two actors, they
are fully synchronized and they can further proceed. Also,
whenever an interrupt is sent from the SystemC environ-
ment, the OS reads and writes on the DATA PORT to ex-
change data with the simulated hardware.

5.2. SystemC Kernel Modifications
The synchronization between the board and SystemC is re-
alized by modifying the SystemC kernel in such a way that
it can establish and control the communication. The re-
quired modifications to the SystemC kernel essentially con-
sist of:

• The addition of two new types of ports (driver in
and driver out), that are devoted exclusively to the
communication between a SystemC module and the
OS running on the board. These classes are derived
from the sc in and sc out SystemC classes, respec-
tively.

• The addition of the special process
driver process. Similarly to a sc method,
a driver process will be triggered when a new
data is present on a driver in port to which the pro-
cess is sensitive.

• The modification of the event scheduling algorithm, in
order to handle the presence of special ports and pro-
cesses.

• The adding of an additional module to the design,
triggered by the positive edge of the clock, which
sends and receives the synchronization packets from
the board.

The core of a standard SystemC simulation engine is en-
closed in a function called simulate. Such a function is
invoked when the simulation starts, and it runs the simula-
tion loop, calling the proper routines to collect, handle and
dispatch events.
In the modified version of the SystemC kernel,
we replaced that function with another one, called
driver simulate. This new function opens the com-
munication channels, opening the TCP/IP DATA PORT and
INT PORT ports. Then it iterates on a modified simula-
tion loop, which performs the following actions:

• Check for the presence of data on DATA PORT. If
there is one, the datum is read and the required actions
are performed. These actions are:

– Reading from the SystemC port;
– Sending data to the board;

in case of a read, and:
– Reading further data from the channel.
– Writing the SystemC ports.
– Advancing the driver process;

in case of a write.
• A standard simulation cycle is accomplished. As in the

conventional SystemC simulation step, events are han-
dled and generated. New events are scheduled and dis-
patched.

• The interrupt signal is checked. If it is active, a packet
is sent to the board via the INT PORT, so the board
will react by sending a request packet on the data chan-
nel.

5.3. OS Modifications
There are two main modifications required by the OS.
The first one is concerned with the communication between
the board and the hardware. Since the simulated hardware
is modeled as an external device, this amounts to write a
new device driver to the OS. The driver is initialized at sys-
tem boot, and it passively listens to the interrupt signal. As
for any other physical device, activation of the interrupt sig-
nal notifies that the simulated device has some data to ex-
change, so the driver routines are in charge to read data
from the DATA PORT. Whenever data are read, they are
transferred and elaborated by the proper function. Then, if
needed, the results are sent back to the device, writing on
the DATA PORT.
The second main modification is concerned with the en-
forcement of the timing synchronization. To keep the soft-
ware running on the board temporally aligned with the hard-
ware simulated in the SystemC framework, the execution of
the application must be driven by the same clock of the Sys-
temC simulation.
The idea is to freeze the board until a SystemC clock pulse
is received, then allow the execution for Tsync cycles and
then block the board again. Since a timing packet from the
SystemC side has to be received on a TCP/IP port, however,
such approach is not viable. In order to receive and manage
the clock pulse, in fact, the board cannot be completely idle,
and some tasks on the board must be kept running.

Rather than completely stopping the entire board, however,
we can identify what are the set of OS threads that are in
charge to control the communication and that must thus
keep always active. We called such threads communication
threads. Once the latter have been identified, we split the be-
havior of the OS in two major states: normal and idle.

���
�������
	��� ����� ���

����� �������

���
��� �����
����� �������

����� ��� � ����� �����
�!�"�����"��������� �����

#������
����� �������

$&%('�) *,+.- /10�2"%.3 0�3 4�5

���
�.�����
	��� ����� ���

����� �������

���
��� �����
����� �������

���6� ��� � ����� �����
���"�����"��������� �����

#������
����� �������

$&%7'�) 8 9�2 4:%!3 0�3 4�5

;�<�=�>�?�@

<�A�@�@�B @�C

<�A�@�@�B @�C
��D���� �"���6����� ����� ��D���� �"���6����� �����

Figure 3. OS Normal and Idle States.

