Generic Pipelined Processor M odeling and
High Perfor mance Cycle-Accurate Smulator Generation

Mehrdad Reshadi, Nikil Dutt
Center for Embedded Computer Systems (CECS),
Donald Bren School of Information and Computer Science,
University of Californialrvine, CA 92697, USA.
{reshadi, dutt} @cecs.uci.edu

Abdgract

Detailed modding of processors and high performance cycle-
accurate smulators are essential for today s hardware and software
design. These problems are challenging enough by themsdves and
have seen many previous research eforts Addressing both
smultaneously is even nmore challenging, with many exising
approaches focusing on one over ancther. In this paper, we propose
the Reduced Colored Peri Net (RCPN) nodd that has two
advantages. firdt, it offers a very simple and intuitive way of modding
pipdined processors; second, it can generate high performance cycle-
accurate smulators. RCPN benefits from all the useful features of
Colored Petri Nets without suffering from their exponential growth in
complexity. RCPN processor moddls are very intuitive sincethey area
mirror image of the processor pipdineblock diagram. Furthermore, in
our experiments on the generated cycle-accurate smulators for XScale
and SrongArm processor modds, we achieved an order of magnitude
(~15 times) speedup over the popular SmpleScalar ARM simulator.

1. Introduction

Efficient and intuitive modeling of processors and fast smulation
are critica tasks in the development of both hardware and software
during the design of new processors or processor based SoCs. While
the increesing complexity of processors has improved ther
performance, it has had the opposite effect on the smulator speed.
Instruction Set Simulators smulate only the functionality of a program
and hence, enjoy smpler models and well edablished high
performance simulation techniques such as compiled smulation and
binary trandation. On the other hand, cyde-accurate smulators
smulate the functionality and provide performance metrics such as
cyde counts, cache hit raios and different resource utilization
satistics. Existing techniques for improving the performance of cyde-
accurate smulators are usualy very complex and sometimes domain
or architecture specific. Due to the complexity of these techniques and
the complexity of the architecture, generating retargetable high
performance cyde-accurate smulators has become a very difficult
task.

To avoid redevelopment of new simulators for new or modified
architectures, a retargetable framework uses an architecture model to
automatically modify an existing smulator or generate a customized
smulator for that architecture. Flexibility and complexity of the
modeling approach as well as the smuldion speed of generated
smulators are important quality measures for a retargetable smulation
framework. Simple models are usualy limited and inflexible while
generic and complex models are less productive and generate dow
smulators A reasonable tradeoff between complexity, flexibility and
simulation speed of the modeling techniques has been sdldom achieved
in the pagst. Therefore, automaticaly generated cyde-accurate

1530-1591/05 $20.00 © 2005 IEEE

simulators were more limited or dower than their manually generated
counterparts.

Colored Petri Net (CPN) [1] is a very powerful and flexible
modeling technique and has been successfully used for describing
paraldism, resource sharing and synchronization. It can naturdly
capture most of the behaviord eements of instruction flow in a
processor. However, CPN modds of redidic processors are very
complex mostly due to incompatibility of atoken-based mechanism for
capturing data hazards. Such complexity reduces the productivity and
results in very dow smulators. In this paper, we present Reduced
Colored Peri Net (RCPN), a generic modding approach for
generating fast cyde-accurate smulators for pipelined processors.
RCPN is based on CPN and reduces the modeling complexity by
redefining some of CPN concepts and aso using an dternative
gpproach for describing data hazards. Therefore, it is as flexible as
CPN but far less complex and can support a wide range of
architectures. Figure 1 illustrates the advantages of our approach using
an example pipdine block diagram and its corresponding RCPN and
CPN models. It is passible to convert an RCPN to a CPN and hence
reuse the rich varigties of andyss, verification and synthesis
techniques that have been proposed for CPN. The RCPN is intuitive
and dosdly mirrors the processor pipeline structure. RCPN provides
necessary information for generating fast and effident cyde-accurate
smulators For instance, our XScale [3] processor cyde-accurate
smulator runs an order of magnitude (~15 times) faster than the
popular SimpleScalar smulator for ARM [2].

|:| processor complex _
block ! Andyss
: Verification

! // Yynthesis
VAR !

|

|

|

|

o
Intuitive | o ';33 a

ad * e-Accurae

Simple i Simulator

,,,,,, L - e o=

Figure 1- Advantages of RCPN: Intuitive, Fast Smulation
In this paper, Section 2 summarizes the related works. Section 3
describes the RCPN model and illustrates the detals of the pipeline
example of Figure 1. Section 4 explains the smulaion engine and
optimizations that are possible because of RCPN. Section 5 shows the
experimental results and Section 6 concludes the paper.

