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Abstract
Variability in process parameters is making accurate timing anal-

ysis of nano-scale integrated circuits an extremely challenging task.
In this paper, we propose a new algorithm for statistical timing anal-
ysis using Levelized Covariance Propagation (LCP). The algorithm
simultaneously considers the impact of random placement of dopants
(which makes every transistor in a die independent in terms of thresh-
old voltage) and the spatial correlation of the process parameters
such as channel length, transistor width and oxide thickness due to
the intra-die variations. It also considers the signal correlation due
to reconvergent paths in the circuit. Results on several benchmark cir-
cuits in 70nm technology show an average of 0.21% and 1.07% errors
in mean and the standard deviation, respectively, in timing analysis
using the proposed technique compared to the Monte-Carlo analysis.

1. Introduction
Timing verification is necessary for efficient integrated circuit de-

sign to achieve a desired performance. Conventionally,static timing
analysis [9] is used for the timing verification of digital integrated cir-
cuits. However, as the scaling of technology continues,static timing
analysis fails to provide a realistic timing information [14]. This is
mainly due to the ever-increasing variability in the process parame-
ters such as channel length, transistor width, oxide thickness and the
random placement of dopants in the channel.

Process variations can be classified into two main categories -
intra- and inter-die variations. Due to inter-die variations, the same
device on a die can have different characteristics across different dies
(i.e., dies from one wafer, from wafer to wafer, and from wafer lot to
wafer lot). Intra-die variations, on the other hand, are thevariations
of transistor characteristics within a single die. As we aremoving to-
wards sub-100nm technology regime, intra-die process variations are
becoming increasingly significant [4]. Intra-die variations in length,
width and oxide thickness, are expected to exhibit some spatial cor-
relations among devices located close to each other (systematic vari-
ation). For example, transistors close to each other are expected to
have similar parameter variation than the ones that are far apart in a
die. The effect of random placement of dopants (threshold voltage
variation), on the other hand, is different in every transistor irrespec-
tive of their spatial location [13]. In addition to this, signal correlation
due to the reconvergent paths under process variation also plays a sig-
nificant role in circuit timing.

An accurate timing analysis should therefore, simultaneously con-
sider the three issues, namely; (1) spatial correlation of the process
parameters such as channel length, transistor width and theoxide
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thickness, (2) random placement of dopants, and (3) the signal corre-
lation due to the reconvergent paths. Several efforts have been made
to independently model these effects to provide algorithmscalledSta-
tistical Timing Analysis, to obtain the timing information of circuits
under process variation. However, to the best of our knowledge, no al-
gorithm is available for timing analysis considering all the above three
effects simultaneously. For example, in [15, 8, 3], intra-die variations
of process parameters are modeled as independent random variables
(without spatial correlation). Chang et.al. [6], proposeda PERT-like
traversal algorithm for statistical timing analysis considering the spa-
tial correlation of process parameters as well as the signalcorrelation
due to reconvergent paths. In this technique, the correlated process
parameters are transformed into a set of uncorrelated principle com-
ponents to compute the circuit delay. A block-based statistical timing
analysis method is also proposed in [10] to obtain circuit delay un-
der process variation considering both the spatial correlation and the
signal correlation due to reconvergent paths. However, none of the
above methods consider the effect of random placement of dopants,
spatial correlation of process parameters and the signal correlation
due to reconvergent paths simultaneously. Neglecting any of these
effects may result in unrealistic timing information of thecircuit [5].

In this paper, we propose a new statistical timing algorithmthat
simultaneously considers the above three effects. We employ the grid
based model proposed in [2] to incorporate the spatial correlation of
process parameters such as length, width and oxide thickness. The
effect of random placement of dopants is considered by represent-
ing the threshold voltage of each transistor as an independent random
variable. The circuit delay is calculated considering the above effects
usingLevelized Covariance Propagation (LCP). In this technique, the
timing information at the output of all gates in a single logic level is
calculated and propagated to the next logic level. Thetiming infor-
mation includes the arrival time (mean and variance) at the output of
each gate in a particular logic level and the covariance among dif-
ferent outputs. The signal correlation due to reconvergentpaths is
also considered while calculating thetiming information at a particu-
lar logic level. We use the proposed algorithm to calculate the circuit
delays of several ISCAS benchmark circuits under process variation
and compared the results with the Monte-Carlo analysis.

