
Cycle Accurate Binary Translation for Simulation Acceleration
in Rapid Prototyping of SoCs∗

Jürgen Schnerr1, Oliver Bringmann1, and Wolfgang Rosenstiel1,2

1 FZI Forschungszentrum Informatik
Haid-und-Neu-Str. 10–14

76131 Karlsruhe, Germany

2 Universität Tübingen
Sand 13

72076 Tübingen, Germany

{jschnerr, bringmann, rosenstiel}@fzi.de

Abstract

In this paper, the application of a cycle accurate binary translator
for rapid prototyping of SoCs will be presented. This translator gener-
ates code to run on a rapid prototyping system consisting of a VLIW
processor and FPGAs. The generated code is annotated with informa-
tion that triggers cycle generation for the hardware in parallel to the
execution of the translated program. The VLIW processor executes the
translated program whereas the FPGAs contain the hardware for the
parallel cycle generation and the bus interface that adapts the bus of
the VLIW processor to the SoC bus of the emulated processor core.

1. Introduction
Nowadays, semiconductor chips reach such high complexities, that

the integration of complete systems with high functionality on a sin-
gle chip (so called Systems-on-Chip, SoC) becomes possible. Using an
SoC bus, these SoC components are connected on the chip.

The development of software for such SoCs is problematic as the
software running on SoCs usually includes very hardware near parts
like device drivers. The requirements for this software are that I/O ac-
cesses to the bus must be cycle accurate in order to make it possible
to validate the bus interfaces to the hardware or the handshakes on the
bus.

Existing solutions for this problem are the hardware/software co-
simulation [11] of processors and the attached hardware on the bus
or the emulation of the processor using a hardware emulator. Using
hardware/software co-simulation, the most accurate way of simulation
would be a simulation of the processor and the attached hardware on an
HDL simulator. But this leads to very slow execution times. To speed
up the simulation, an abstraction of the processor has to take place. This
can usually be done in two different ways. Either the source code has to
be recompiled for the processor of the machine the simulation is run-
ning on, or an instruction set simulation (ISS) has to be used. An ISS
can be implemented as an interpreted ISS, a just-in-time compiled ISS,
or as a compiled ISS. Using a bus functional model (BFM), the recom-
piled code or the ISS has to be coupled to an HDL simulator simulating
the hardware attached to the processor.

∗ This work has been partially supported by the BMBF/MEDEA+ project SpeAC A508
under grant number 01M 3067 A.

These existing solutions using hardware/software co-simulation suf-
fer from different disadvantages, especially concerning accuracy and/or
execution speed. Further disadvantages are, that some solutions require
the source code of the program. Also if the hardware has to be simu-
lated, a model of the hardware environment is needed.

Using hardware emulators or FPGAs for the emulation of the pro-
cessor can lead to a significant speed-up of execution speed [12]. The
main advantage of such solutions is that a very accurate emulation of
the processor is possible at a reasonable speed. The disadvantage is that
the detail level of the emulation cannot be chosen, therefore it can be
more detailed than needed. Also a synthesizable specification of the
processor is needed.

The rapid prototyping system used in this paper was presented
in [13]. It is based on the hardware presented in [5, 6]. This system was
designed to overcome the disadvantages of previous existing systems
by offering a fast execution speed of the simulated system with suffi-
cient cycle accuracy. To find a trade-off between execution speed and
accuracy, several detail levels of code execution are offered. Another
advantage compared to other solutions is, that neither a HDL descrip-
tion of the processor nor source code of the running program is needed.

Basically, the presented prototyping system consists of two parts.
One part is the TMS320C6201 (C6x) VLIW processor from Texas In-
struments [14], the other part consists of FPGAs. The VLIW processor
is used for the emulation of the instruction set of the SoC processor
core. As examples of processor cores the TriCore processor from Infi-
neon [7] and the ARM processor [1] were used.

This paper will focus on the emulation of the processor core, that
we have implemented using a compiled ISS. The binary translator that
carries out the compiled ISS will be described in more detail in this
paper. Compared to existing binary translators, this one annotates the
translated program with instructions that access the cycle generation
hardware in the FPGAs. The FPGAs of the system are also used for a
bus interface between the C6x processor and the attached hardware that
expects to be connected to an SoC bus.

