
A Network Traffic Generator Model for Fast Network-on-Chip Simulation

Shankar Mahadevan† Federico Angiolini‡ Michael Storgaard† Rasmus Grøndahl Olsen†

Jens Sparsø† Jan Madsen†

† Informatics and Mathematical Modelling (IMM)
Technical University of Denmark (DTU)
Richard Petersens Plads, 2800 Lyngby, Denmark
e-mail: {sm, -,-, jsp, jan}@imm.dtu.dk

‡ Dipartimento di Elettronica, Informatica e Sistemistica (DEIS)
University of Bologna
Viale Risorgimento, 2 40136 Bologna, Italy
e-mail: {fangiolini}@deis.unibo.it

Abstract

For Systems-on-Chip (SoCs) development, a predomi-
nant part of the design time is the simulation time. Perfor-
mance evaluation and design space exploration of such sys-
tems in bit- and cycle-true fashion is becoming prohibitive.
We propose a traffic generation (TG) model that provides
a fast and effective Network-on-Chip (NoC) development
and debugging environment. By capturing the type and the
timestamp of communication events at the boundary of an
IP core in a reference environment, the TG can subsequently
emulate the core’s communication behavior in different en-
vironments. Access patterns and resource contention in a
system are dependent on the interconnect architecture, and
our TG is designed to capture the resulting reactiveness.
The regenerated traffic, which represents a realistic work-
load, can thus be used to undertake faster architectural ex-
ploration of interconnection alternatives, effectively decou-
pling simulation of IP cores and of interconnect fabrics. The
results with the TG on an AMBA interconnect show a sim-
ulation time speedup above a factor of 2 over a complete
system simulation, with close to 100% accuracy.

1 Introduction

An important step in the design of a complex System-
on-Chip is to select the optimal architecture for the on-chip
network (NoC). In order to do so, it is imperative to analyze
and understand network traffic patterns through simulation.
This can be accomplished at various stages in the design
flow, from abstract transaction level models (TLM) to bit-
and cycle-true models. In many cases, only the most de-
tailed models prove capable of capturing important aspects
of communication performance, e.g. the latency associated
with resource contention. The obvious drawback of these
approaches is slower simulation speed.

In this paper, we focus on enabling the exploration of dif-
ferent NoC architectures at the bit- and cycle-true level by

No
C

IP
IP

SW

No
C

(a
)

TG
 TG

TG

AS
IC

(b
)

OCP

In
te
rf
ace

IP

SW
ME
M

ME
M

ME
M

ME
M

OCP

In
te
rf
ace

Figure 1. Simulation Environment with bit-
and cycle-true: (a) IP-cores, (b) TG model.

increasing the speed of the complete SoC simulation. This
is a key advantage, since architectural exploration typically
involves carrying out the same set of simulations for each
design alternative, and simulations may consist of millions
of clock cycles each.

We assume as a requirement the availability of a refer-
ence SoC design, consisting of IP cores and of a NoC, and
of an application partitioned and compiled onto the vari-
ous IP cores. This application might either be software exe-
cuting on programmable IP cores, or code synthesized into
dedicated hardware. This reference system will be used to
collect an initial trace of the IP cores’ behavior. In order to
increase simulation speed for subsequent design space ex-
ploration, we propose to replace the IP cores with Traffic
Generators (TG) which emulate their communication at the
interface with the network, as illustrated in Figure 1.

The goal is to perform only one reference simulation us-
ing bit- and cycle-true simulation models of the IP cores
running the target application, and to speed up subsequent
variants of that simulation using traffic generators coupled
with accurate models of the alternative interconnects only.
While the internal processing of IP cores does not need thor-
ough replication by the generators, and can often be mod-
eled by waiting for an amount of cycles between network
transactions, the unpredictability of network latency of dif-
ferent NoC architectures may lead to changes in the number
and relative ordering of transactions. Thus, traffic genera-
tors should have at least some reactive capabilities, as will
be explained in Section 3.

1530-1591/05 $20.00 © 2005 IEEE

In order to capture reactive behavior, we propose a TG
implementation as a very simple instruction set processor.
Our approach is significantly different from a purely be-
havioral encapsulation of application code into a simula-
tion device, in analogy with TLM modeling. The TG model
we propose is aimed at faithfully replicating traffic patterns
generated by a processor running an application, not just
by the application; this includes e.g. accurate modeling of
cache refills and of latencies between accesses, allowing for
cycle-true simulations. At the same time, this approach al-
lows a straightforward path towards deployment of the TG
device on a silicon NoC test chip.