The rest of the paper is organized as follows. In section 2, we
discuss the modeling of process variation. Section 3 describes gate
delay model considering the effect of process variation. Insection 4,
the proposed algorithm is discussed in detail. Section 5 presents the
experimental results on several ISCAS benchmark circuits.

2. Modeling the Process Variation
In this work, we consider channel length, transistor width,oxide

thickness and threshold voltage as random process parameters which
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Figure 1. Rectangular Grid Model [2]

can be represented by a normal distribution [11]. We also assume
that the variation in the above parameters are mutually independent.
The process parameters can be divided into two groups based on their
statistical behavior. The parameters such as the length, width and
the oxide thickness will exhibit spatial correlations among different
transistors close to each other. Therefore, for a group of transistors
depending on their proximity, a single random variable can be used to
represent the variation in the above process parameters. The threshold
voltage, on the other hand, will be different for each transistor in a die
due to the effect of random placement of dopants. Hence, separate
random variables are to be used to represent the threshold voltages of
all the transistors.

The following subsections explain how we model the spatial cor-
relation and the random placement of dopants.

2.1. Modeling Spatial Correlation
To capture the effect of spatial correlation of process parame-

ters among different transistor locations, we use the rectangular grid
model proposed in [2]. In this model, the die area is divided by a
multi-level quad-tree partitioning as shown in Fig. 1. All the transis-
tors in a particular grid are assumed to experience the same parameter
variation. The tree structure forms a hierarchical relationship among
all the grids. A grid is defined to be aparent of a lower level grid if
they share a common region. All the transistors in a grid at the bot-
tom most level experience the same parameter variations. The spatial
correlation of parameter variation among transistors in different grids
is governed by theirparent grids.

For every grid (at all levels), we maintain a single random variable
for each process parameter. The parameter variation of a transistor
in any grid at the bottom most level is represented by the sum of
the variation in that particular grid and the variations in all its parent
grids. For example, the variation of channel length of transistors in
grid [2,1] (at the bottom most level (Fig. 1)) is representedas,

L(2, 1) = L0 + ∆L2,1 + ∆L1,1 + ∆L0,1 (1)

whereL(2, 1) is the random variable which represents the variation in
the channel length in grid [2,1].L0 is the nominal value of the chan-
nel length.∆L(2, 1), ∆L(1, 1) and∆L(0, 1) represent the deviation
in channel length in grids(2, 1), (1, 1) and(0, 1) respectively.

The covariance of the process parameters between differentgrids
is obtained depending on their commonparent grids. For example,
the random variables representing the channel length in grid [2,1],
[2,2] and [2,16] are expressed as,

L(2, 1) = L0 + ∆L2,1 + ∆L1,1 + ∆L0,1

L(2, 2) = L0 + ∆L2,2 + ∆L1,1 + ∆L0,1

L(2, 16) = L0 + ∆L2,16 + ∆L1,4 + ∆L0,1

In this example,L(2, 1) andL(2, 2) share two parent grids∆L1,1

and∆L0,1, while L(2, 1) andL(2, 16) share only∆L0,1. Thus, the
covariance betweenL(2, 1) andL(2, 2) will be two times that of the
covariance betweenL(2, 1) andL(2, 16). For the case of 3 level grid
structure shown in Fig. 1, a16×16 covariance matrix is necessary for
each process parameter to represent the correlation between any two
grids in the bottom most level. Also note that, since the top-most level
is theparent grid of all the grids, it represents the inter-die variation.
While the intra-die variation of the process parameters is represented
by all other levels of girds. Hence, by using this model, intra- and
inter- die variations can be considered simultaneously.

