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Abstract

Since the advent of new nanotechnologies, the variability
of gate delay due to process variations has become a
major concern. This paper proposes a new gate delay
model that includes impact from both process variations
and multiple input switching. The proposed model uses
orthogonal polynomial based probabilistic collocation
method to construct a delay analytical equation from
circuit timing performance.  From the experimental
results, our approach has less that 0.2% error on the
mean delay of gates and less than 3% error on the
standard deviation.

1. Introduction

Since the advent of nanotechnology, the process
geometries continue to shrink. The variability of circuit
delay due to process variations has become a major
concern. The ability to control critical device parameters
is becoming increasingly difficult. On the other hand,
traditional approaches are no longer able to predict the
circuit performance accurately. For example, the corner
based analysis, though was popular for die-to-die
variations in the past, has found out to be too pessimistic
to model within die variations. New statistical method
based approaches are becoming the main stream of
today’s performance verification tools.

Recent research work attempts to incorporate statistical
models into the Static Timing Analysis. The combination
is thus referred as Statistical Static Timing Analysis
(SSTA). Based on the techniques they use, the existing
SSTA methods can be classified into block-based analysis
approaches [1-7] and path-based analysis approaches [8-
10]. These SSTA methods aim to get the arrival time or
path delay associated probability distribution functions.

One of the key parts of SSTA is the gate delay model.
Unlike the existing deterministic gate delay models [11],
the new gate delay models have to include impact from
process variation and multiple input switching. A recent
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paper from Agarwal, Dartu and Blaauw [12] found out
that “the Multiple Input Switching has a greater impact on
statistical timing than regular static timing analysis.” The
model they proposed is able to predict the mean and
standard deviation of gate delays with less than 7% error
and the average error is less than 2%.

This paper presents a new gate model by using
orthogonal polynomial based probability collocation
method. The proposed new model has several advantages
over the other gate models: 1) by using orthogonal
polynomials, the order of the gate delay analytical
equation has been proved to be the lowest order
theoretically [13]; 2) by applying different kind of
orthogonal polynomials, our model applies to cases with
both Gaussian distribution and non-Gaussian distribution
dependant variables. 3) by using probability collocation
method, the procedure to construct the analytical equation
is greatly simplified. Comparing with general Monte
Carlo approach, where several thousands of sampling
points are needed to estimate the circuit performance, the
probability collocation method (PCM) only requires a few
sampling points; 4) by selecting collocation points using
the selection criteria explained in later sections as
sampling points, the PCM method avoids the randomness
in choosing sampling points. Moreover, it also guarantees
the overall estimation accuracy with regard to the valid
range of dependant parameters; 5) the PCM method is
applied to the circuit performance or response. It belongs
to response surface approaches. Therefore, the PCM
method does not require the system structure information.
It treats the system as black box and predicts the system
behavior from the system’s response or performance.

Because of its advantages, the PCM method proposed
in the current paper offers a gate delay model that can also
be extended to block-level delay. Hence, the model is
applicable to system-level designs. The experimental
results show that our approach has less that 0.2% error on
the mean delay of gates and less than 3% error on the
standard deviation.



The rest of this paper adheres to the following format.
Section 2 summarizes the flow of the proposed gate delay
model. Section 3 discusses the methodology of PCM and
its application to the gate delay modeling. Section 4
presents the results and Section 5 concludes this paper.

2. The Flow of Generating the New Gate
Delay Model

In the Deep Sub Micron region (DSM), fabrication
limitations introduce process variations.  Important
parameters like channel length, channel width, thickness

of oxide, and critical length of device (L, W, , Do TpsA)

are no longer deterministic quantities and should be
treated as random variables. Consequently, the gate delay
which depends on these parameters needs to be modeled
as a random variable as well. The probability density
function (PDF) of the gate delay is obtained by running
simulations with a number of sample points of basic

parameters ( L, W, , Wp , Tox » ). The PDF of each

parameter (LW, W, .T,,,A)as well as the input signal

delays are assumed to be normal distribution Our
approach does not limit to normal distribution cases. A
detailed explanation on other distribution cases can be
found in Section 3.1. Figure 1 shows the new delay model
diagram. Four major steps (Figure 2) in formulating the
new gate delay model are: 1) representation of uncertain
inputs; 2) functional approximation of model outputs by
orthogonal polynomials; 3) estimation of approximation
parameters (PCM technique); 4) calculation of statistical
properties of outputs.

petay (L, W, . W
T ox > A , Inputs)

Figure 1: New Gate Delay Model Diagram
3. Orthogonal Polynomial based Probability

Collocation Method

3.1 Representation of Uncertain Inputs

The first step in the uncertainty modeling is the
representation of all the uncertain model inputs(X) in
terms of a set of “standard random variables
(srv’s)” {fl}ln:l ) {éfl}; is a set of independent,

identically distributed (iid) normal random variables. ‘ n

is the number of independent inputs and each & has zero

mean and unit variance. When the input random variables
are independent, the uncertainty in the ™ model input X,
is expressed directly as a function of the ith srv, & ie., a

transformation of Xi to & is employed. Devroye [15]

presents transformation techniques and approximations for
a wide variety of random variables. Table 1 presents a list
of transformations for some commonly employed
probability distributions. For example, if the random
variable L4 is assumed to have a normal PDF of mean p
and standard deviation o, then the transformation

employed is p + ¢ §, where & ~ N(O, 1) .

