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Abstract

Variability in process parameters is making accurate timing anal-
ysis of nano-scale integrated circuits an extremely challenging task.
In this paper, we propose a new algorithm for statistical timing anal-
ysis using Levelized Covariance Propagation (LCP). The algorithm
simultaneously considers the impact of random placement of dopants
(which makes every transistor in a die independent in terms of thresh-
old voltage) and the spatial correlation of the process parameters
such as channel length, transistor width and oxide thickness due to
the intra-die variations. It also considers the signal correlation due
to reconvergent pathsinthecircuit. Resultson several benchmark cir-
cuitsin 70nmtechnol ogy show an average of 0.21% and 1.07% errors
in mean and the standard deviation, respectively, in timing analysis
using the proposed technique compared to the Monte-Carlo analysis.

1. Introduction

Timing verification is necessary for efficient integratectait de-
sign to achieve a desired performance. Conventionstlyic timing
analysis [9] is used for the timing verification of digitatégrated cir-
cuits. However, as the scaling of technology contingtic timing
analysis fails to provide a realistic timing informatiord]1 This is
mainly due to the ever-increasing variability in the pracparame-
ters such as channel length, transistor width, oxide tld@s&rand the
random placement of dopants in the channel.

Process variations can be classified into two main categerie
intra- and inter-die variations. Due to inter-die variagpthe same
device on a die can have different characteristics acrdfesetit dies
(i.e., dies from one wafer, from wafer to wafer, and from wéde to
wafer lot). Intra-die variations, on the other hand, arewtheations
of transistor characteristics within a single die. As weraming to-
wards sub-100nm technology regime, intra-die processtianis are
becoming increasingly significant [4]. Intra-die variatsoin length,
width and oxide thickness, are expected to exhibit someasar-
relations among devices located close to each other (sgtitevari-
ation). For example, transistors close to each other arectap to
have similar parameter variation than the ones that arepfart in a
die. The effect of random placement of dopants (thresholthge
variation), on the other hand, is different in every trarwigrespec-
tive of their spatial location [13]. In addition to this, sigl correlation
due to the reconvergent paths under process variation lalge @ sig-
nificant role in circuit timing.

An accurate timing analysis should therefore, simultasgocon-
sider the three issues, namely; (1) spatial correlatiomefprocess
parameters such as channel length, transistor width andxide
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thickness, (2) random placement of dopants, and (3) thelsogmre-
lation due to the reconvergent paths. Several efforts haga made
to independently model these effects to provide algoritbaliedSa-
tistical Timing Analysis, to obtain the timing information of circuits
under process variation. However, to the best of our knogéedo al-
gorithm is available for timing analysis considering a# tibove three
effects simultaneously. For example, in [15, 8, 3], intr@adhriations
of process parameters are modeled as independent randtlesr
(without spatial correlation). Chang et.al. [6], proposeBERT-like
traversal algorithm for statistical timing analysis calesing the spa-
tial correlation of process parameters as well as the sipratlation
due to reconvergent paths. In this technique, the corctlatecess
parameters are transformed into a set of uncorrelatedipiéncom-
ponents to compute the circuit delay. A block-based siedildiming
analysis method is also proposed in [10] to obtain circulayglen-
der process variation considering both the spatial cdiogland the
signal correlation due to reconvergent paths. Howevere rajrthe
above methods consider the effect of random placement airdsp
spatial correlation of process parameters and the sigmatlation
due to reconvergent paths simultaneously. Neglecting rlgese
effects may result in unrealistic timing information of ttiecuit [5].

In this paper, we propose a new statistical timing algorithiat
simultaneously considers the above three effects. We gntipdogrid
based model proposed in [2] to incorporate the spatial lziioa of
process parameters such as length, width and oxide thiekridse
effect of random placement of dopants is considered by septe
ing the threshold voltage of each transistor as an indepemdedom
variable. The circuit delay is calculated considering theve effects
usingLevelized Covariance Propagation (LCP). In this technique, the
timing information at the output of all gates in a single logic level is
calculated and propagated to the next logic level. fitneng infor-
mation includes the arrival time (mean and variance) at the output o
each gate in a particular logic level and the covariance gnuifa
ferent outputs. The signal correlation due to reconvergetits is
also considered while calculating ttiing information at a particu-
lar logic level. We use the proposed algorithm to calculaégedircuit
delays of several ISCAS benchmark circuits under procesatian
and compared the results with the Monte-Carlo analysis.