2. Related Work

Detailed micro-architectural smulation has been the subject of
active research for many years and several models and techniques have
been proposed to automate the process and improve the performance
of the smulators

ADL based approaches such as ISDL [7], nML [6], and
EXPRESSION [8] take an operation-centric approach and automate
the generation of code generators. These ADLs describe ingruction
behaviors in terms of basic operations, but do not explicitly support
detailed pipeline control-path specification which limits their flexibility
for generating micro-architecture smulators. The Sim-nML [9]
language is an extension to NML to enable cyde-accurate modeling of
pipelined processors. It generates dow simulators and cannot describe
processors with complex pipeline control mechanisms due to the
simplicity of the underlying instruction sequencer.

Hardware centric approaches, such as BUILDABONG [11] and
MIMOLA [10], model the architectures at the register transfer level
and lower levels of abstraction. This level of abstraction is not suitable
for complex microprocessor modeling and results in very dow cyde-
accurate smulators. Similarly, ASim [12] and Liberty [13] model the
architectures by connecting hardware modul es through their interfaces.
Emphasizing reuse, they use explicit port-based communi cation which
increases the complexity of these models and have a negative effect on
the smulation speed.

SimpleScdar [2] is atool-set with significant usage in the computer
architecture research community and its cyde-accurate smulaors have
good performance. It uses a fixed architecturd mode with limited
flexibility through parameterization. Babd [14] was origindly
designed for retargeting the binary tools and has been recently used for
retargeting the SimpleScdar smulaor. Running as fast as
SimpleScaar, UPFAST [15] takes a hardware centric approach and
requires explicit resolution of al pipeline hazards. Chang et d [16]
have proposed a hardware centric approach that implicitly resolves
pipeline hazards in the cost of an order of magnitude sow down in
smulation performance. FastSm [17] uses the Fast-Forwarding
technique to perform an order of magnitude (5-12 times) faster than
SimpleScdar. Fast-Forwarding is one of very few techniques with
such ahigh performance; however, generating smulators based on this
technique is very complex. To decrease this complexity, Facile [18]
has been proposed to automate the process. But the automatically
generated smulators suffer significant lass of performance compared
to FastSim and run only 1.5 times faster than SimpleScalar. Besides,
modeling in Fadle requires more understanding of the Fast-
Forwarding technique rather than the actua hardware being model ed.

LISA [19] uses the L-chart formalism to mode the operaion flow
in the pipeline and smplifies the handling of structura hazards. It has
been used to generate fast retargetable compiled smulators. The
flexibility of LISA is limited by the L-chart formalism and handling
behaviors, such as data hazards, requires explicit coding in C language.
Operation State Machine (OSM) [20] models a processor in two
layers: hardware layer and operation layer. The hardware layer
captures the functiondity and connectivity of hardware components,
smulated by a discrete event smulaor. The operation layer captures
the flow of operations in the hardware using Finite State Machines
(FSMs). The FSMs communicate with the underlying hardware
components by exchanging tokens (events) through Token Manager
Interfaces (TMI), which define the meaning of these tokens. The
generated smulaorsin this model run as fast as SmpleScaar.

Petri Nets have aso been used for modeling processors [22]. They
are very flexible and powerful and additionaly, alow several forma
analyses to be performed. Simple Petri Net models are aso easy to
visuaize. Colored Petri Nets[1] simplify the Petri Nets by alowing the

tokens to carry data values. However, for complex designs, as that of
processor pipeline, ther complexity grows exponentially which makes
modeling very difficult and sgnificantly reduces simulation
performance. In this paper, we propose the Reduced Colored Petri Net
(RCPN) model which benefit from Petri Net features while being
smple and cgpable of deriving high performance cyde-accurate
smulators It is an instruction-centric approach and captures the
behavior of instructions in each pipeline stage a every dock cyde via
modified and enhanced Colored Petri Net concepts.

3. Reduced Coloured Petri Net

To destribe the behavior of a pipelined processor, operation
latencies and data, control and structural hazards must be captured
properly. A token based mechanism, such as CPN, can easily model
variable operation latendies and basic structurd and control hazards.
Because of architectural features such as register overlapping, register
renaming and feedback paths, capturing data hazards using a token
based mechanismiis very complex and difficult. In RCPN, we redefine
the concepts of CPN to make it more suitable for processor modeling
and fast smulaion. As for the data hazards we use a separate
mechanism that isexplained in Section 3.1.