In the normal state the OS acts in a conventional way,
scheduling user and system threads according to their
priorities. In the idle state, conversely, only a limited
number of tasks are allowed to run: the communication
threads, the idle thread, the channel thread and
the systemc thread (Figure 3).
The idle thread is a thread provided by almost all OSs,
whose only purpose is to waste CPU cycles when no elabo-
ration has to be performed.
The channel thread is a thread that is spawned
when the device driver is initialized, and listens on the
INT PORT, through which it performs the communication.
The channel thread cannot be halted when the OS is in
the idle state, otherwise some events can be lost. Clearly,
only the data exchange is performed by this thread, while
the data management is left to other threads that run only
when the OS is in the running state.
Last, the systemc thread is the special thread that we
add to the OS for synchronization purposes. It is in charge of
listening to the CLOCK PORT for an incoming clock pulse
from the SystemC side; when such an event occurs, it re-
acts accordingly.
The typical sequence of operations of the OS works as fol-
lows. The normal state should last for a time at least
equal to Tsynch cycles. The timer interrupt, which is in-
voked on regular intervals, is used to handle the switch from
the normal to the idle state. When it is time for such a
state switch, the following steps are performed:

• A flag is set.

• The need for a re-scheduling of the tasks is signaled to
the scheduler;

• The scheduler saves the context (in particular, the value
of the timeslice) of the thread currently in execution;

• The scheduler activates one of the threads allowed in
idle state.

• The current time of the board is sent back to SystemC,
to signal that the OS is frozen.

The idle state continues until a packet is received on the
CLOCK PORT from the SystemC side. Upon occurrence of
this event:

• The above mentioned flag is cleared;
• The scheduler is invoked;
• The scheduler resumes the thread that was suspended

and restores its context (in particular, the value of its
timeslice).

Figure 4 summarizes the events that cause the OS to switch
between the two states.

Figure 4. Switching from Normal to Idle and
Viceversa.

6. Experimental Analysis
The co-simulation methodology presented in this paper has
been used to verify the design of a small 4-port router de-
scribed in SystemC, an extension of the Multicast Helix
Packet Switch example distributed with SystemC 2.0.1.
This router receives data packets on its input ports and for-
wards them to the proper output port according to a rout-
ing table embedded into the router. Whenever a new packet
arrives on one of the input ports, it is stored into an inter-
nal buffer. If the buffer is full, the packet is dropped. Each
packet is then read from the buffer by the main process of
the router, and checked for errors by a checksum algorithm.
If the checksum is correct the destination address stored in
the packet is used to find the right output port using the rout-
ing table; otherwise the packet is dropped. The packets con-
sist of the following fields:

• Source address: the address of the producer.
• Destination address: the address of the consumer to

which the packet must be sent;
• Packet identifier: an integer value used for debugging

purposes only;
• Data field.
• Checksum: a 16 bit field used for error detection.

The overall HW/SW configuration consists of the following
entities:
• SystemC model of the router;
• SystemC model of the packet generator (producer),

which is attached to an input port of the router, and
generates packets with a random destination address.

• SystemC model of the packet destination (consumer),
which is attached to an output port of the router, and
analyzes the integrity of the received packet.

• C application computing the checksum, executing on a

SCM220 Ultimodule
TM

board running the eCos oper-
ating system.

In order to enable the proposed methodology, we have cre-
ated a special device driver for the router and embedded it
into eCos; the C source code calls the appropriate driver in-
terface functions to communicate with the SystemC mod-
ule. In addition, the modifications described in Section 5
have been added to eCos.

6.1. Co-Simulation Overhead
The first experiment is concerned with the evaluation of the
overhead of synchronization. Figure 5 reports the overall
time (in seconds) as a function of the number of exchanged
packets N , for different values of Tsynch.

�����������������������������

�����������������������������

����� ���������������������

�����������������������������

�����������������������������

� � �

	 � � � �

 � � � � �

 	 � � � �

� � � � � �

� 	 � � � �

� ���� ����� ����� ����� � �����
�

� � � �
��� � �
��� � �
� � � � �
��� � � "!�#

.
Figure 5. Co-Simulation Overhead.

The increase in the slope of the curves for decreasing val-
ues of Tsynch in the plot shows that the overhead increases
as the synchronization become tighter. The increase is due
to (i) the increased cost of communication, and (ii) the over-
head in the OS, which spends more time in switching be-
tween the running and the idle state.
The plot also shows an interesting feature of the proposed
co-simulation scheme, namely, the fact that simulation time
increases linearly with N , whatever the value of Tsync. This
implies that the overhead is approximately constant, and
does not depend on the number of exchanged packets. For
instance, simulating the transmission of N = 100 packet
takes 241 seconds for Tsync = 1000 and 32 seconds for
Tsync = 10000, corresponding to a ratio of 241/32 ≈ 8,
which also for any other value of N .
Figure 6 quantifies the overhead more precisely, by showing
its direct dependency on Tsynch; values are now expressed
as the ratio between the actual simulation time (for a given
Tsynch) and the time spent by a simulation without synchro-
nization (corresponding to Tsynch → ∞), assumed to be
equal to 1.
The plots confirms the results of Figure 6, but emphasizes
the fact that overhead decreases quite rapidly for larger val-
ues of Tsynch (notice the log-scale on the Y-axis). For in-
stance, imposing synchronization at each simulation cycle
yields a simulation time which 1000x the time required for
an untimed simulation; this overhead decreases to 100x if
we synchronize once every 360 cycles.
The plot also shows that changing the amount of work done
(N = 100 and N = 1000 exchanged packets) does not sig-
nificantly change the rate at which the overhead decreases.