2.2. Random Placement of Dopants
In scaled CMOS devices, there exists a statistical fluctuation in

the number of dopants in the channel, which can be translatedinto
a threshold-voltage variation [13]. This discrete dopant effect on
threshold voltage variation is incorporated by employing the follow-
ing equation [13] into the simulator while computing the variation of
threshold voltage of each transistor.

σV th =
q

Cox

r

NaW 0

dm

3LW
(2)

σV th represents the standard deviation of threshold variation due to
random placement of dopants,q is electron charge,Cox is the oxide
capacitance,Na is the substrate doping concentration, andW 0

dm rep-
resents the maximum depletion layer width.L andW are the channel
length and width of the transistor, respectively.

Considering the effect of random placement of dopants, threshold
voltages of all the transistors are represented by independent random
variables with normal distribution. The variance of each random vari-
able is obtained from Eq. (2).

3. Modeling the gate delay
Usually gate delay is a complicated non-linear function of the pro-

cess parameters. In this work, we use first order Taylor’s series ex-
pansions [6, 15] to approximate the delay distribution as follows,

D = D0 +

n
X

i

siXi (3)

D0 represents the nominal value of the gate delay (µD) without vari-
ation. We use Sakurai’s gate delay model [12] to obtain the nominal
delay of each gate in the circuit.Xi’s are the sources of variation,
which are modeled as normal random variables.Xi can be any pro-
cess parameter such as channel length, width, oxide thickness and
the threshold voltage, that affects the delay of a specific gate. si is
the sensitivity of the gate delay to the variation in processparameter
Xi. All si’s are extracted through HSPICE simulation by varying the
process parameters from their nominal value.

The variance of the delay of a gate can be obtained as,

σ2

D =

n
X

i

s2

i σ
2

Xi
(4)

whereσXi
is the standard deviation of the random variableXi.

4. Statistical Timing Analysis
The major challenge in statistical timing analysis is to incorporate

the effect of signal correlation due to process variation. The signal
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Figure 2. Example of signal correlation

correlation occurs due to both spatial correlation of process param-
eters and the random placement of dopants (affects the signal corre-
lation on reconvergent paths). Hence, estimating the correlation be-
tween any two signals in a circuit will require a computationinvolv-
ing a large number of random variables which represent the process
variation. While, the number of variables representing thevariation
in length, width and oxide thickness with spatial correlation can be
limited by using the rectangular grid model explained in section 2.1,
variation in threshold voltage (due to random placement of dopants)
has to be represented by a large number of random variables (equal
to the total number of transistors in a circuit).

To reduce the computational complexity of the above problemwe
propose a new algorithm forstatistical timing analysis of circuits un-
der process variation. The algorithm computes the signal arrival time
at the output edge of each gate in a particular logic level. The arrival
time information is then propagated to calculate the timinginforma-
tion of the next logic level. Finally, at the primary output,the cir-
cuit delay is obtained by applying theMAX function on all primary
output arrival times. This technique is named asLevelized Covari-
ance Propagation (LCP). Since the timing information (signal arrival
times and their correlation) is always confined to a single logic level,
in this technique the problem of signal correlation can be handled eas-
ily. Furthermore, we need only a few random variables (equalto the
number of transistors in a gate) to effectively incorporatethe effect of
random placement of dopants.

4.1. Levelized Covariance Propagation
In this technique, the timing information at the output edges of a

particular logic level is calculated using the signal information at its
input edges and the delays of all gates in that logic level. The cal-
culated timing information is then propagated to the next logic level.
The statistical timing information contains;

1. The mean and the variance of signal arrival time at each output
edge.

2. The covariances among the output signal arrival times.

3. The covariance between the output arrival time and the process
parameters.

The above information is required to calculate the arrival times at the
output of any gate considering the effects of process variation and the
reconvergent paths. Consider the example circuit shown in Fig. 2. In
this figure, the signal arrival time at the output edge of any gate (e.g.,
G1) depends on the gate delay, the signal arrival times at its inputs
and their correlation information. The signal correlationat the inputs
occurs due to (1) spatial correlation of process parametersand (2)
the reconvergent paths (e.g., paths 1 and 2 in Fig. 2). Similarly, the
correlation between the arrival times at the outputs of gates G1 and
G2 is necessary to calculate the signal information at the nextlogic
level.