Figure 2(a) shows a very smple pipeline structure with two latches
and four units and Figure 2(b) shows the CPN model that capturesits
structurd hazards. In this figure, cirdes show places (states), boxes
show transitions (functions) and black dots represent tokens. In CPN, a
trandtion is enabled when it has one token of proper type on each of its
input arcs. An enabled transition can fire and remove tokens from its
input places and generate tokens for its output places. In this pipeling,
if latch L, is available and a proper instruction is in latch Ly, then the
functionality of unit U, is executed, L, is occupied and L; becomes
avallable for next ingtruction. This behavior is represented by the
availability of tokens in Figure 2(b). Here, whenever U, is enabled, it
removes the token of L; and putsit in P;. Then, if L, has atoken, U,
can fire and move a token from P; to L; and from L, to P.. In other
words, whenever atokenisin place Ly, it meansthat latch Ly in Figure
2(a) is available and unit U; can send a new indruction into it; and
whenever atoken isin place Py, it meansthat an instruction is available
in latch Ly and unit U, or U, can use it. The back-edges (dotted lines)
create circular loops. The number and complexity of these loopsin the
CPN of atypicd pipeline grows very rapidly with its size. These loops
not only make the CPN models very complex, they are aso the main
obstad e in generating high performance smulators.

L1 T .L]A R \LJ
R ‘;:;;.; : ':i:'U“
Lo B ool o
y A #l Us L 33

L’ o ¢ ed

@ (b) ©
Figure 2- An Example Pipeline sructure(a) and its CPN(b) and
RCPN(c) models

The RCPN modd is based on the same concept as CPN; i.e whena
trangtion is enabled, it fires and removes tokens from the input places
and generates tokens for the output places. In RCPN processor models,
structurd hazards, control hazards and variable operation latencies are
naturdly modeled by tokens, places, transitions and delays. To
simplify processor models, we redefine these concepts in RCPN as
follows:

Places: A place shows the state of an instruction. To each place a
pipeline dage is assigned. A pipeline stage is a latch, reservation
station or any other storage element in the pipeline that an ingruction
can reside in. For each pipeline stage that an instruction may go

through, there will be & least one place in the model. Each pipeline
stage has a capacity parameter that determines how many tokens
(ingtructions) canresdeinit a any time. We assume when ingtructions
finish they go to a final virtual pipeline stage, called end, with
unlimited capacity. The places to which this virtud find dage is
assigned represent the find state of the corresponding instructions. In
RCPN, each place is shown with a drde in which the name of the
corresponding pipeline stage is written. Places with similar name share
the capacity of their pipeline stage. The tokens of a place are stored in
its pipdine sage.

Transtion: A trangition represents the functionality that must be
executed when the indruction changes its state (place). This
functionality is executed (fired) when the transition is enabled. A
trangtion is enabled if its guard condition is true and there are enough
tokens of proper types on itsinput arcs AND the pipeline stages of the
output places have enough capacity to accept new tokens. A transition
can directly reference non-pipeine units such as branch predictor,
memory, cache etc. The transition may use the functionality of these
unitsto determine the type, value and delay of tokensthat it sendstoits
output places.

Arc: An arc is a directed connection between a place and a
trangtion. An arc may have an expression tha converts the set of
tokens that pass through the arc. For deterministic execution, each
output arc of a place has a priority that shows the order at which the
corresponding transitions can consume the tokens and become enabled.

Token: There are two groups of tokens: reservation tokens that
carry no data and their presence in a place indicates the occupancy of
the place’s corresponding pipeline stage; and instruction tokens that
carry complex data depending on the type of the instruction.

Ingtruction tokens are the main focus of the model since each
instruction token represents an ingruction being executed in the
pipeline. In cother words, RCPN describes how an individua
instruction flows through stages of the pipeline. In any RCPN, thereis
one ingruction independent sub-net tha generates the ingruction
tokens, and for each instruction type, there is a corresponding sub-net
that digtinctively describes the behavior of ingtruction tokens of that
type. Figure 2(c) shows the RCPN model of the simple pipeline shown
in Figure 2(a). The model is divided into three sub-nets. S;, S;and Ss.
S, describes the instruction independent portion that generates two
types of ingtruction tokens. Note that aslong as state L; has room for a
new token, trangtion U; can fire. In fact, because of our new definition
of “trangtion enable’, an RCPN mode can start with a transition as
well asaplace. Any sub-net can generate an instruction token and send
it to its corresponding sub-net. Thisis equivaent with instructions that
generate multiple micro operations in a pipeine (eg. Multiple
LoadStore ingtruction in XScale). As in red processor, ingtruction
tokens never go through dircular paths'.