Inputs(X) Outputs (Y)

Computational
Model (Black Box)

Express Inputs as functions of srv’s
X=F (&)

v
Assume a form of Y

(Polynomial Expansion)
Y=h(E )

A few Model v
simulations

Estimate a using Probabilistic
Collocation Method

v

Evaluate
Y=h (& a)

Figure 2. General Flow of the Generation of
Gate Delay Model

Table 1: Representation of common distributions as
function of normal random variables

Distribution Transformation
Uniform (a,b) a+(b—a)(;—+;—erf(§/\/5)j
Normal (4, o) U+oé
Lognormal (1,0) exp(u+of)
Gamma (a, b) ] 1)
[ fE-)
9a 9a

Weibull (a) '

ya




3.2. Functional Approximation of Model Outputs

In this Section, the output of the model is approximated
as a series expansion of Normal random variables (srv’s),
in terms of Hermite polynomials. Hermite polynomials
form the best orthogonal basis if the random variables are
Gaussian [14]. The series expansion is shown below,

y=a,+ i anrl(gn)"'i Z a,a,1,(8,,8,)+ )]

=1 ip=1

Zn: i 2 a,a,a,50 5(8,,805,80)+ ..

Q=1 iy =1 iy=1
where ) is any output metric (or random output) of the
model. a,——-'s are deterministic constants to be
estimated and the I',(&, ...

hermite polynomials of degree P given by

. fip) are multi-dimensional

Lere or ere
T = (1) €2 ———e? )
p(Gndy) = (1) 2, 0L,

where ¢ is the vector of © P’ iid normal random variables
P . .

{é‘k } that are used to represent input uncertainty.
k=1

———'S)

can be estimated using several techniques. For nonlinear
operators with mathematically less complex equations, the
unknown coefficients in the orthogonal polynomial
expansion can be determined by minimizing an
appropriate norm of the residual, after substituting the
transformed inputs into the model equations. Gelarkin's
method [14] is commonly used with weight function
corresponding to the expectation of the random variables.
For cases in which the model equations are not easy to
manipulate, or when the model is of “black-box" type, the
unknown coefficients can be obtained by a collocation
method. This method imposes the requirement that the
estimates of model outputs are exact at a set of selected
collocation points, thus making the residual at those points
equal to zero. The unknown coefficients are estimated by
equating model outputs and the corresponding Hermite
polynomial expansion, at a set of collocation points in the
parameter space; the number of collocation points should
be equal to the number of unknown coefficients to be
found. Thus, for each output metric, a set of linear
equations results with the coefficients as the unknowns,
which can be solved with less computation. The following
Section explains the collocation method in detail.

The unknown coefficients in the Eq.(1), (a,,

3.3. Probability Collocation Method (PCM)

In this section, we explain the concept of PCM. First,
we consider the collocation method for a deterministic
case and later extend to the stochastic case.

Consider a simple model with one input X and one
output y,

y=f(x) 3)
where f is a known explicit or implicit function. The
output ‘¥’ can be approximated using a set of specified
functions of g;(x).

A N
y=> 58 )
i=0

where N is the order of approximation. Since the
approximation of ) may not simulate the actual model,

we define the residual of the model as follows:

R({yi}’x):.;(x)_y(x) (5)

The set of coefficients in the approximation {yi} can be
calculated by requiring that the residual and each member
of { g, (x)} should be orthogonal to each other.

[R({7.}.%)g,(x)dx=0, i=0, ., (6)

Equation (6) can be solved by using the Gaussian
quadrature approximation.

[R((}x) g e =3 v R({y}.x) g, ) D)

i=0,...,N , where v, and X; are the weights and abscissas

respectively. If v,g,(x,) has the same sign and is not

zero for all i and j , equation (6) can be approximated by,

R({y[},xj)=0, j=0,1,..,N 8)

Equation (8) represents the use of the collocation method
for calculating the set of coefﬁcients{ yi} . This implies

that the collocation method does not require the complete
definition of the residual function. As long as we can
calculate the value of the residual at several given values
of inputs, we will be able to obtain the coefficients of
approximation.