To evaluate the TG concept, we have integrated the pro-
posed TG model into MPARM [8], a homogeneous multi-
processor SoC simulation platform, which provides a bit-
and cycle-true SoC simulation environment. The current
version of MPARM supports several NoC architectures,
e.g. AMBA [8], STBus and the ×pipes [3], and leverages
ARMv7 processors as IP cores. The use of the OCP [1]
protocol at the interfaces between the cores and the inter-
connect allows for easy exchange of IP cores for TGs, as
indicated in Figure 1.

The rest of the paper is organized as follows. Section 2
introduces related work, and is followed by a discussion of
the requirements for modelling traffic patterns in Section 3.
Section 4 details the TG implementation, and Section 5 de-
scribes how communication traces are extracted and turned
into programs executing on the TG. Section 6 presents ini-
tial simulation results which show the potential of our TG
approach. Finally, Section 7 provides conclusions.

2 Related Work
The use of traffic generators to speed up simulation is not

new, and several traffic generator approaches and models
have been proposed.

In [6], a stochastic model is used for NoC exploration.
Traffic behavior is statistically represented by means of uni-
form, Gaussian, or Poisson distributions. Such distributions
assume a degree of correlation within the communication
transactions which is unlikely in a SoC environment. Traf-
fic patterns in SoC systems have shown to be reactive and
bursty [2, 7]. The simplicity and simulation speed of sto-
chastic models may make them valuable during preliminary
stages of NoC development, but, since the characteristics
(functionality and timing) of the IP core are not captured,
such models are unreliable for optimizing NoC features.

A modeling technique which adds functional accuracy
and causality is transaction-level modeling (TLM), which
has been widely used for NoC and SoC design [4, 5, 9, 10,
11]. In [9, 10], TLM has been used for bus architecture ex-
ploration. The communication is modeled as read and write
transactions which are implemented within the bus model.
Depending on the required accuracy of the simulation re-

sults, timing information such as bus arbitration delay is
annotated within the bus model. In [10] an additional layer
called “cycle count accurate at transaction boundary” is pre-
sented. Here, the transactions are issued at the same cycle
as that observed in bus-cycle-accurate models, thus intra-
transaction visibility is traded-off for simulation speedup.
While modeling the entire system at higher abstraction i.e.
TLM, both [9] and [10] present a methodology for preserv-
ing accuracy with gain in simulation speed.

We would like to underline that our approach is dual
with respect to TLM. While transaction-level models usu-
ally represent interconnects as a collection of available ser-
vices and emphasize local processing on IP cores, the plat-
form we describe is composed of accurate models for the in-
terconnect, while processing resources are abstracted away.
Simulation speed is gained like in TLM models, but the
purpose of this gain is enabling accurate assessment of in-
terconnect performance, not of core or application perfor-
mance. The above methods are suitable for feature explo-
ration once the NoC architecture has been chosen, but are
not thought for NoC exploration itself.

3 Traffic Modeling Requirements
The generation of a traffic pattern emulating that of a real

IP core can be faced at varying degrees of accuracy.
At the most basic level, a trace with timestamps can be

collected in the reference system and then be independently
replayed, an approach that we might call “cloning”. This
approach is clearly inadequate when the variance of net-
work latency is taken into account; whenever a transaction
is delayed, either due to hardware design or congestion, the
effect should propagate to subsequent transactions, which
would also be delayed in real systems. A simple example
of such critical blocking is a cache refill request.

This observation leads to the deployment of “timeshift-
ing” traffic generators: adjacent transactions are tied to
each other, and are issued at times which are a function
of the delay elapsed before receiving responses to previ-
ous transactions. This implicitly means that the trace col-
lection mechanism must include not only timestamps for
processor-generated commands, but also for network re-
sponses. However, even this model fails when multi-core
systems come under scrutiny: the arbitration for resources
in such designs is timing-, and thus architecture-, depen-
dent. Therefore, very different transaction patterns may be
observed as a function of the chosen interconnection design.
To make an example, checks for a shared resource done by
polling generate different amounts of traffic depending on
the relative ordering of accesses to the resource.