A delay may be assigned to a place, a trangtion or atoken. These
delays have default values and can be changed at run time based on
data values, ec. The dday of a place determines how long a token
should reside in that place before it can be considered for enabling an
output trangtion. The delay of a transition expresses the execution
delay of the functionality of that transition. The delay of a token
overwrites the delay of its containing place and has the same effect. By
changing the delay of a token, a trangtion can indirectly change the
delay of its output place.

Usudly in microprocessors, the ingructions tha flow through a
smilar pipeine pah have smilar binary forma as well. In other
words, the instructions that go through the same functiona units have
smilar fields in ther binary format. Therefore, a single decoding
scheme and behavior description can be used for such group of
instructions which we refer to as an Operation Class. An operation

1 A token may stay in one stage and produce multiple tokens to go through the
same path and repeat a set of behaviors.

dass describes the corresponding instructions by using symbals to
refer to different fields in ther binary code. A symbal can refer to a
Constant, a moperaion or a Register. Using these symbals, for each
operation dass an RCPN sub-net describes the behavior of the
corresponding instructions. During indruction decode, the actua
values of these symbals are determined. Therefore, by replacing the
symbals with their vaues, a customized version of the corresponding
RCPN sub-net is generated for individua instances of ingtructions.
Figure 4(b) shows examples of such operation dasses. The detalls of
using symbols and the decode a gorithm are described in [4].

3.1 Capturing Data Hazards

To capture data hazards, we need to know when registers can be
read or updated and if an instruction is going to update a register, what
its state is a any time. In many processors, registers may overlap’ and
hence modifying one may affect the others. On the other hand,
generdly instructions use different pipdine stages to read source
operands, calculate reaults, or update destination operands. Therefore,
instructions must be able to hold register values after reading or before
updating regigers

_ L T T [T T aa
e T T T T

writery
File 4 >

Regger |-

Regser 7 72 (I [

Reference

Figure 3- Register gructure

Addressing dl the above issues with a token based mechanism is
very complicated and hence, in RCPN we use an dternative approach
that explicitly supports a lock/unlock (semaphore) mechanism for
accessing registers, temporary locations for register vaues, and
registers with overlapping storage for data. As Figure 3 shows, we
model registersat threelevels:

Regiser File It defines the actud storages for data, register
renaming and pointer to instructions that will write to aregister. There
may be multipleregister filesin adesign.

Register: Each regiger has an index and points to proper storages
of the regiger file. Multiple registers, can point to the same storage
areasto represent overlapping.

Register Reference (RegRef): Each RegRef points to a register
and has an internd sorage for storing the register value A symbal in
an operation dass that points to a register is replaced by a proper
RegRef during decode. In fact, RegRefs represent the pipeline latches
that carry ingtruction data in real hardware. During smulation, thisis
amost equivdent with renaming registers for each individua
instruction. RegRefs internd values are used in the computations and
the indructions access and update registers through RegRefs
interfaces. The interface is fixed and indudes: canRead(), true if
register is ready for reading; canRead(s), true if the ingtruction thet is
going to update the corresponding register is in state s a the time of
call; read(), reads the values of corresponding register and storesiit in
the internal storage of RegRef; canWite(), true if the register can be
written; reserveWite(), assigns the current RegRef pointer and its
containing instruction as the writers of the corresponding register;
writeback(), writes the intend vadue of the RegRef to the
corresponding register and may reset its writer pointers; and read(s),
instead of reading the value of the corresponding register, it reads the
internd vaue of the writer RegRef whose containing ingtruction is in
state sat thetime of call. Theread(s) interface provides a smple and

2 E.g. overlapping register-banksin ARM or register windowsin SPARC.

generic means of modeling data forwarding through feedback or
bypass paths.

In RCPN, data hazards are explicitly captured by usng Boolean
interfaces, such as canRead, in the arcs' guard conditions; and using
normal interfaces, such as read, in the trangtions. These pairs of
interfaces must be used properly to ensure correctness of the model.
Whenever read(), ressrveWrite() or read(s) appears in a trangtion,
canRead(), canWite() or canRead(s) must appear in the guard
condition of itsinput arc, respectively.