Basically, the cycle accurate translation works as follows: The run-
time of each basic block of the untranslated program is predicted. At the
beginning of the translated basic block, code is included that triggers
the start of the cycle generation with the number of predicted cycles.
When such a translated basic block is run, it starts the cycle generation
with its first instruction, and then the rest of the basic block runs in par-
allel to the cycle generation. At the end of the basic block there is an

1530-1591/05 $20.00 © 2005 IEEE

instruction that synchronizes the cycle generation with the instruction
execution before the execution of the next basic block begins.

This method of letting the translated program trigger the clock cy-
cles for the hardware itself reduces the bottleneck between the proces-
sor executing the program and the attached hardware.

The remainder of this paper is structured as follows: Section 2 shows
a short overview on the state of art in using recompiled source code
and ISS under consideration of timing issues. Section 3 of this paper
describes the implementation of the cycle accurate binary translator.
Section 4 provides results. Section 5 concludes the paper and gives an
outlook.

2. State of the art
As stated in the previous section, a recompilation of the source code

or an ISS can be coupled to a BFM to provide a cycle accurate abstrac-
tion of a processor.

Using a recompilation of the source for the target processor usually
changes the timing of the program completely. To include the timing of
the original processor there are several possibilities. One possibility is
to add timing information in the form of delay annotation to the source
code [2, 15]. Another approach to the inclusion of timing information
was shown in [8]. In this case, the authors modified a C compiler to ana-
lyze the program being translated and to include the timing information
into the generated code.

When a recompilation of the source code is not possible or too in-
accurate, an ISS can be used. There are three possibilities for the im-
plementation of such an ISS. The first one is the interpretative sim-
ulation. At the moment, this is the most commonly used method. As
the interpretative simulation has to decode the instructions during the
runtime, it suffers from low performance. To overcome this problem, a
just-in-time (JIT) compilation (also called dynamic compilation) of the
program can be used [10]. Here the performance is much better as the
program is translated during the runtime and blocks of the translated
program are cached leading to a much better performance if the same
part of the program has to be executed more than once.

The third possibility is the compiled simulation (also called binary
translation or static compilation) of the program. As the decoding and
the translation of the program are done statically during the compile-
time it can reach the fastest execution speed of the three possible im-
plementations.

The development of binary translators started at the end of the 1980s
where they were needed for the translation of existing CISC programs
in order to migrate to RISC architectures. For this reason they offered
only a functional translation of the program with no consideration of
timing issues. A good introduction and an overview of such translators
are shown in [3].

For the translation of programs that access hardware these purely
functional solutions were not enough. Therefore, Cogswell and Segall
presented in [4] a methodology of translating the program where the
translated program is instrumented with timing information in a way
that during the execution of the program on the target platform the tim-
ing for the source platform contained in the timing information and the
timing on the target platform can be compared at regular intervals and
the program execution can be delayed if it is necessary.

This paper will introduce a cycle accurate binary translation spe-
cially tailored to the needs of prototyping of SoCs. In contrary to pre-
vious solutions, it works on a very low, hardware near level.

3. Cycle accurate static compilation
This section will describe the compiler presented in this paper in

more detail. The design of the compiler is made up of two parts. One
part consists of the description of the instruction set and the architec-
ture of the processor whose code has to be translated (the source pro-
cessor). This description is done using C++ classes. The other part is
independent of the source processor and is implemented as a library. To
generate a working compiler both parts have to be linked together. This
way, the compiler can be adapted to different source processors.

Although it is possible to write the classes containing the description
of the source processor by hand, it is not recommended due to its error-
proneness. Therefore, this processor is usually defined in an XML file
that is translated into the appropriate C++ code by a tool. This XML file
contains an architecture description and a description of the instruction
set of the processor. The architecture description contains a description
of the pipelines and the caches of the processor, whereas the instruction
set description contains information about instruction decoding and the
semantics of the described instruction written in an intermediate code
which resembles the assembler instructions of the C6x processor but
does not have their constraints.