As a consequence, the need for “reactive” TG models is
justified. Such models must have some knowledge about
the system architecture and about the application behavior
to correctly generate (and not just duplicate) traffic patterns

Master Slave

t t

RD

WR

RD

Resp

Resp

WR

M1 Semaphore

t t

RD

WR

Resp

M2

t

RD

Fail

Resp

RD

Fail

RD

(a)

stalled

(b)

locked

unlocked

locked

tnwk, M1

tnwk, M2

tunlock

RD access
time

RD access
time

WR access
time

Wait
time

Wait
time

Wait
time

Wait
time

Reactive
time

WR access
time

Figure 2. Two typical MPARM transactions.

across different underlying networks. A TG should be able
to mimic the behavior of an IP core even when facing un-
predictable network performance, e.g. due to resource con-
tention, packet collisions, arbitration and routing policies.

To illustrate the requirements driving the development
of our TG model, we will now describe how two typical
transactions occurring in the MPARM modelling and sim-
ulation environment can be reproduced. MPARM features
in-order, single-pipeline ARM cores as system masters and
two types of memory as system slaves: private (only acces-
sible by one master) or shared (visible by all masters in the
system). Figure 2 shows examples of the two types of com-
munication: (a) processor-initiated communication towards
an exclusively owned slave peripheral, and (b) processor-
initiated communication towards a system-shared slave pe-
ripheral. We call network latency (tnwk) the time taken for
the communication to traverse from the master OCP inter-
face to the slave OCP interface and vice versa; this latency
depends both on the chosen architecture and on the network
congestion at the time of communication.

In Figure 2(a), the first two master transactions are a
write (WR) and a read (RD). The time to service the WR
transaction, which is a posted write, is just the network la-
tency plus the slave access time. The RD, which in MPARM
uses blocking semantics, pays an additional penalty because
the response has to make its way back to the master. From
the TG point of view, this pattern is easily recordable: net-
work latency and slave access time are unimportant factors,
and the essential point to capture is just the delay between
WR assertion and RD assertion, and between RD response
and the following command. In a subsequent simulation
with traffic generators replacing cores, these delays will be
modeled by explicit idle waits in the TG, while the network
latency will be dependent on the NoC model to simulate.
In the next set of transactions, where a RD closely follows
a WR, the RD command reaches the slave before the lat-
ter has finished servicing the WR, and is thus stalled at the

slave interface. This stalling behavior does not need to be
explicitly captured in a TG model, since, from a proces-
sor perspective, it simply appears to be part of the slave re-
sponse time. This simplistic example of a master accessing
a private slave proves that if the type and the timestamp of
the communication events are captured, the behaviour of
the master can be emulated via non-preemptive sequential
communication transactions interleaved with an appropriate
amount of idle wait cycles.

In Figure 2(b), two master devices (M1 and M2) attempt
to gain access to a single hardware semaphore. M1 arrives
first and locks the resource; the attempt by M2 thus fails.
In MPARM, semaphore checking is performed by polling,
i.e. M2 regularly issues read events until eventually the
semaphore is granted to it. Since the transactions occur
over a shared network fabric, the unlock event (WR) issued
by M1 and the success of the next request (RD) event by
M2 are dependent. Only if the M2 RD event is issued at
least tnwk,M1 + tunlock,S − tnwk,M2 after the unlocking by
M1, then M2 will be granted the semaphore and additional
polling events will not be required. Therefore, depending on
network properties, a variable amount of transactions might
be observed at the OCP interfaces of M1 and M2. This is
the reactive behavior that needs to be captured by the TG
model: both M1 and M2 need to react to accommodate the
network latency. Thus, the simplistic model which could
be applied to transactions towards a privately owned slave
now needs to be extended with additional information about
the master process execution, about system properties, and
about input/output data. In detail, the TG must be able to
recognize polling accesses (i.e. a knowledge of what ad-
dressing ranges represent pollable resources) and must add
support for recording of actual data transfers (e.g., writing
a “1” or a “0” to a shared memory location might be the
difference between locking or unlocking a resource).

We take the above discussion as a requirement to im-
plement accurate TG models. The examples in Figure 2
demonstrate that traces collected at the IP-NoC interface are
sufficient to accurately reproduce the IP’s communication,
provided that the reactive behavior of the master IP cores is
taken into account. These traces should collect sequences
of communication transactions, comprising of requests and
responses, separated by time intervals with no communica-
tion, i.e. idle time. A simulation of the entire system should
produce several traces, one per IP core interface.