The implementation of these interffaces may vary based on
architecturd features such as register renaming. For example, in a
typica implementation of these interfaces, transition T, first checks
r.canWite) to check write-after-write and write-after-read hazards for
accessing register r. Then it cals r.reserveWite() to prevent future
reads or writes. After calling r.writeback()in ancther transition, register
r can be safely read or written. In RCPN, a symbal in an operation
dass tha points to a constant is replaced by a Const object during
decode. The Const object provides the same interface as of RegRef
with proper implementation. For example, its canRead() dways
returns true; its writeback() does nothing and so on. In this way, data
hazards can be uniformly captured using symbals in the operation
dass.

The next section demonstrates most of the RCPN modeling
capabilitiesviaan example.

3.2 Example RCPN Processor Model

Figure 4(a) shows the block diagram of a representative out-of-
order completion processor with a feedback path. Figure 4(b) shows
three types of instructions (operation dasses) in this processor. Each
ingtruction consists of symbols whose actud vaue is determined
during instruction decode. For example, the L symbal in LoadSoreisa
Boolean symbal and istruefor loads and false for storeinstructions. To
show the flexihility of the model, we assume that the feedback path is

used only for the first source operand of ALU ingtructions (sy).
Branch {
offset: { Register | Constant}

L ALU{
op: {Add | Sub |[Mul | Div | ...}
d, sl: { Register}
L <2 : { Register | Constant}
1
Loaj&ore{

Ls Ls L: {true | fase}
r: { Register}
}

addr: { Register | Constant}

@ (0
Figur e 4- Representative out-of-order processor

Figure 5 shows the complete RCPN modd of the above processor.
It contains one instruction independent sub-net and three ingruction
specific sub-nets. The boxes show the functiondity of transitions and
the codes above them show their guard conditions. The guard
conditions are written in the form of [cond;, cond, ...] which is
equivalent with: cond, U cond, U ...

Tomode the feedback path, two arcs with different priorities come
out of place L; and enter the ALU instruction sub-net. If the first arc,
with priority O, cannot read the vaue of first source operand, then the
second arc, with priority 1, verifies that the writer instruction of
operand s, isinthe state L and then readsiit. Otherwise, the ingtruction
is gdled in L;. After reading the source operand and reserving the
destination for writing, theresult is calculated in transition E and stored
in the internd value of the detination d. This value is finally written
back in trangtion W.

In Branch instruction sub-net, the dotted arcs represent reservation
tokens. Therefore in this example, when a branch ingtruction isissued,
it stals the fetch unit by occupying latch Ly with a reservation token

and disabling the fetch transition. In the next cyde, this token is
consumed and the fetch unit is unsadled. An dterndive
implementation is flushing L; and L, latches in transition B instead of
using reservation tokens.

The LoadStore instruction sub-net demonstrates the use of token
delay in transition M to model the variable delay of memory (cache). It
aso shows how data dependent delays can be modeled in RCPN. The
component mem, referenced in this transition, can be used from a
library or reused from cther designs.

Instruction Independent
_ T F [t.type = LoadStore,
[ttgp(;_ ':;UL 1) It.L || t.r.canWrite(),
Lo canHe adk) 3 o JE t.L || t.r.canRead(),
e { t.addr.canRead()]
t.d.canWyite()] [type = ALU
t.s;.read(Ls); YRE= ' ’ t.addr.read(); i
o ead()'3 * ts.cenRead(), -7 | if (t.L) t.r.reserveWrite();|:
32 ‘write | U Read(), | i [t type = Branch, | ||elset.r.read(); i
tdreserveWrite)] ¢ d.cgnWrite()] |t offset. qanRead()] v
t.5,.read(); [t offset.read(): L,
t.s.read(); N
t.d.reservewrite();|: ¢ L, if (t.L) t.r=mem[addr];
2 else mem[addr]=t.r;
2 PC= pe + offeet t.delay:menldelay(addr);
t.d =t.op(t.s,1.5))|E B |IM .
end X
Le BranchIngructions || [if (t.L) t.rwriteback()] |
t.d.writeback();|We Wi, :'d

end ALU Ingructions! LoadStore Ingtructions

Figure5 RCPN sub-nets

Processor RCPN models can be converted to standard CPN and use
al the todls and dgorithms that is available for CPN. Details of this
conversion and more complex examples capturing VLIW and multi-
issue machines aswell as RCPN model of the Tomasulo algorithm are
detailed in our technica report [5].