Figure 1 shows an overview of how the compiler works. The parts
of the compiler needed for cycle accurate translation of code are shown
in grey.

building of basic blocks

construction of intermediate code

finding base addresses

cycle calculation

cycle accurate VLIW program

further transformations of intermediate code

object file

insertion of cycle generation code

insertion of dynamic correction code

Figure 1. Cycle accurate static compiler

Using an appropriate class, the compiler reads the object file, which
is usually provided in ELF format (other formats are also possible).
Afterwards, this object code will be decoded and translated into an in-
termediate representation. This intermediate representation consists of
a list of objects. Each of these objects is representing one intermediate
instruction.

In a next step, the basic blocks of this program are found out using
the list containing the translated program, and a list of basic blocks is
built.

Using the list of basic blocks, the base addresses of load/store in-
structions have to be found out, as far as this is statically possible. This

is needed for two reasons. One reason is to change the base addresses
of load/store instructions accessing memory to the new memory ad-
dresses of the target system. The other reason is to find out, which of
these load/store instructions are I/O instructions. These I/O instructions
have to be replaced by instructions accessing the hardware of the bus
model.

After that, a static calculation of the number of cycles each basic
block would have taken on the source processor is made. How this cal-
culation works is described in more detail in Section 3.3.

In the next step, the code for the cycle generation for each basic
block has to be inserted into the basic blocks. How this code looks like
and how it works is described in Section 3.1.

Not every effect of the processor architecture on the number of cy-
cles can be predicted statically. Therefore, if effects of branch predic-
tion and caches should be taken into account, additional code has to be
added in this step. Further details concerning this code are described in
Section 3.4.

After that, further transformations of the intermediate code have to
be done. Here, instructions that can be executed in parallel on the VLIW
processor have to be found out. Furthermore, software pipelining of
the instructions and register binding have to take place. Also, every
instruction has to be assigned to the functional unit it will run on.

The result is a program for the TMS320C6x VLIW processor anno-
tated with cycle information. More information about how this annota-
tion works is described in the next section.

3.1. Annotation of translated code
Usually, there is an external common clock for the processor and

the attached hardware, but in this case there is no such common clock.
Instead, the emulated processor has to generate the clock cycles for the
attached hardware itself.

This is done using accesses to a hardware device in the FPGAs
called synchronization device.

start cycle generation of cycles

basic block

wait for end of cycle generation

cycle accurate basic block

n

Figure 2. Annotated basic block

As shown in Figure 2 the compiler adds an instruction that starts the
cycle generation at the beginning of the basic block. This instruction
is a write access to the synchronization device that contains the num-
ber n of cycles this basic block would need on the source processor.
From now on the execution of the instructions in the translated basic
block and the generation of the cycles for the attached hardware run in
parallel until the executed program reaches the “wait for end of cycle
generation” instruction. This instruction consists of a read access to the
synchronization device. If the cycle generation is already finished, this
instruction does nothing. If it is not finished, this instruction waits until
the generation is finished.

This way, the execution of the translated program and the attached
hardware can be synchronized without having the bottleneck of perma-
nent hardware accesses by the executed program.

3.2. Cycle calculation
In order to guarantee an as fast as possible execution of the trans-

lated code, static cycle calculation, as mentioned in the previous sec-
tion, should be used if it is possible. But compared to a dynamic cycle
calculation this leads to less accuracy as not every effect of processor
architecture on the number of executed cycles can be exactly predicted.

In order to guarantee both an as fast as possible execution of the
code as well as the highest possible accuracy, it is possible to choose
different levels of accuracy of the generated code when the compiler is
run.

There are the following three detail levels of cycle accuracy:

1. purely static prediction

2. dynamic improvement of the static prediction
(modeling of the branch prediction)

3. dynamic inclusion of instruction caches
(additionally to point 2)

The cycle calculation in these different detail levels will be dis-
cussed in more detail in the following text.

3.3. Static cycle calculation of a basic block
The simplest possible way of calculating the execution time a basic

block consists of the summation of the execution or the latency times of
the instructions of this basic block. But this is only possible with simple
architectures. Concerning modern architectures, it is too inaccurate as
it does not consider pipeline effects, super scalarity and caches of these
architectures.