4 Implementation of the traffic generators
In this section we describe in some detail the implemen-

tation of our traffic generators. As mentioned before, our
proposed TG model is designed as a simulation tool, but al-
lows future deployment as a hardware device. Within the
simulation environment for NoC exploration, the emphasis
is on simulation speedup, while within a hardware instance

the emphasis is on ease of (re)programmability and a small
silicon footprint in order to support implementation of test
chips containing NOC prototypes.

Conceptually, three different TG entities might be
needed: (1) A TG emulating a processor (an OCP mas-
ter). This TG must be able to issue conditional sequences of
traces composed of communication transactions separated
by idle/wait-periods; (2) A TG emulating a shared memory
(an OCP slave). This TG must contain a data structure mod-
eling an actual shared memory (since the values read by the
masters may affect the sequence of transactions seen at the
master IP cores); and (3) A TG emulating a slave memory
(an OCP slave). This TG must be able to respond, possibly
with dummy values, to communication transactions issued
by a master. Only the first is actually required for deploy-
ment in a simulation environment, which already provides
its own system slaves, thus only this entity will be described
in the present paper. On the other hand, it is important to no-
tice that both slave TG modules are much simpler in design
with respect to the master TG, as their logic basically just
involves a small state machine to handle OCP transactions.

For the processor TG, we have implemented and mod-
eled a multi-cycle processor with a very simple instruction
set as listed in Table 1. The processor has an instruction
memory and a register file, but no data memory. The in-
struction set consists of a group of instructions which issue
OCP transactions (whose arguments are set up in registers)
and a group of instructions allowing the programming of
conditional sequencing and parameterized waits such that
the required traces can be implemented/programmed. The
process for deriving TG programs from traces obtained in
the reference simulation is explained in Section 5.

5 The TG simulation flow
In order to use the traffic generators, a user must first

perform a reference simulation using bit-true and cycle-true
IP models. It is interesting to note that, at this stage, the
interconnect does not yet need to be accurately modeled, al-
lowing for time savings. During this simulation, traces are
collected from all OCP interfaces in the system. For this
purpose, the OCP interface modules within the MPARM
platform (the network interfaces in the case of the ×pipes
interconnect, the bus master in the case of AMBA AHB)
were adapted to collect traces of OCP request and response
communication events into a predefined file format (.trc).
The address and (if any) data fields of the transactions are
also observed. Trace entries are single or burst read/write
transactions. Figure 3(a) shows an example trace.

The next step is to convert the traces into corresponding
TG programs (.tgp). A translator outputs symbolic code;
Figure 3(b) shows the TG program derived for traces in Fig-
ure 3(a). Finally, an assembler is used to convert the sym-
bolic TG program into a binary image (.bin) which can be

Instructions Description

OCP Instructions:
Read(addr) Read from an address
Write(addr, data) Write to an address
BurstRead(addr, count) Burst read a range of addr.
BurstWrite(addr, data, count) Burst write an address set

Other Instructions:
If(arg1, arg2, operand) Branch on condition
Jump(location) Branch direct
SetRegister(reg, value) Set register (load immediate)
Idle(counter) Wait for given no of cycles

Table 1. OCP-master TG instruction set.

loaded into the TG instruction memory and executed. Ex-
ecution might be within a simulation model (which is the
approach presented in this paper) or in hardware on a NoC
test-chip. Validation of the trace collection and process-
ing mechanism can be achieved by collecting traces with
IP cores running on different interconnects, and verifying
the resulting .tgp and .bin programs to match. The conver-
sion process is fully automated and the time taken for this
process is discussed in Section 6.

As seen in Figure 3(b), the TG program starts with a
header describing the type of core and its identifier. The
next few statements express initialization of the register file.
Register rdreg is defined as special register where the
value of RD transactions is stored.

By looking at the code in Figure 3(a), it is possible to
notice that the first communication events in the trace occur
at time 55ns, 75ns, and 90ns. We assume each TG cycle to
take 5ns, the same as the IP core for which the trace is col-
lected. At the beginning of the simulation, the TG has no in-
struction to perform until the 11th (55/5) cycle, so an Idle
wait is observed. The trace of the RD event is followed by
a response, at a time which is dependent on the network la-
tency. The IP core is blocked until this response arrives. A
WR event occurs three ((90-75)/5) cycles after the response
is received; these cycles are partially spent for TG internal
operations (data and address register setting), and an ensu-
ing Idle wait is added to fill the gap. Then the following
RD instruction is translated into the corresponding Read
program call after 10 cycles, one of which is taken to set
up the RD address. This is blocking until a response is re-
ceived, 5 cycles later.