4. Cycle-accurate Smulation

RCPN can generate very fast cyde-accurate smulators. Like any
other Petri Net model, an RCPN model can be smulated by locating
the enabled transitions and executing them concurrently. Searching for
enabled trangtions and handling concurrency can be very time
consuming in generic Petri Net models especidly if there are too many
places and trangitions in the design. However, a more careful look at
the RCPN modd reveals some of its properties that can be utilized to
simplify these two tasks and speed up the smulation significantly.

Of the two groups of tokens in RCPN, reservation tokens carry no
data and are used only to show unavailability of resources. Since
trangtions represent the functionality of an instruction between two
pipeline stages, reservation tokens adone can not enable them.
Therefore, only places that have an instruction token may have an
enabled output transition. While a place may be connected to many
trangtions in different sub-nets, an instruction token only goes through
trangtions of the sub-net corresponding to its type. In other words,
based on the type of an instruction token, only a subset of output
trangtions of a place may be enabled. Since the structure of RCPN
model is fixed during smulation, for every place and instruction type
the list of trangtions that may be enabled can be Haticaly extracted
from the model before smulation begins. This list is sorted based on
the priorities of output arcs of the place and processed accordingly.
Figure 6 shows the pseudo code that extracts thislist for each place in
RCPN and each indruction type in the ISA and sores it in
sorted_trangtionstable This codeis caled before program simulation
begins and hence has no runtime overhead for smulation.

CalculateSortedTransitions(){
Arcs={(p, 1), (t, p)|pl Placesandt Transtions};
foreach placep in P
foreach InstrutionType | Type in Instruction-Set
sorted_transitions]p, I Type]=(to, t, ...) such that
(P, t) T Arcs, t;1 subnet(IType),
i <j=>priority((p,t)) < priority((p, t));
endfor
endfor
}

Figure 6-Extracting and sorting transition subsets

Figure 7 shows the pseudo code for processing the output
trangtions of a place. It is cdled in each dock cyde to process the
ingtructions that are in a particular state (place p). For each ingtruction,
it findsthe firg trangtion that can be executed and move the indruction
to its next state. The corresponding transitions list is looked up from
the sorted_transitionstable.

Process(place p){
foreach ingruction tokeninst in p

foreach transition t in sorted_transitiong]p, inst.type]
if enabled(t)
remove tokens from input places of t;
execute trangtion function of t;
add tokens to output places of t;
br eak; //process next instruction token
endif
endfor
endfor
}

Figure 7-Processing places with instruction tokens

In RCPN, enabled transitions execute in pardld; tokens are
simultaneously read from input places at the beginning of a processor
cyde, and then, in parald, written to the output places at the end of the
cyde. Therefore, the smulator must ensure thet the variables
representing such places are al read before being written during a
cyde. The usud, and computationally expensive solution, is to model
such places using atworlist dgorithm (smilar to master/dave laches).
This approach uses two token storages per place- one of them is read
from, and the ather written to in the course of acycle. At the end of the
cyde, the tokens in the written-to storage are copied to the read-from
storage.

In genera, we can ensure that al tokens from the previous cycle are
read-from before being written-to by evauating dl places (or ther
corresponding pipeline stages) in reverse topological order. Therefore,
only very few places that are referenced in a drcular way, usudly
because of feedback paths like state L3 in Figure 5, need to implement
atwo-ligt dgorithm. The resulting code is considerably faster since it
avoids the overheads of managing two storages in the twolist
agorithm. Note that in CPN, this well-known optimization is not
applicable because dl resource sharings are modeled with circular
loops of places.

CalculatingSortedT ransitions();
P =list of placesin reverse topological order;
while program not finished
foreach placep in { places that implement two-list algorithm}
mark written tokensas available for read in p;
endfor
foreach placepin P
Process(p);
endfor
execute the ingtruction independent sub-net of RCPN;
increment cycle count;
endwhile

Figure8Main body of smulation engine

Figure 8 shows the main body of our smulation engine. Inthe main
loop, after updating the places that implement the two-list dgorithm,
all places are processed in reverse topologica order. At the end of each

iteration, the instruction independent sub-net of the model, which is
responsible for generating theinstruction tokens, is executed.

5. Experiments

To evauate the RCPN modd, we modeled both StrongArm [21]
and XScae[3] processors using the ARM7 ingtruction set. SrongArm
has a smple five stage pipeline. XScale is an in-order execution, out-
of-order completion processor with a relaively complex pipeine
sructure shown in Figure 9. The ARM indruction set was
implemented using six operation-cdlasses [4]. Using these operaion
dasses, it took only one man-day for StrongArm and only three man-
days for X Scae to devel op bath the RCPN models and the smulators.