1

2

3
4

5

Input 1

Input 2

Grid 1 Grid 2

Figure 3. Dependency of gate delay on the input
arrival time

Furthermore, the delay of a gate depends on the signal arrival time
at its corresponding input due to the spatial correlation ofprocess
parameters. For example, consider the signal path shown in Fig. 3.
In the figure, signal to the input 1 of gate 3 propagates through gates
1 and 2. Since gates 1, 2 and 3 are closely located (within the same
grid), the delays of these gates are highly correlated due tothe spatial
correlation of process parameters. Consequently, the delay of gate 3
(input 1 to output) will be strongly dependent on the signal arrival
time at input 1, which is a function of the delays of gates 1 and2. On
the other hand, the signal to the input 2 of gate 3 propagates through
gates 4 and 5, which are not geometrically close to gate 3 (located at
different grids). Hence, the delay of gate 3 (input 2 to output) will
be weakly correlated to the signal arrival time at input 2. Therefore,
the geometric information of the preceding gates along withthe input
arrival time is necessary to accurately calculate the delayof a gate.

We explain below the methodology to calculate the statistical
timing information at the outputs of a logic level.

Mean and variance
The mean and the variance of signal arrival time at the outputedge of
a gate is calculated using the input arrival time and the corresponding
gate delay. To show how we calculate the signal information at the
output edges, let us consider the example of a 2-input gate. The mean
and the variance of the signal arrival time at the output of the gate can
be obtained using theMAX function as follows,

Aout = MAX(Ain,1 + D1, Ain,2 + D2) (5)

whereAin,1, Ain,2 are respectively, the signal arrival times at input
1 and 2.D1 andD2 are the corresponding pin-to-pin delays of the
gate. The mean (µAout ) and the sigma (σAout ) are obtained using the
technique described in [7] as follows,

µAout = µS1
Φ(α) + µS2

Φ(−α) + βφ(α) (6)

σ2

Aout
= (µ2

S1
+ σ2

S1
)Φ(α) + (µ2

S2
+ σ2

S2
)Φ(−α)

+ (µS1
+ µS2

)βφ(α) − µ2

Aout

where,

Si = Ain,i + Di; i = 1, 2 (7)

µSi
= µAin,i

+ µDi

σ2

Si
= σ2

Ain,i
+ σ2

Di
+ 2 · cov(Ain,i, Di)

µAin,i
,σAin,i

, µDi
andσDi

are the mean and the standard deviation
of input arrival time and the gate delay, respectively.cov(Ain,i, Di)
are the covariance between the input arrival time and the correspond-
ing gate delay.α andβ in Eq. (6) are given by,

α = (µS1
− µS2

)/β (8)

β2 = σ2

S1
+ σ2

S2
− 2σS1

σS2
ρ (9)
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where,

ρ = cov(S1, S2)/σS1
σS2

(10)

cov(S1, S2) = cov(Ain,1, D2) + cov(Ain,2, D1)

+ cov(Ain,1, Ain,2) + cov(D1, D2)

Φ(α) andφ(α) in Eq. (6) represent the CDF (cumulative distribution
function) and PDF (probability density function) of standard normal
distribution, respectively.

The mean (µAout ) and variance (σ2

Aout
) of the arrival time at the

output of a 2-input gate thus, can be obtained using the signal in-
formation of the input edges such as input arrival time information
(µAin,i

andσAin,i
, i = 1, 2), gate delay information (µDi

andσDi
)

and the covariance information (cov(Ain,1, Ain,2), cov(Ain, D)
and cov(D1, D2)). µAin,i, σAin,i and cov(Ain,1, Ain,2) are ob-
tained from the previous logic level.µDi