In order to predict pipeline effects and the effects of super scalarity
statically, modeling the pipeline per basic block becomes necessary [9].
Using information about the instructions and the pipelines of the pro-
cessors, it can be found out which instructions of the basic block can be
executed in parallel with a super scalar processor and which combina-
tions of instructions in the basic block cause pipeline stalls.

With the information gained by the modeling of the basic block a
prediction can be made how many cycles the basic block would have
needed on the source processor.

In the following section, it will be shown how such a prediction can
be improved during runtime.

3.4. Dynamic correction of cycle prediction
Not every cycle that a processor executes can be correctly predicted

in a static way. For example, if a conditional branch occurs at the end
of a basic block or the effects of instruction caches during the execution
of a basic block.

In these cases, additional code that counts correction cycles has to be
inserted into the translated basic block, and at the end of the basic block
a correction block has to be inserted which generates these additional
correction cycles before the next basic block can be run.

Figure 3 shows such an annotated basic block that offers additional
dynamic correction of the cycle count. The additional cycle counting
code for the consideration of branch prediction is explained in the next
section. The division of the basic block for the calculation of additional
cycles for instruction cache misses as shown in the Figure 3 is explained
in Section 3.4.2.

start cycle generation of cycles

cache analysis block

start correction cycle generation

wait for end of cycle generation

basic block

cycle calculation for conditional jump

cycle calculation i−cache

cycle calculation i−cache

cache analysis block

wait for end of correction cycle generation

cycle accurate basic block

correction block

n

Figure 3. Annotated basic block with dynamic correction

3.4.1. Branch prediction Conditional branches usually have differ-
ent cycle times considering whether the branch prediction was right or
wrong and whether the branch was taken or was not taken. Usually,
such a conditional branch needs a minimum number of cycles in all
cases. This number can be added to the cycle generation code of the
basic block.

Whether there are additional cycles needed or not, has to be found
out using additional code which has to be inserted in this step just be-
fore the conditional branch. During runtime, the inserted code has to
check whether the branch prediction was correct or not and whether the
branch is taken or not. The additional cycles will be added to a cycle
counter for the execution in the correction block.

3.4.2. Instruction cache For additional simulation of the instruction
cache, three steps have to be done. First, space has to be reserved at the
end of the translated program. This space is used to hold the data of the
simulated cache during runtime. The second step that has to be done, is
that every basic block of the translated program has to be divided into
cache analysis blocks. In a third step, code for the cache handling has
to be added to each of these cache analysis blocks.

All three steps will be explained in detail in the following three sec-
tions.

Saving cache data At the end of the translated program space for
cache data is added. This space holds the valid bit, the cache tag and the
least recently used (lru) information (containing the replacement strat-
egy) for each cache set during the runtime. To simplify the handling of
the cache tag and the valid bit, they are combined into one word which
is usually 32 bits long.

The number of cache tags and the according valid bits is depending
on the associativity of the cache, e.g. for a two way set associative cache
there are two of them.

Cache analysis blocks For the consideration of the effects of instruc-
tion caches, each basic block has to be divided into cache analysis
blocks. Each cache analysis block contains that part of a basic block
that fits into a single cache block. Every instruction of such a cache
analysis block has the same tag and the same cache index.

To find out the cache analysis blocks of a basic block all addresses
of the untranslated instructions of this basic block have to be examined.
Each address consists of tag information, cache index and block offset
information.

The cache index information determines at what position of the
cache the instruction with this address is cached. The tag information
has to be used to find out which address had been cached, as there can
be multiple addresses with the same cache index. The block offset is
the position in the cache line at which the instruction is cached. For
this simulation, the block offset information is not needed, as no real
caching of data takes place.

Now that the cache analysis blocks have been found out, code that
handles the simulated cache and calculates the additional cycles of
cache misses has to be added to these blocks. How this is done is de-
scribed in the next section.

Cycle calculation code During runtime, it has to be found out, for
each cache analysis block the basic block consists of, whether it is in
the simulated cache or not. This way, cache misses can be detected.