In stochastic models where inputs and outputs are
random variables, we can extend the deterministic
collocation method and can obtain an approximation of
the model. The orthogonal relationship defined by
equation (6) is transformed to the probabilistic space by
incorporating the Joint Probability Density Function of

inputs fx(w)(x(w));
J‘,«W)fx(w (x(w) R({y[} ’x(W)) g (x(W)dd(w)=0 (9

Similarly equation (8) now becomes

Lo (x)R({3}.x,)=0 j=0,..,N  (10)



If we choose X such that fx(w) (x_;) is positive for all

Jj, we can still apply equation (8) to the cases where X is a
random variable.

In practice, { gi(x)} are chosen as the orthogonal
polynomials (in our case, Hermite polynomials) whose
weighting function is the PDF of x , fx(w)(x(w)) .

Therefore the collocation points {x j} are simply the

roots of the (n+1) order orthogonal polynomials [13]. So,
the number of collocation points available is (d +1)n ,
where d is the degree of expansion and # is the number of
inputs. The unknown coefficients of output expansion are
estimated by equating model outputs (using Spice) and the
corresponding Hermite polynomial expansion, at this set

of collocation points {x j} in the parameter space. The

number of sampling points (collocation Points) is equal to
number of unknowns.

The approximation of output with Hermite Polynomial
expansion of second degree for a two input model results
in six unknown coefficients [Eq.1]. But the number of
collocation points available is (2+1)* =9. Similarly, for
higher = dimension systems and  higher order
approximations, the number of available collocation
points is always greater than the number of collocation
points needed, which introduces a problem of selecting the
appropriate collocation points. In the next Section,
we present a selection criterion for selecting the
collocation points.

3.4.Selection Criteria for Collocation Points

In this section, we present a simple heuristic technique
to select the required number of collocation points from a
large number of potential candidates

The collocation points are selected so that each standard
normal random variable &, takes the values of either zero

or one of the roots of the higher order Hermite-
polynomial. The zero is taken as a collation point even
though if it is not a root, because the origin corresponds to
the region of highest probability for a normal random

variable & of zero mean. For each term of the series
expansion, a corresponding collocation point is selected.
The collocation point corresponding to the constant is the
origin, i.e., all the standard random variables (&'s) are
set to value zero. For terms involving only one variable,
the collocation points are selected by setting all other &'s

to zero value and by letting the corresponding variable
take values as the roots of higher order Hermite
polynomial. For terms involving two or more random

variables, the values of the corresponding variables are set
to the values of the roots of the higher order polynomial
and so on. If more points corresponding to a set of terms
are available than needed, the points which are closer to
the origin are preferred as they fall in regions of higher
probability. Further, when there is still an unresolved
choice, the collocation points are selected such that the
overall distribution of the collocation points is more
symmetric with the origin. If still more points are
available, the collocation point is selected randomly.

Once the coefficients used in the series expansion of the
model outputs are estimated, the statistical properties of
the outputs such as the density functions, moments, joint
densities, join moments, correlation between two outputs
or between an output and an input etc can be readily
calculated. We explain in detail the calculation of
statistical properties in the next Section.

3. 5 Statistical Properties of the Outputs

If inputs are represented as x;, = F;(&;) and if outputs

y; are estimated as y,=G,(&,&——¢,) , then the

following steps are involved in the estimation of the
statistics of the inputs and outputs.
1. Generation of a large number of samples of
[51’ §25 - gni]
2. Calculation of the values of the input and output
random variables from the samples.
From a set of N samples, the moments of the distribution
of an output y,; can be calculated as,

1 N
U},i:Mean(yz'):E{yi}:ﬁ Zlyhj (an
J=

1
0, Var)=E{=n, P} == X0y, (12)

Calculation of model inputs and outputs involves
evaluation of simple algebraic expressions and does not
involve model runs.

3.6 An Inverter Delay Model by PCM

We consider an inverter to illustrate the PCM
technique. Let the L, and T, are the two random
variables and delay is the output(Y) parameter to be
estimated. Let

Le/fNN(lul’O-l) T, ~N(uy.0,) (13

The input random variables can be represented by
standard random variables using Table 1.

Le//.. =u +0 T, =u+0,8 (14)
Where &, &, areiid N(0,1) random variables.