DWB

Main execution pipeline

|F1 F2|\D|RF

X1

MAC pipeline

Figure 9-XScalepipdine

To evduae the peformance of the smulators we chose
benchmarks from MiBench [23] (blowfish, crc), MediaBench [24]
(adpcm, g721) and SPEC95 [25] (compress, go) suites. These
benchmarks were sdected because they use very few smple system
cals (mainly for 10) that should be trandaed into host operating
system cdls in the smulator. We used armtlinux-gcc to generate the
binary code of the benchmarks. The compiler only uses ARM7
ingruction-set and therefore we only needed to mode those
instructions. The simulators were run on a Pentium 4/1.8 GHz/512 MB
RAM.

Figure 10 compares the performance of the smulators generated
from RCPN model with that of SimpleScalarArm. The first bar for
ech benchmark shows the peformance of SimpleScaarArm
smulator. This smulator implements StrongArm architecture and we
disabled dl checkings and used simplest parameter values to improve
simulation performance. On the average this smulator executes 600k
cydes/sec. The second and third bar for each benchmark shows the
performance of our smulator for XScale and StrongArm processor
models respectively. These smulaors execute 82M cydes/sec and
122M cydedsec on the average SimpleScdar uses a fixed
architecture for any processor model. Therefore, the complexity and
performance of the smulator is smilar across different models. On the
cther hand, RCPN models are true to the model ed processor and hence
the complexity of generated smulators depends on the complexity of
the processor that they smulate. Due to its smpler pipeline, the
StrongArm simulator performs better that that of XScale.

‘n SimpleScalar-Arm 8 RCPN-XScale O RCF'N-S[rongArm‘

12.0 11
10.0 4 91 8- 91 Q1
§ - 82 d
® 80+ = .
% 6.0
5
= 4.0
s
2.0 05 6
0.0
adpcm blowfish conpress crc g721 go Average

Figure 10-Simulation performance (Million cycle/second)

Figure 11 compares the CPI vaues of SmpleScalarArm and our
StrongArm simulator. This figure shows that dthough our simulator
runs significantly faster than SimpleScaar, the CPI values of the two
smulators are dmost similar. The ~10% difference is due to the
accuracy of the information in the model used for generating the
simulator. The RCPN based modeling approach does not impase any

limitation on capturing instruction schedules. Therefore, by providing
accurate models, the results of generated smulators can be farly
accurate. Such models are usudly obtained by comparing the
smulation results againgt ether a base smulator or the actud
hardware, and then refining the model information.

‘D SimpleScalar-Arm @ RCPN-StrongArm ‘

23
2.0 2.1, 2.0

1.6

CPI

adpcm blow fish

compress cre g721 go Average

Figure 11-Clocks per ingruction (CPI)

From modeding capability point of view, RCPN and OSM are
comparable. However, OSM uses very few FSMs, e.g. only one FSM
for StrongARM, and captures the pipdine through these FSMs and
TMI software components. RCPN uses multiple sub-nets, each
equivaent with an OSM, to explicitly capture the pipeline control. For
example, there are six RCPN sub-nets in the SrongArm model. Only
for capturing data hazards, RCPN relies on the fixed interface software
components. Therefore, alarger part of processor behavior is captured
formaly in RCPN than in OSM. In other words, the non-formal part of
OSM mode (TMls) is large enough that it needs a separate event-
driven smulation engine; but the non-forma part of RCPN mode isa
st of very smple functions for accessing registers. Nevertheless,
RCPN based smulators run an order of magnitude faster than OSM
based ones. Our smulaors are as fast as FastSm while we use two
smple optimizations and FastSim uses the very complex Fast-
Forwarding technique. We can summarize the reasons of this high
performance asfollows:

- Because of RCPN features, we can reduce the overheads of
supporting concurrency and searching for enabled trangtions.

- We apply partid evauation optimization to customize the
instruction dependent sub-nets for each instruction instance and
hence improve their performance.

- In RCPN, when an instruction token is generated, the corresponding
instruction is decoded and stored in the token. Since the token
carries this information, we do not need to re-decode the ingtruction
in different pipeline stages to access its daa Furthermore, the
tokens are cached for later reusein the smulator.