Each cache analysis block is characterized by a tag and cache set
index combination. At the beginning of each cache analysis block there
is a branch to a subroutine included. This subroutine, shown in Figure 4,
gets the tag and cache set combination as parameters. It checks whether
the tag of the cache analysis block can be found in the specified set and
whether the valid bit for the found tag is set.

input: tag and cache set index of cache analysis block
output: changed cache information and cycle correction

counter

if tag can be found in specified set and valid bit is set then
renew least recently used information // cache hit

else // cache miss
use lru information to find out tag to overwrite
write new tag
set valid bit of written tag
renew lru information
add additional cycles to cycle correction counter

return to normal execution of the cache analysis block

Figure 4. Cycle correction for caches

If yes, the block is already cached und no additional cycles are
needed. Only the lru information has to be renewed.

If no, the lru information has to be used to find out which tag has to
be overwritten. After that, the new tag has to be written instead of the
found old one, and the valid bit for this tag has to be set. Also the lru
information has to be renewed. In a last step, the additional cycles have
to be added to the cycle correction counter.

After that, the subroutine returns, and the normal execution of the
instructions of the cache analysis block can continue.

The code of the subroutine is automatically generated by the trans-
lator on basis of the description it has about the cache of the source pro-
cessor. It is appended to the translated code. In large basic blocks, this
code can be included into the basic block making the subroutine call
unnecessary and the parallel execution of the cache calculation code
and the executed program on the VLIW processor possible.

3.5. Debugging of translated code
The debugging of code annotated with cycle information is imple-

mented using an interface program between the translated code and the
remote debugging interface of the GNU Debugger (gdb). One important

problem which had to be solved was the implementation of a single step
possibility for the debugger as the translated code only contains cycle
generation for complete basic blocks.

This has been solved in the way that the debug code contains two
translations of the original code. In one of these translations the code
has to be annotated with a basic block oriented cycle generation, and in
the other one it has to be annotated with an instruction oriented cycle
generation. The code with the instruction oriented generation of cy-
cles contains the cycle generation for each translated instruction and a
branch after each such instruction into the ROM routines that commu-
nicate with the debug interface.

Using the described two translations of the code, the debug inter-
face has to implement break points, single step execution and normal
program execution. Also using information made during the translation
of the program, the debug interface has to translate the register names
and the addresses used.

Break points that occur in a certain basic block are always set at the
beginning of a basic block of the basic block oriented translated code.
To get to the real break point the single step program has to be used.

4. Results
In order to test the execution speed and the accuracy of the translated

code, a few examples were compiled using a C compiler into TriCore
object code. This object code was then translated into cycle accurate
TMS320C6x binary code and executed on the emulation platform. As a
reference, the execution speed and the cycle count of the TriCore code
has been measured on a TriCore TC10GP evaluation board, using the
methodology described in [16].

The examples consist of two more control flow dominated programs
(gcd, sieve), two filters (fir, ellip), and two programs that are part of
audio decoding routines (dpcm, subband).

Tabelle3

Seite 8

gcd dpcm fir ellip sieve sub-
band

0

10

20

30

40

50

60

70

80

90

100

Comparison of Speed

Untertitel

TC10GP Evalua-
tion Board

C6x w/o cycle inf.

C6x with cycle inf.

C6x branch pred.

C6x cache

m
ill

io
n

in
st

ru
ct

io
ns

 p
er

 s
ec

on
d

Figure 5. Comparison of speed

The comparison of the execution speed of the generated code with
the execution speed of the TriCore evaluation board is shown in Fig-
ure 5. The C6x processor on the emulation system ran at a clock rate
of 200 MHz. The TriCore processor of the evaluation board ran at 48
MHz, which is about one fourth of the clock rate of the C6x processor.

A fast execution speed of the cycle accurate code can be gained
especially for examples with large basic blocks like ellip and subband.
This is due to the fact that a program containing larger basic blocks

needs fewer cycle generation instructions and fewer branches. Branches
are very costly in regard to the cycle time on the C6x processor. Also
larger basic blocks allow a better parallelization of the instructions they
contain on the VLIW processor, leading to a smaller execution time.

On the other side, the program sieve contains many small basic
blocks. Each one of these basic blocks has its own cycle generation
code. Therefore, the translated code containing the cycle information
is much slower than the translated code without information as can be
seen in Figure 5.