Now, consider the trace entries from time 210ns to
320ns. By identifying the address as belonging to a
semaphore location and knowing the polling behaviour of
the MPARM IP core, the translator inserts the Semchk la-
bel and an If conditional statement. This statement checks
whether the read value is equal to “1”, which reflects an
unblocked semaphore. This loop effectively represents the
semaphore polling behavior. All master devices attempting
to access this address incorporate the same routine in their
TG program, thus capturing the system dynamics.

At this stage, additional simulations can be run on a plat-

;
Si
mp
le

RD/
WR
/W
RNP

RD
0x
0
0000104
 @5
5ns

Re
sp
Da
ta

0x
088000
f0
 @
75ns

WR

0x
000000
20
0x
00000111
 @
90ns

RD
0x
0
0000031
 @1
40ns

Re
sp
Da
ta

0x
000022
36 @
165ns

..

..

;
po
ll
in
g
a
sem
aphor
e!
!

RD
0x
0
00000
ff
@2
1
0ns

Re
sp
Da
ta

0x
000000
00 @
270ns

RD
0x
0
00000
ff
@2
8
5ns

Re
sp
Da
ta

0x
000000
00 @
310ns

RD
0x
0
00000
ff
@3
0
5ns

Re
sp
Da
ta

0x
000000
01 @
320ns

..

Ne
tw
or
k

la
te
nc
y

Next

IP
 co
mm

tr
ans
ac
ti
on

in
te
rv
al

(a
)

; Master Core
MASTER[<coreID>,<thrdID>]
; Initializations
..
REGISTER rdreg 0 ; holds value of RD
REGISTER tempreg 0
REGISTER addr 0x00000104
REGISTER data 0
..
BEGIN
Start
Idle(11) ; wait for first inst
Read(addr, rd)
SetRegister(addr, 0x00000020)
SetRegister(data, 0x00000111)
Idle(1)
Write(addr, data, wr)
SetRegister(addr, 0x00000031)
Idle(9)
Read(addr, rd)
..
..

; polling a semaphore location!!
SetRegister(addr, 0x000000ff)
SetRegister(tempreg, 0x00000001)

Semchk
read(addr, rd)
If rdreg != tempreg then Semchk

..
Jump(start) ; rewind

END

(b)

Figure 3. (a) MPARM Trace to (b) TG Program.

form with traffic generators and a variety of interconnect
fabrics, thereby evaluating performance of NoC design al-
ternatives. Compared with the reference setup, where the
interconnect fabric could be modeled at a high level, the
target NoC should now be simulated at the cycle- and bit-
true level to carefully assess its performance. Validation of
the TG model can be achieved by coupling the TG with the
same interconnect used for tracing with IP cores, and check-
ing the accuracy of the IP core emulation. Results for this
validation, and for tests on different interconnects than the
reference one, will be presented in the next Section.

6 Results

We simulated within the MPARM framework, using the
AMBA NoC, and four benchmarks. The first benchmark
was a single-processor application (SP matrix manipula-
tion), with the purpose of assessing accuracy and speedup
in the simplest environment. The second benchmark (Cach-
eloop) was a test performing idle loops within the proces-
sors’ cache, and only minimal bus interaction; this allowed
an assessment of the speedup provided by the TG model
when scaling the number of processors in the system up to
twelve. Finally, the remaining two benchmarks (MP matrix
manipulation and DES encryption/decryption) were multi-
processor tests stressing synchronization and resource con-
tention with traffic patterns as discussed in Section 3, and
were used mainly to ascertain the accuracy of the whole de-
sign flow when stressed by complex transactions.