Since the smulator is generated automatically, debugging of the
implementation of the smulator is (eventualy) eliminated. Only the
model itsdf must be debugged/verified. As [4] describes, using
operation-classes and templates make debugging much smpler. Since
RCPN is forma and can be converted to standard CPN, formal
methods also can be used for analyzing the models.

6. Conclusion

In this paper, we presented the RCPN model for capturing pipdined
processors. RCPN benefits from the same concepts as other Petri Net
models and has two advantages: firdt, it provides an efficient way for
modeling architectures; and second, it generates high performance
cyde accurate smulators. RCPN models are very intuitive to generate
because they are very similar to the pipdine block diagram of the
processor. Our cyde-accurate simulators, for both StrongArm and
XScde processors, run about 15 times on average faster than
SmpleScdar for ARM, athough XScde has a rdatively complex
pipeline.

The use of Colored Petri Net concepts in RCPN makes it very
suitable for different design analysis and verification purposes. The
dean digtinction between different types of tokens and data hazard

mechanism in addition to the structure of RCPN can be used to extract
the necessary information for deriving retargetable compilers. The
future direction of our research is to address these issues as wdl as
extracting fast functiona smulators from the same detailed RCPN
models.

7. Acknowledgement

This work was partidly supported by NSF grants; CCR-0203813
and CCR-0205712.

8. Reference

[1] K. Jensen. Coloured Petri Nets: Basic Concepts, Analysis Methods
and Practical Use, Springer, 1997.

[2] SimpleScalar Homepage: http://www.simplescalar.com

[3] Intdl® XScde Microarchitecture for the PXA250 and PXA210
Applications Processors, User' sManud, February, 2002

[4 M. Reshadi e a. An Efficent Retargetable Framework for
Ingtruction-Set Simulation, Internationa Symposium on
Hardware/Software Codesign and System Synthesis
(CODES+ISSS), pages 13-18, October, 2003.

[5] M. Reshadi et d. RCPN: Reduced Colored Petri Nets for Efficient
Modeling of Pipelined Processors and Generation of Very Fast
Cyde-Accurate Simulators. CECS technical report TR03-48, 2003.

[6] A. Fauth et al. Describing ingtructions set processors using nML.
DATE, 1995.

[71 G. Hadjiyianniset d. ISDL: Aninstruction set description language
for retargetability. DAC, 1997.

[8] A. Haambi et a. EXPRESSION: A Language for Architecture
Exploration through Compiler/Smulaor Retargetability. DATE,
1999.

[9 V. Ragesh & d. Processor modeling for hardware software
codesign. VLS| Design, 1999.

[10] G. Zimmerman. The MIMOLA design system: A computer-aided
processor design method. DAC, pages 53-58, 1979.

[11] J Teich & d. A joined architecture/compiler environment for
ASIPs. CASES, 2000.

[12] J Emer et d. Asm: A performance model framework. IEEE
Computer, 2002.

[13] M. Vachhargjani & d. Microarchitectura exploration with Liberty.
International Sympasium on Microarchitecture, 2002.

[14] W. Mong et d. A Retargetable Micro-architecture Simulator. DAC,
2003.

[15] S. Onder e d. Automatic generation of microarchitecture
smulators. In Proceedings of the IEEE International Conference on
Computer Languages, pages 80-89, 1998.

[16] F. S. Chang. Fast Spedification of Cyde-Accurate Processor
Models. International Conf. Computer Design (ICCD), 2001.

[17] E. Schnarr et a. Fast Out-Of-Order Processor Simulation Using
Memoization. In Proc. 8th Int. Conf. on Architectura Support for
Programming Languages and Operaing Systems, 1998.

[18] E. Schnarr et al. Fadle A language and compiler for high-
performance processor smulators. PLDI, 2001.

[19] S. Pees e d. LISA-machine description language for cyde-
accurate model's of programmable DSP architectures. DAC, 1999.

[20] W. Qin et a. Hexible and Forma Moddling of Microprocessors
with Application to Retargetable Simulation, DATE, 2002.

[21] Digital Equipment Corporation, Maynard, Digital Semiconductor
SA-110 Microprocessor Technical Reference Manual, 1996.

[22] R. Razouk, The use of Petri Nets for modeling pipelined processors,
DAC, 1988

[23] Available a http://www.eecs.umich.edu/mibench

[24] C. Lee e d. Mediabench: A tod for evauating and synthesizing
multimedia and communications systems. Micro, 1997

[25] Available at http://www.spechench.org

	Main Page
	DATE'05
	Front Matter
	Table of Contents
	Author Index