, σDi
are obtained using

Eq. (3) and 4.cov(D1, D2) can be calculated using Eq. (3) and (4)
as follows,

cov(D1, D2) = cov(D1,0 +
n

X

i

s1,iXi, D2,0 +
n

X

i

s2,iXi)

=
n

X

i

n
X

j

s1,is2,jcov(X1,i, X2,j) (11)

whereXi’s are the random variables representing the parameter vari-
ation in length, width, oxide thickness and the threshold voltage.
SinceD1 andD2 represent the delay of the same gate, they are cor-
related by the parameter variations of all the transistors in that gate.
While due to the spatial correlation, a single random variable can be
used to represent the variation in a process parameter (length, width,
or oxide thickness) for all transistors in the gate, theoretically separate
variables should be used to represent the variation in threshold volt-
age (due to the random placement of dopants) of individual transistor.
However, the covariances among the threshold voltage variations of
different transistors will be zero (cov(XV thi

, XV thj
) = 0; i 6= j,

whereXV th represents the variation in threshold voltage). Hence,
the Eq. (11) is simplified to,

cov(D1, D2) =
n

X

i

s1,is2,iσ
2

Xi
(12)

whereσXi
’s are the standard deviation of the process parameterXi.

σV th of each transistor in the circuit is pre-calculated and hence,
no additional random variable is required in the algorithm to incor-
porate the threshold voltage variation due to random placement of
dopants. cov(D1, D2) carries the information regarding theVth vari-
ation of all transistors in a gate. This information is used to calculate
the correlation between the signals in reconvergent paths.

Finally, cov(Ain, D) is obtained as follows,

cov(Ain, D) = cov(Ain, D0 +
X

i

siXi) (13)

=
X

i

sicov(Ain, Xi)

wheresi’s are the sensitivity of the gate delay to parameter varia-
tions.cov(Ain, Xi) is the covariance between the input signal arrival
time and the process parameter variation, and is obtained from the
previous logic level.Xi’s are the random variables representing the
variation in length, width and the oxide thickness. The correlation
between the input arrival time and the threshold voltage variation

will be zero due to the random placement of dopants.

Covariance among the output signals
We have mentioned above that in order to calculate the signalarrival
time (µAout andσAout ) at the output of a gate in a particular logic
level, covariance between the input signals are obtained from the pre-
vious logic level. In other words, the signal correlation information
among all output edges of a particular logic level needs to bepropa-
gated to the next logic level. Consider the example circuit shown in
Fig. 2. The covariance between the arrival times at the outputs ofG1

andG2 can be expressed as,

cov(Aout,1, Aout,2)

= cov(MAX(a1,1, a1,2), MAX(a2,1, a2,2)) (14)

whereAout,1 andAout,2 are the signal arrival times at the output of
gatesG1 andG2, respectively.ai,j ’s are given by,

ai,j = Ain,i,j + Di,j ; i, j = 1, 2 (15)

whereAin,i,j represents signal arrival time at thej’th input of the
i’th gate andDi,j is the corresponding pin-to-pin gate delay. In order
to solve Eq. (14), we used the following relationship given in [7].

cov(X, MAX(Y1, Y2))

= cov(X, Y1)Φ(α) + cov(X, Y2)Φ(−α) (16)

where,α can be obtained using Eq. (8). Using the above relationship,
Eq. (14) can be rewritten as,

cov(Aout,1, Aout,2) (17)

= cov(a1,1,a2,12)Φ(αa) + cov(a1,2, a2,12)Φ(−αa)

= cov(a1,1, a2,1)t11 + cov(a1,1, a2,2)t12

+ cov(a1,2, a2,1)t21 + cov(a1,2, a2,2)t22

t11 = Φ(αa,1)Φ(αa,2), t12 = Φ(αa,1)Φ(−αa,2)

t21 = Φ(−αa,1)Φ(αa,2), t22 = Φ(−αa,1)Φ(−αa,2)

(a2,12 = MAX(a2,1, a2,2))

cov(a1,i, a2,j) are calculated as follows,

cov(a1,i, a2,j) = cov(Ain,1,i, Ain,2,j) + cov(Ain,1,i, D2,j)