In the first experiment we aimed at validating the trace
collection/processing environment. We ran the same bench-
marks over AMBA and ×pipes, noticing very different ex-

#IPs Cumulative Execution Time Simulation Time
ARM TG Error ARM TG Gain

SP matrix:
1P 6610680 6610659 0.00% 73 s 34 s 2.15x

Cacheloop:
2P 2500903 2500913 0.00% 47 s 14 s 3.36x
4P 2501760 2501701 0.00% 87 s 22 s 3.95x
6P 2502558 2502640 0.00% 127 s 29 s 4.38x
8P 2503404 2503522 0.00% 163 s 37 s 4.41x
10P 2504250 2504404 0.01% 197 s 42 s 4.69x
12P 2505096 2505286 0.01% 239 s 51 s 4.69x

MP matrix:
2P 3276505 3276030 0.01% 66 s 25 s 2.64x
4P 3528038 3530759 0.08% 128 s 42 s 3.05x
6P 3691454 3697854 0.17% 195 s 61 s 3.20x
8P 3997878 4058812 1.52% 260 s 82 s 3.17x
10P 4881007 4902806 0.45% 334 s 106 s 3.15x
12P 5901290 5901131 0.00% 432 s 143 s 3.02x

DES:
3P 978080 980098 0.21% 26 s 10 s 2.60x
4P 1054839 1057944 0.29% 34 s 11 s 3.09x
6P 1491570 1492274 0.05% 53 s 20 s 2.65x
8P 1959755 1960575 0.04% 73 s 30 s 2.43x
10P 2441026 2441743 0.03% 95 s 42 s 2.26x
12P 2927359 2927218 0.00% 125 s 62 s 2.02x

Table 2. TG vs. ARM performance with AMBA.

ecution times due to different latency and scalability fea-
tures. However, after translation, a check across .tgp pro-
grams showed no difference at all. This result demonstrates
the feasibility of an approach which decouples simulation
of the IP cores and of the underlying interconnect fabric.

Table 2 summarizes the results of simulations done on
the AMBA AHB interconnect with ARM processors and
then with TGs. The left columns report the number of simu-
lated cycles, while the right ones illustrate simulation time1.
The column “Error” is a measure of the accuracy of replac-
ing IP cores with TGs, based upon the difference in sim-
ulated cycles, while the column “Gain” describes the im-
provement in simulation time.

The table shows that replacing ARM processors with
TGs yields excellent accuracy, close to 100% for small
numbers of processors, while guaranteeing a speedup fac-
tor of 2 to 4. This speedup is mostly due to the drastic sim-
plification in the amount of logic needed to generate com-
munication transactions, compounded in small part with the
elimination of any adaptation layer in the system since the
TG is natively implemented with an OCP interface. This
speedup compares favorably to previous work in the area (a
speedup of 1.55x is reported in [10]), and must be evaluated
by taking into account the fact that it involves no shift in the
level of abstraction of the simulations.

1Benchmarks taken on a multiprocessor Xeon® 1.5 GHz with 12 GB
of RAM, eliminating any disk swapping effect. Especially for benchmarks
with a short duration, time measurements were taken by averaging over
multiple runs and care was put in minimizing disk loading effects.

Inaccuracies in execution time can be explained as fol-
lows. In Cacheloop, and until about 6-8 processors in MP
matrix and four in DES, the TG platform shows an accept-
able accuracy degradation. This is due to the compound-
ing of minimal timing mismatches caused by the conver-
sion from traces to TG programs. When adding even more
processors, however, accuracy improves again, because the
AMBA bus starts to saturate, causing the processors to idle
wait for bus arbitration for long amounts of time. The con-
gestion is serious enough to dominate the effect of the tim-
ing mismatches. Since TGs cannot save simulation com-
plexity if the replaced processors are in idle state, this is
also the reason causing the speedup to get smaller with large
numbers of processors in MP matrix and DES. For Cache-
loop, which always executes from the local caches without
any bus traffic, this phenomenon does not appear. Thus, the
reduced speedup is not a property of the TG.

The impact of trace collection is small, and is incurred
only once. For example, when running the MP matrix
benchmark on the AMBA interconnect with four ARM
processors, a plain benchmark run takes 128 s; the bench-
mark run with TG tracing enabled takes 147 s, and subse-
quent parsing and elaboration requires an additional 145 s
for a 20 MB trace file1. Only one such iteration is needed to
be able to take advantage of 2x to 4x speedups in subsequent
design space exploration. Additionally, since processed TG
programs are identical regardless of the reference intercon-
nect in which raw traces were collected, such collection
could be performed on top of a transactional fabric model,
further reducing the impact of the reference simulation.