6.2. Co-Simulation Accuracy
The seconds experiment aims at assessing the simulation
accuracy as a function of Tsync. The accuracy is expressed
in terms of the percentage of packets that can be handled by
the system. This number is 100% when the systems are very
tightly coupled (a synchronization event for each simulated
cycle), and it expected to progressively decrease as the syn-
chronization becomes more loosely coupled. The plots of
Figure 7 confirm this expected behavior. Notice however

���������������������������

���������������������������

��������������������� ���

���������������������������

�

���

���	�

���
�	�

���
�
�	�

��� ����
����� ���������� ���������� ����
����� ���������� ����
����� ��	�
����� ��	�	�
���
�� �!	"

#%$�&('
'
#%$�&('
'�'

.
Figure 6. Co-Simulation Overhead vs. Tsync

that the 100% percentage of forwarded packets is main-
tained up to a value of Tsync around 5000, allowing thus
a significant reduction of the simulation overhead.
The similarity of the two curves for N = 100 and N =

1000 shows that there is only a marginal degradation of the
accuracy when increasing the number of packets sent. The
small difference is due to the fact that dropped packets tend
to increase when there is more work to be done.

)�)�)�)�)�)�)�)�)�)�)�)�)

��*�*�*�*�*�*�*�*�*�*�*

+�+�+�+�+�+�+�+�+�+�+�+�+

,�,�,�,�,�,�,�,�,�,�,�,�,

-�-�-�-�-�-�-�-�-�- .�.

/�/�/�/�/�/�/�/�/�/�/�/�/

021 043

54021 043

67021 043

8%021 043

9%021 043

:�0%021 043

:	54021 043

:%1 ;=<40%0 :>1 ;=<40%5 :>1 ;=<40>6 :>1 ;=<4048 :>1 ;?<40%9

@2A>B2C7D7E

F%G�H(I�I
F%G�H(I�I�I

Figure 7. Simulation Accuracy vs. Tsync.

One final remarks is related to the choice of Tsynch. In many
cases, the value of Tsynch is precisely defined by the timing
constraints imposed by the device to be designed, and there
is thus little margin to change it.
There may be however situations in which Tsynch is al-
lowed to vary over a given range of values. In these cases,
the plots of Figure 6 and Figure 7 can be used together to
define with an optimal value of Tsynch. In fact, because of
the opposite dependencies of the overhead and of the accu-
racy on Tsynch, there is a value of Tsynch which maximizes
the product (accuracy x overhead). If the optimal value falls
in the allowed range, the designer may then use it as the syn-
chronization interval for the co-simulation.

7. Conclusions
We have proposed a new HW/SW co-simulation method-
ology which is suitable for virtual prototyping of new hard-
ware devices to be added to an existing processor-based sys-
tem.
Two are the main features of the proposed scheme. First, the
time-accurate nature of the co-simulation, which allows to

debug the device under design with the precision of the tar-
get hardware simulator. Second, thanks to the features of
OS running on the board, the co-simulation even allows to
meet real-time constraints, provided that these are relative
to the same timing reference used by the board.
The proposed framework has been successfully applied to
a Ultimodule SCM2x0 board to design a device implement-
ing the function of a packet router, and to carry out a design
exploration before implementing the device onto the board.

References
[1] Ultimodule, Inc., http://www.ultimodule.com.
[2] RedHat eCos, http://sources.redhat.com/eCos.
[3] A. Ghosh et al., “A Hardware-Software Co-Simulator for Embedded System

Design and Debugging,” ASPDAC’95, pp. 155-164, January 2000.
[4] C. Liem, F. Nacabal, C. Valderrama, P. Paulin, A. Jerraya, “System-on-Chip

Co-Simulation and Compilation,” IEEE Design and Test, Vol. 14, No. 2, pp.
16-25, Apr.–Jun. 1997.