+ cov(Ain,2,j , D1,i) + cov(D1,i, D2,j) (18)

where the first term in the right hand side of Eq. (18) is obtained from
the previous logic level. The second and third terms are calculated
using Eq. (13). The last term in Eq. (18) is obtained as follows,

cov(D1,i, D2,j) =
X

k

X

l

s1,i,ks2,j,lcov(X1,k, X2,l) (19)

whereX1 andX2 are the random variables representing the process
parameter variations in gate 1 and 2, respectively.s1,j,k is the
sensitivity of k’th parameter to thei’th delay of gate 1 (similarly
s2,j,l is the sensitivity ofl’th parameter to thej’th delay of gate 2).
Following the above method, the covariances among the arrival times
at all output edges can be calculated. The covariance information is
stored in anN × N matrix and propagated to the next logic level.
Note that, the use of the above correlation information in timing
analysis automatically takes care of the signal correlation due to the
reconvergent paths.
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Figure 4. Levelized Covariance Propagation Al-
gorithm

Covariance between the signal arrival time and the process pa-
rameters
The covariance between signal arrival time at the output of a2-input
gate and the process parameters can be expressed as,

cov(Aout, X) = cov(MAX(Ain,1 + D1, Ain,2 + D2), X)

= cov(Ain,1 + D1, X)Φ(α) + cov(Ain,2 + D2, X)Φ(−α)

= cov(Ain,1, X)Φ(α) + cov(Ain,2, X)Φ(−α)

+ cov(D1, X)Φ(α) + cov(D2, X)Φ(−α) (20)

whereX is set of the random variables representing the variation in
length, width and the oxide thickness.Ain’s andD’s are respectively,
the arrival times at the inputs and the corresponding pin-to-pin delays
of the gate.cov(Ain,1, X) andcov(Ain,2, X) are obtained from the
previous logic level.cov(Di, X) is calculated using Eq. (3) as,

cov(Di, X) = cov(Di,0 +

n
X

j

sjXj , X)

=

n
X

j

sjcov(Xj , X) (21)

whereXj ’s are random variables representing the spatial correlation
of the process parameters.cov(Xj , X)’s are obtained using the co-
variance matrix described in section 2.1. Similarly, the covariance
between all output signals and the process parameters are obtained
and the covariance information is stored in anN × M matrix (M is
the number of random variables used to model the spatial correlation
of process parameters) and propagated to the next logic level.

4.2 Statistical Timing Analysis Algorithm
Fig. 4 shows the flow diagram of the proposed algorithm. The

algorithm starts with levelizing the logic gates in a given circuit. In
the second step, the algorithm is initialized by feeding thesignal in-
formation to the primary inputs of the circuit. The signal information
contains;

• The mean (µAin
) and the variance (σ2

Ain
) of signal arrival time

at each primary input.

• The covariances among the input signals (cov(Ain,i, Ain,j);
i, j = 1, 2, ..., n;, wheren is the number of primary inputs).

• The covariance between the input arrival time and the process
parameters (cov(Ain, X)).

Based on the signal information at the primary input, the signal
information at the output edges of logic level 1 is calculated using the
method described in the previous section. The signal information is
then propagated to the next logic level. Finally, at the primary output
we apply theMAX function to calculate the circuit delay.

Dcircuit = MAX(APO,out,1, APO,out,2, ..., APO,out,n) (22)

whereAPO,out,i is the arrival at thei’th primary output, andn rep-
resents the total number of primary outputs.