The rest of the paper is organized as follows. In section 2,
discuss the modeling of process variation. Section 3 dessmjate
delay model considering the effect of process variatiorsélction 4,
the proposed algorithm is discussed in detail. Section Sgmts the
experimental results on several ISCAS benchmark circuits.

we

2. Modeling the Process Variation

In this work, we consider channel length, transistor widtkide
thickness and threshold voltage as random process paramdtich



Inter-Die
Variation

Systematic
Intra-Die |

Variation

Figure 1. Rectangular Grid Model [2]

can be represented by a normal distribution [11]. We alsarass
that the variation in the above parameters are mutuallypieddent.
The process parameters can be divided into two groups bagbeio
statistical behavior. The parameters such as the lengtithvaind
the oxide thickness will exhibit spatial correlations amatifferent
transistors close to each other. Therefore, for a groupaoiststors
depending on their proximity, a single random variable canded to
represent the variation in the above process parameteeghiigshold
voltage, on the other hand, will be different for each trarwiin a die
due to the effect of random placement of dopants. Henceraepa
random variables are to be used to represent the threshitdgjes of
all the transistors.

The following subsections explain how we model the spatial ¢
relation and the random placement of dopants.

2.1. Modeling Spatial Correlation

To capture the effect of spatial correlation of process ipara
ters among different transistor locations, we use the nectar grid
model proposed in [2]. In this model, the die area is dividgcab
multi-level quad-tree partitioning as shown in Fig. 1. Alkttransis-
tors in a particular grid are assumed to experience the saraeneter
variation. The tree structure forms a hierarchical retatiop among
all the grids. A grid is defined to begarent of a lower level grid if
they share a common region. All the transistors in a grid etodt-
tom most level experience the same parameter variatioresspdtial
correlation of parameter variation among transistorsfiiednt grids
is governed by theiparent grids.

For every grid (at all levels), we maintain a single randomalge
for each process parameter. The parameter variation ohaistar
in any grid at the bottom most level is represented by the stim
the variation in that particular grid and the variations lirita parent
grids. For example, the variation of channel length of tistnss in
grid [2,1] (at the bottom most level (Fig. 1)) is represerasd

L(2,1) = Lo+ AL21 + AL11 + ALon 1)

whereL(2,1) is the random variable which represents the variation i

the channel length in grid [2,1L¢ is the nominal value of the chan-
nellength.AL(2,1), AL(1,1) andAL(0, 1) represent the deviation
in channel length in grid§2, 1), (1,1) and(0, 1) respectively.

The covariance of the process parameters between diffgrieist
is obtained depending on their commparent grids. For example,
the random variables representing the channel length ah[8ril],
[2,2] and [2,16] are expressed as,

L(2,1) = Lo+ AL + AL11 + ALox

L(2,2) = Lo+ ALs2 + AL11 + ALox
L(2,16) = Lo+ AL216 + AL14+ ALon

In this example,L(2, 1) and L(2, 2) share two parent gridA L1,
andALo,1, while L(2,1) andL(2, 16) share onlyALg 1. Thus, the
covariance betweeh(2, 1) and L(2, 2) will be two times that of the
covariance betweeh(2,1) andL(2, 16). For the case of 3 level grid
structure shown in Fig. 1,6 x 16 covariance matrix is necessary for
each process parameter to represent the correlation beamyewo
grids in the bottom most level. Also note that, since therugst level

is theparent grid of all the grids, it represents the inter-die variation
While the intra-die variation of the process parameterefsasented
by all other levels of girds. Hence, by using this model,antand
inter- die variations can be considered simultaneously.

2.2. Random Placement of Dopants
In scaled CMOS devices, there exists a statistical fluatnait

the number of dopants in the channel, which can be transiated
a threshold-voltage variation [13]. This discrete dopdiftot on
threshold voltage variation is incorporated by employing follow-
ing equation [13] into the simulator while computing theiation of
threshold voltage of each transistor.

q\/m
V3w

OVth = C—M (2)
ovn represents the standard deviation of threshold variatientd
random placement of dopantgijs electron charge(’,, is the oxide
capacitancelN, is the substrate doping concentration, &¥g,, rep-
resents the maximum depletion layer widthandW are the channel
length and width of the transistor, respectively.

Considering the effect of random placement of dopantsshuie
voltages of all the transistors are represented by indegpgndndom
variables with normal distribution. The variance of eaatdi@m vari-
able is obtained from Eq. (2).

3. Modeling the gate delay

Usually gate delay is a complicated non-linear functiorhefpro-
cess parameters. In this work, we use first order Tayloriesex-
pansions [6, 15] to approximate the delay distribution #is\ics,

D=Do+ Y siX; (3)
D, represents the nominal value of the gate delay)(without vari-
@tion. We use Sakurai’'s gate delay model [12] to obtain thainal
delay of each gate in the circuitX;’s are the sources of variation,
which are modeled as normal random variabl&s.can be any pro-
cess parameter such as channel length, width, oxide théskaed
the threshold voltage, that affects the delay of a specifie.ga is
the sensitivity of the gate delay to the variation in progessameter
nXL All s;’s are extracted through HSPICE simulation by varying the
process parameters from their nominal value.