[5] C. Valderrama, F. Nacabal, P. Paulin, A. Jerraya, “Automatic VHDL-C Inter-
face Generation for Distributed Co-Simulation: Application to Large Design
Examples”, Design Automation for Embedded Systems, Vol. 3, No. 2/3, pp.
199–217, March 1998.

[6] P. Coste, F. Hessel, Ph. Le Marrec, Z. Sugar, M. Romdhani, R. Suescun, N.
Zergainoh, A. Jerraya, “Multilanguage Design of Heterogeneous Systems”,
International Workshop on Hardware-Software Codesign, pp. 54–58, May
1999.

[7] J. T. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt, “Ptolemy: A Frame-
work for Simulating and Prototyping Heterogeneous Systems,” International
Journal of Computer Simulation, Vol. 4, pp. 155–182, April 1994.

[8] F. Balarin et al., Hardware-Software Co-Design of Embedded Systems: The
Polis Approach, Kluwer Academic Press, 1997.

[9] S. Yoo, K. Choi, “Optimistic Timed HW-SW Cosimulation”, ASPHDL’97:
Asia-Pacific Conference on Hardware Description Language, Aug. 1997, pp.
39–42.

[10] R. Righter, J. C. Walrand, Distributed Simulation of Discrete Event Systems,”
Proceedings of the IEEE, Vol. 77, No. 1, Jan. 1995.

[11] W. Sung, S. Ha, “Optimized Timed Hardware Software Cosimulation Without
Roll-Back,” DATE’98: Design Automation and Test in Europe, Mar. 1998, pp.
945–946.

[12] D. Kim et al., “Virtual Synchronization for Fast Distributed Cosimulation of
Dataflow Task Graphs,” ISSS’02: International Symposium on Systems Syn-
thesis, Oct. 2002, pp. 174–179.

[13] Y. Yi, D. Kim, S. Ha, “Virtual Synchronization Technique with OS Mod-
eling for Fast and Time-Accurate Cosimulation,” CODES/ISSS’03: Interna-
tional Workshop on Hardware-Software Codesign, pp. 1–6, Oct. 2003.

[14] S. Yoo, G. Nicolescu, L. Gauthier, A.A. Jerraya, “Fast Timed Cosimulation of
HW/SW Implementation of Embedded Multiprocessor SoC Communication,”
HLDVT’01: IEEE International Workshop on High Level Design Validation
and Test, Oct. 2001, pp. 79–82.

[15] I. Bacivarov, S. Yoo, A. A. Jerraya, “Timed HW-SW Cosimulation Using Na-
tive Execution of OS and Applications SW,” HLDVT’02: IEEE International
Workshop on High Level Design Validation and Test, Oct. 2002, pp. 51–56.

[16] J. Liu, M. Lajolo, A. Sangiovanni-Vincentelli, “Software Timing Analysis Us-
ing HW/SW Co-Simulation and Instruction Set Simulator,” CODES’98: Inter-
national Workshop on Hardware-Software Codesign, pp. 65–69, Mar. 1998.

[17] L. Semeria, A. Ghosh, “Methodology for Hardware/Software Co-verification
in C/C++”, ASPDAC’00, pp. 405–408, Jan. 2000.

[18] K. Lahiri, A. Raghunathan, G. Lakshminarayana, S. Dey, “Communication
Architecture Tuners: a Methodology for the Design of High-Performance
Communication Architectures for System-on-Chips,” DAC-37, pp. 513-518,
Jun. 2000.

[19] L. Benini, D. Bertozzi, D. Bruni, N. Drago, F. Fummi, M. Poncino, “SystemC
Co-simulation and Emulation of Multi-Processor SoC Designs,” IEEE Com-
puter, Vol. 36, No. 4, Apr. 2003, pp. 53–59.

[20] F. Fummi, S. Martini, G. Perbellini, M. Poncino, “Native ISS-SystemC Inte-
gration for the Co-Simulation of Multi-Processor SoC,” DATE’04: Design Au-
tomation and Test in Europe, Feb. 2004, pp. 564-569.

[21] L. Formaggio, F. Fummi, G. Pravadelli, “A Timing-Accurate HW/SW Co-
Simulation of an ISS with SystemC,” CODES+ISSS 2004: International Con-
ference on Hardware Software Codesign and System Synthesis, Sep. 2004, pp.
152-157.

[22] Synopsys, Inc., “SystemC, Version 2.0”,
http://www.systemc.org.

	Main Page
	DATE'05
	Front Matter
	Table of Contents
	Author Index