TC10GP Evaluation Board 1.08
C6x without cycle information 2.94
C6x with cycle information 4.28
C6x branch prediction 5.87
C6x caches 35.34

Table 1. Clock cycles per TriCore instruction

The average number of clock cycles needed for the execution of
one TriCore instruction is shown in Table 1. The results on the C6x
processor are the average value of all examples.

For the compiled code without cycle information the C6x proces-
sor needs about three cycles to execute a translated TriCore instruction.
This relatively low overhead results from the fact that in the translated
code of these examples on the average about two or three C6x instruc-
tions can be executed in parallel.

The addition of cycle information to the code adds on the average
only a little more than one clock cycle per translated TriCore instruc-
tion. Also the overhead for the additional TriCore branch prediction is
very low.

On the next detail level, the additional consideration of instruction
caches, about six times more cycles are needed in comparison to the
code containing the branch prediction. This is due to the fact that for
each cache analysis block a complete routine has to be run to find out
whether there is a cache miss or a cache hit.

Tabelle5

Seite 10

gcd dpcm fir ellip sieve sub-
band

0
2500
5000
7500

10000
12500
15000
17500
20000
22500
25000
27500
30000
32500

Comparison of cycle accuracy

Untertitel

TC10GP Evalua-
tion Board

C6x with cycle inf.

C6x branch pred.

C6x cache

cy
cl

es

Figure 6. Comparison of cycle accuracy

A comparison of the number of simulated cycles of the generated
code in different detail levels with the number of executed cycles of
the TriCore evaluation board is shown in Figure 6. The deviation of the
cycle counts of the translated programs (with branch prediction) com-
pared to the measured cycle count ranges between 3 % for the program

gcd fibonacci sieve

of executed
1484 41419 20779

instructions
Simulation approx. approx. approx.

(Workstation) 28 sec 10 min 18 min
Emulation

321 µsec 3.9 msec 21.8 msec
(FPGA)

Translation
C6x cycle 63.1 µsec 950 µsec 520 µsec

C6x branch 94.6 µsec 1.4 msec 781 µsec
C6x cache 416 µsec 6.3 msec 5 msec

Table 2. Software runtime comparison

ellip to 15 % for the program sieve. Especially for control flow oriented
programs like gcd it can be seen that branch prediction can play an
important role.

Table 2 provides a comparison with the results published in [12]. It
uses the same three example programs and compares the translation re-
sults with the results running the programs on an RT level simulation of
the TriCore processor core on a workstation and the result of the emu-
lation of the core on a prototyping platform using a Xilinx XCV2000E
FPGA. The emulation on this FPGA is running with a frequency of 8
MHz.

The table shows that the translation results considering caches are
about in the same range as the emulation results on the FPGA. Whereas
the translation results of the other two detail levels are significantly (28
and 42 times) faster for the sieve example and about 3 to 5 times faster
for gcd and fibonacci. The relatively slow execution of the latter two
examples results from the very short basic blocks they consist of.

Apart from the possibility to gain a much higher performance by
lowering the detail level, the translation approach has another impor-
tant advantage compared to the emulation of the processor core with an
FPGA. As processors get more and more complex and as there is a ca-
pacity gap between the ASIC and FPGA gate capacities, it will remain
problematic to map state-of-the-art processors onto FPGAs. Using the
translation approach, a more complex processor only results into a more
complex architecture and instruction set description for the translator.

5. Conclusion and outlook
In this paper, we have shown how a microprocessor can be emu-

lated cycle accurately on a prototyping platform using the annotation
of translated code.

Especially pipelines and caches had to be considered. It has been
shown, how cycle generation code for these can be generated and in-
serted. This inserted code combined with the appropriate hardware adds
only a low overhead to the translated code and allows a fast execution.
To find a trade-off between accuracy and execution speed, the cycle ac-
curacy of the translated code can have several detail levels. In addition
to the possibility to choose the detail level of accuracy, another impor-
tant advantage of the described emulation system is that no RT level
code of the emulated processor has to be available.