7 Conclusions
Experimental results prove the viability of a TG-based

approach which decouples simulation of IP cores and of in-
terconnect fabrics. Even in presence of unpredictable con-
tention for shared resources in a multiprocessor environ-
ment, our TG model proved capable of delivering speedups
in the order of 2x to 4x when run on AMBA while keeping
a remarkable accuracy.

The TG model we propose provides a wide range of fea-
tures, with a simple but powerful instruction set allowing for
sophisticated flow control and therefore a variety of com-
munication patterns. It is very useful for fast and accurate
verification and exploration of different NoC architectures,
which is the motivation of this work. While this paper was
focused on simulation speedup, the TG may also be used as
a flexible tool in a variety of platforms. The TG might be
used in association with manually written programs to gen-
erate traffic patterns typical of IP cores still in the design
phase, helping in the tuning of the communication perfor-
mance between the underlying NoC and that IP core.

Our future work includes synthesis of the TG device,
and support for processors allowing out-of-order transac-

tions. Research will also include analysis of the behavior of
a system in which multiple tasks run on a single processor
and are dynamically scheduled by an OS, either based upon
timeslices (preemptive multitasking) or upon transition to
a sleep state followed by awakening on interrupt receipt.
Context switching-related issues will need to be modeled or
predicted.

8 Acknowledgments
The work of Shankar Mahadevan is partially funded by SoC-Mobinet,

Nokia, and the Thomas B.Thrige Foundation. The work of Federico Angi-
olini is partially funded by ARTIST.

References

[1] Open Core Protocol Specification, Release 2.0
http://www.ocpip.org, 2003.

[2] E. Bolotin, I. Cidon, R. Ginosar, and A. Kolodny. QNoC:
QoS architecture and design process for network on chip. In
Journal of Systems Architecture. Elsevier, 2004.

[3] M. Dall’Osso, G. Biccari, L. Giovannini, D. Bertozzi, and
L. Benini. xpipes: A latency insensitive parameterized
Network-on-Chip architecture for multi-processor SoCs. In
Proceedings of 21st International Conference on Computer
Design, pages 536–539. IEEE Computer Society, 2003.

[4] F. Fummi, P. Gallo, S. Martini, G. Perbellini, M. Poncino, and
F. Ricciato. A timing-accurate modeling and simulation envi-
ronment for networked embedded systems. In Proceedings of
the 42th Design Automation Conference, pages 42–47, 2003.

[5] T. Grötker, S. Liao, G. Martin, and S. Swan. System Design
with SystemC. Kluwer Academic Publishers, 2002.

[6] K. Lahiri, A. Raghunathan, and S. Dey. Evaluation of the
traffic-performance characteristics of System-on-Chip com-
munication architectures. In Proceedings of the 14th Inter-
national Conference on VLSI Design, pages 29–35, 2001.

[7] K. Lahiri, A. Raghunathan, G. Lakshminarayana, and S. Dey.
Communication architecture tuners: A methodology for the
design of high-performance communication architectures for
System-on-Chips. In Proceedings of the 2000 Design Au-
tomation Conference, DAC’00, pages 513–518, 2000.

[8] M. Loghi, F. Angiolini, D. Bertozzi, L. Benini, and
R. Zafalon. Analyzing on-chip communication in a MPSoC
environment. In Proceedings of the 2004 Design, Automation
and Test in Europe Conference (DATE’04). IEEE, 2004.

[9] O. Ogawa, S. B. de Noyer, P. Chauvet, K. Shinohara,
Y. Watanabe, H. Niizuma, T. Sasaki, and Y. Takai. A practi-
cal approach for bus architecture optimization at transaction
level. In Proceedings of Design, Automation and Testing in
Europe Conference 2004 (DATE03). IEEE, March 2003.

[10] S. Pasricha, N. Dutt, and M. Ben-Romdhane. Extending the
transaction level modeling approach for fast communication
architecture exploration. In Proceedings of 38th Design Au-
tomation Conference (DAC’04), pages 113–118. ACM, 2004.

[11] M. Sgroi, M. Sheets, A. Mihal, K. Keutzer, S. Malik,
J. Rabaey, and A. Sangiovanni-Vincentelli. Addressing the
System-on-Chip interconnect woes through communication-
based design. In Proceedings of the 38th Design Automation
Conference (DAC’01), pages 667 – 672, June 2001.

	Main Page
	DATE'05
	Front Matter
	Table of Contents
	Author Index