4.3. Complexity of the Algorithm
In this section, we present a run-time complexity analysis of the

proposed algorithm. Let us assume there areN number of gates and
m logic levels in a given circuit. The computational complexity of
the algorithm involves the calculation of (1) Means and variances, (2)
covariances among the signal arrival times and (3) the covariances
between signal arrival time and the process parameters. Thecompu-
tation time for (1) and (3) has linear dependency on the number of
gates in a particular level. In addition to that, the computation time of
(3) also depends on the number of random variables representing the
spatial correlation of process parameters. On the other hand, the com-
putation time for (2) depends quadratically on the number ofgates in
a particular logic level. This is because the covariances between all
possible pairs of output signals are computed. Hence, the overall run-
time complexity of the proposed algorithm can be expressed as,

m
X

i

O(ni) + O(ni × k) + O(n2

i ) (23)

wherek is number of random variables representing the spatial cor-
relation andni is the number of gates in thei’th logic level. It can be
seen that the complexity of the proposed algorithm depends mostly
on the number of gates in a logic level. Ifni is large, the overall com-
plexity will be dominated by the third term (O(n2

i )) in Eq. (23) and
will quadratically depend onni.

5. Simulation Results
The proposed statistical timing algorithm was implementedin C.

We used this algorithm to calculate the circuit delay of several ISCAS
benchmark circuits. All the circuits were synthesized using BPTM
70nm technology [1]. We assumed 15% (3σ) variation in channel
length, width, oxide thickness and the threshold voltage for all our
experiments. A16 × 16 rectangular grid structure is used to model
the spatial correlation of parameters such as length, widthand oxide
thickness.

In order to verify the proposed algorithm, we also compared the
simulation results with Monte-Carlo simulation. For a considerable
accuracy in the analysis, we chose to run10000 iterations for Monte-
Carlo simulation. Fig. 5 shows the circuit delay distribution of IS-
CAS c499 benchmark circuit. It can be observed from the figurethat
the circuit delay distribution obtained using the proposedalgorithm
(considering both spatial correlation and the effect of random place-
ment of dopants) closely matches with the Monte-Carlo simulation
result. However, the circuit delay analysis considering only the spa-
tial correlation (case 2) provides optimistic results compared to the
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Table 1. Simulation results for ISCAS benchmark circuits

Circuit
No. of logic Mean delay(ps) delay sigma(ps) CPU-time (s)

TR depth MC LCP error (%) MC LCP error (%) MC LCP
c74L85 148 11 118.78 119.01 0.20 12.22 12.12 0.81 1.86 0.28
c74181 372 17 197.26 197.35 0.05 18.44 18.50 0.37 2.87 0.39
c432 590 28 531.06 530.91 0.03 26.74 26.73 0.06 4.03 0.55
c1908 1582 38 531.30 533.13 0.34 38.54 38.05 1.28 11.81 0.63
c880 1642 30 364.48 364.00 0.13 31.11 31.17 0.18 12.87 0.86
c499 1816 29 380.43 381.46 0.27 29.91 28.93 3.28 14.48 0.67
c3540 3638 43 609.63 612.54 0.48 40.64 40.24 0.99 24.55 1.19
c5315 6284 45 558.80 557.73 0.19 45.81 46.82 2.19 46.10 2.78
c6588 9472 122 1646.40 1648.52 0.13 123.82 123.78 0.03 63.19 3.70
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Figure 5. Circuit delay distribution of c499; case
1: with considering the spatial correlation, case
2: with considering both the spatial correlation
and the random placement of dopants

Monte-Carlo simulation. More specifically, statistical timing analy-
sis considering only spatial correlation under-estimatesthe mean of
the delay, while considering only the effect of random placement of
dopants under-estimates the variance of the delay [5].

Table. 1 shows the circuit delays of several ISCAS benchmark
circuits considering both the spatial correlation and the effect of ran-
dom placement of dopants (LCP). It also shows the error in mean
and standard deviation of the circuit delay compared to the results
obtained through Monte-Carlo simulation (MC). Results show that
the average errors in mean and standard deviation were 0.21%and
1.07%, respectively.

6. Conclusion

In this paper, we proposed a new statistical timing algorithm using
Levelized Covariance Propagation. This algorithm incorporates both
the spatial correlation and the effect of random placement of dopants
in the channel in calculating the circuit delay distribution. The simu-
lation results on several ISCAS benchmark circuits show that the pro-
posed algorithm matches with Monte-Carlo simulation. We have also
shown that the complexity of the algorithm depends quadratically on
the number of gates in a logic level.
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