There are several possibilities to enhance the system to make it ei-
ther faster or more accurate. Execution speed improvements can be
achieved by the addition of the possibility of cycle generation for blocks
which are larger than the basic blocks that are used now. Another speed
improvement can be, to combine the translation of the code with a static
cache analysis. This could speed up the translated code regarding the

simulation of caches. To improve the accuracy of the translated code,
additional consideration of data caches can be added. Furthermore, the
accuracy of certain instructions could be improved. A consideration of
data dependent behavior of certain instructions like multiplications and
divisions can also help to improve the accuracy in certain cases. For ex-
ample, on a processor that uses a Booth multiplier the delay of this mul-
tiplier depends on operand value. Also, memory access delay should be
taken into account for load/store instructions. Such a delay can happen
if, for instance, a cache miss happens and both the processor (via cache)
and a DMA controller want to access the memory.

Another enhancement of the system that is especially important for
the execution of embedded software and the execution of operating sys-
tems will be the consideration of interrupt handling and exceptions.

References
[1] Advanced RISC Machines Ltd. ARM7 Data Sheet, Dec 1994.

[2] I. Bacivarov, S. Yoo, and A. Jerraya. Timed HW-SW Cosimulation Using
Native Execution of OS and Application SW. In Proceedings of the IEEE
International High Level Design Validation and Test Workshop (HLDVT),
2002.

[3] C. Cifuentes and V. Malhotra. Binary Translation: Static, Dynamic, Re-
targetable? In Proceedings of the International Conference on Software
Maintenance (ICSM), 1996.

[4] B. Cogswell and Z. Segall. Timing Insensitive Binary to Binary Transla-
tion. In Workshop on Architectures for Real-Time Applications, 1994.

[5] G. Haug, U. Kebschull, and W. Rosenstiel. VLIW Based Emulation of
Digital Designs with the RAVE System. In Proceedings of the Interna-
tional High Level Design Validation and Test Workshop (HLDVT), 1999.

[6] G. Haug, U. Kebschull, and W. Rosenstiel. A Hardware Platform for
VLIW Based Emulation of Digital Designs. In Proceedings of the Design,
Automation and Test in Europe (DATE) Conference, 2000.

[7] Infineon Technologies Corp. TriCore Architecture v1.3 Manual, 2000-01
edition, 2001.

[8] J.-Y. Lee and I.-C. Park. Timed Compiled-Code Simulation of Embedded
Software for Performance Analysis of SOC Design. In Proceedings of the
Design Automation Conference (DAC), 2002.

[9] S.-S. Lim, Y. H. Bae, G. T. Jang, B.-D. Rhee, S. L. Min, C. Y. Park, H. Shin,
K. Park, S.-M. Moon, and C. S. Kim. An Accurate Worst Case Timing
Analysis for RISC Processors. IEEE Transactions on Software Engineer-
ing, 21(7), 1995.

[10] A. Nohl, G. Braun, O. Schliebusch, R. Leupers, H. Meyr, and A. Hoff-
mann. A Universal Technique for Fast and Flexible Instruction-Set Archi-
tecture Simulation. In Proceedings of the Design Automation Conference
(DAC), 2002.

[11] J. A. Rowson. Hardware/Software Co-Simulation. In Proceedings of the
Design Automation Conference (DAC), 1994.

[12] S. Schmitt and W. Rosenstiel. Verification of a Microcontroller IP for
System-on-a-Chip Designs Using Low-Cost Prototyping Environments. In
Proceedings of the Design, Automation and Test in Europe (DATE) Con-
ference – Designer’s Forum, 2004.

[13] J. Schnerr, G. Haug, and W. Rosenstiel. Instruction Set Emulation for
Rapid Prototyping of SoCs. In Proceedings of the Design, Automation and
Test in Europe (DATE) Conference, 2003.

[14] Texas Instruments Incorporated. TMS320C62xx CPU and Instruction Set
Reference Guide, July 1997.

[15] S. Yoo, G. Nicolescu, L. Gauthier, and A. Jerraya. Automatic Generation
of Fast Timed Simulation Models for Operating Systems in SoC Design.
In Proceedings of the Design, Automation and Test in Europe (DATE) Con-
ference, 2002.

[16] L. Zheng. An Easy Way to Measure TriCore Cycle Performance. Infineon
Technologies Corp., 3rd edition, July 2002.

	Main Page
	DATE'05
	Front Matter
	Table of Contents
	Author Index