A second order Hermite Polynomial Expansion for Y in
terms of &, &, is given by



Y =a,+a¢ +a,, +a, (512 _1) +a, (‘fzz _1) +a; (5152) (15)
In order to estimate the 6 unknown coefficients, 6
collocation points (§“ &, ),(é‘]’z §2’2) ....... are selected

from the roots of the 3™ degree Hermite polynomial as
explained in section 3.3. These sample points correspond
to the original model input samples

(Leff, Tox, ) — - — (Leffy Tox) as follows:

él’i Leﬁ(i _ lu]+o_]§l,i P (16)
|:§2Ji| -~ |:T0x,- :| - |:/12 + 0-25241:| for i=1,...,6

After obtaining original input sample points, the model
simulations using Spice are performed at the given input
sample points and outputs are obtained. Then the outputs

¥, ——Y, are used to calculate the coefficients a, ———as
by solving the following linear equation.
a Y1
a, Y2
VAR a, = V3
17)
as Ve
1 1 1 - - 1
51,1 51,2 51,3 - - 51,6
2216 &an Gy - - &

In the above equations, Z can be calculated from & at

each sample point. Once the coefficients are estimated, the
distribution of Y is fully described by the Hermite
polynomial expansion in equation (15). The statistical
properties of the delay Y are calculated as described in
Section 3.5.

4. Experimental Results

Our method has been tested extensively for several test
cases and the results for some representative test cases are
given below. BSIM3 model parameters of 0.18u
technology are considered for all the logic gates in the
examples. As a first example, we considered an Inverter
and the uncertainty in L.; due to process variations. The
mean of the PDF of L. is taken as 0.18u and 20%
variation as standard deviation (S.D). The L. is truncated
at 3o points. The PDF of the 50% delay point is estimated
using our proposed method and the spice based Monte
Carlo (M.C) simulations. The comparison between our
PCM method and the Monte Carlo method is presented in
the Figure 3.

Table 2 presents the description of the examples we
considered to test the PCM method and also gives the
parameters in which we considered the variation. In all the
test cases a variation of 10% to 20% is considered in the

uncertain parameters. The mean values and standard
deviation values estimated by our proposed method and
Monte Carlo method for different examples are presented
in Table 3. Column 2 shows the mean values of the 50%
delay PDF calculated from Monte Carlo method and
Column 3 shows mean values of the 50% delay PDF
calculated from the our PCM method. Column 4 shows
the percentage error in mean values of our PCM method
when compared with Monte Carlo method. Column 5 and
column 6 shows the standard deviation values of 50%
delay PDF calculated from Monte Carlo method and our
PCM method respectively. Column 7 shows the
percentage error in standard deviation values of our PCM
method when compared with Monte Carlo simulations
method.
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Figure 3: Comparison of 50% delay PDF obtained
with PCM and Monte Carlo for an inverter.

Table 2: Description of the examples considered
to test our method

Example | Description Variations Induced
Parameters

1 Inverter Lo

2 Inverter Lo, Tox, W

3 2-Input L, Tox

NAND
4 Two inverters | Ly
in cascade

5 Full Adder Legr, Tox

6 NAND gate Multiple Input
Switching, Leg

Protatliny

ul
B0 7o S0 a0 100

Figure 4: Comparison m: !';0% delay PDF obtained
with PCM and Monte Carlo for an inverter chain.



In most of the cases, the gate delay PDF is close to
Normal density function. But for larger circuits, the PDF
is not symmetric. First, we considered an inverter chain of
different sizes, and induced the variation of length with
different standard deviation. The PDF is asymmetric and
is shown in Figure 4. Second, we considered a full adder
with variation in T,, and length. The PDF obtained by
PCM is shown in Figure 5. Third degree polynomial
expansion is used in all the cases. We tested our method
for Multiple Input Switching case also. The arrival times
at the inputs are considered as random variables. Variation
in L.y due to process variations is considered. The PDF of
50% delay is shown in Figure 5. Second degree Hermite
polynomial expansion is used for this example which
resulted in relatively high error when compared to other
test cases.

Table 3: Comparison of mean and S.D of the
PDF of 50% delay point obtained using PCM and

Monte Carlo
Ex | Mean | Mean | % S.D S.D %
(ps) (ps) Error | (M.C) | (PCM) | Error
M.C) | (PCM)
1 65.109 | 65.115 | 0.01 5.804 | 5.805 | 0.02
2 63.393 | 63.392 | -0.02 | 7.364 | 7.273 -1.23
3 72.143 | 72.312 | 0.234 | 8.921 | 8.780 | -1.58
4 80.63 80.66 | 0.04 | 9.28 8.98 -3.23
5 163.47 | 162.89 | -0.35 | 25.57 | 25.40 | -0.67
6 109.54 | 115.36 | 5.29 10.68 | 10.56 1.10

5. Conclusion

We proposed a novel method for modeling the
uncertainty in the devices due to process variations and
Multiple Input Switching. All the uncertain inputs are
transformed into standard random variables and the output
performance metric is expressed as a series expansion of
orthogonal polynomials in terms of the standard random
variables. We showed that Probabilistic Collocation
method (PCM) accurately estimates the unknown
polynomial coefficients which results in modeling the
uncertainty accurately. We carried out extensive
simulations of sample test cases. Comparison of the
results from the proposed PCM technique against the
Monte Carlo based spice simulations demonstrates an
excellent match.
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