The variance of the delay of a gate can be obtained as,

n
2 2 2
op — Sio-Xi
%

whereo x, is the standard deviation of the random variakie

(4)

4. Statistical Timing Analysis
The major challenge in statistical timing analysis is toimporate
the effect of signal correlation due to process variatiohe ignal
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Figure 2. Example of signal correlation

correlation occurs due to both spatial correlation of pssggaram-
eters and the random placement of dopants (affects thel sigma-
lation on reconvergent paths). Hence, estimating the letioa be-
tween any two signals in a circuit will require a computatiovolv-
ing a large number of random variables which represent tbegss
variation. While, the number of variables representingvigation
in length, width and oxide thickness with spatial correatcan be
limited by using the rectangular grid model explained irtigec2.1,
variation in threshold voltage (due to random placementopiaghts)
has to be represented by a large number of random variatzjeal(e
to the total number of transistors in a circuit).

To reduce the computational complexity of the above problem
propose a new algorithm fatatistical timing analysis of circuits un-
der process variation. The algorithm computes the sigmabatime
at the output edge of each gate in a particular logic leveé dtival
time information is then propagated to calculate the timirigrma-
tion of the next logic level. Finally, at the primary outptie cir-
cuit delay is obtained by applying thdAX function on all primary
output arrival times. This technique is namedlLaselized Covari-
ance Propagation (LCP). Since the timing information (signal arrival
times and their correlation) is always confined to a singigcltevel,
in this technique the problem of signal correlation can bedled eas-
ily. Furthermore, we need only a few random variables (etpttie
number of transistors in a gate) to effectively incorpothteeffect of
random placement of dopants.

4.1. Levelized Covariance Propagation

In this technique, the timing information at the output exlgéa
particular logic level is calculated using the signal imh@tion at its
input edges and the delays of all gates in that logic levele ddl-
culated timing information is then propagated to the negiddevel.
The statistical timing information contains;

1. The mean and the variance of signal arrival time at eagbubut
edge.

2. The covariances among the output signal arrival times.

3. The covariance between the output arrival time and thegs®
parameters.

The above information is required to calculate the arrivaks at the
output of any gate considering the effects of process vanand the
reconvergent paths. Consider the example circuit showiginZ= In

this figure, the signal arrival time at the output edge of aatgde.g.,
(1) depends on the gate delay, the signal arrival times at gt
and their correlation information. The signal correlatanhe inputs
occurs due to (1) spatial correlation of process parameteas(2)
the reconvergent paths (e.g., paths 1 and 2 in Fig. 2). Simithe

correlation between the arrival times at the outputs ofg&teand

G is necessary to calculate the signal information at the logit

level.
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Figure 3. Dependency of gate delay on the input
arrival time

Furthermore, the delay of a gate depends on the signal ltimea
at its corresponding input due to the spatial correlatiorprafcess
parameters. For example, consider the signal path showigin3F
In the figure, signal to the input 1 of gate 3 propagates thr@ajes
1 and 2. Since gates 1, 2 and 3 are closely located (withinaimes
grid), the delays of these gates are highly correlated dtleetepatial
correlation of process parameters. Consequently, the délgate 3
(input 1 to output) will be strongly dependent on the sigrnaival
time at input 1, which is a function of the delays of gates 12n@n
the other hand, the signal to the input 2 of gate 3 propaghtesgh
gates 4 and 5, which are not geometrically close to gate atgocat
different grids). Hence, the delay of gate 3 (input 2 to otjtpuill
be weakly correlated to the signal arrival time at input 2erEfore,
the geometric information of the preceding gates along thighinput
arrival time is necessary to accurately calculate the deflaygate.

We explain below the methodology to calculate the statistic
timing information at the outputs of a logic level.

Mean and variance

The mean and the variance of signal arrival time at the owgge of
a gate is calculated using the input arrival time and theespaonding
gate delay. To show how we calculate the signal informaticthe
output edges, let us consider the example of a 2-input g&ieniean
and the variance of the signal arrival time at the output efghte can
be obtained using th&/ A X function as follows,

Aout = MAX (Ain,1 + D1, Ain,2 + D2) (5)

whereA;,, 1, Ain,2 are respectively, the signal arrival times at input
1 and 2. D; and D, are the corresponding pin-to-pin delays of the
gate. The meanuy ., .) and the sigmaf4,,,,) are obtained using the
technique described in [7] as follows,

HAout s, P(a) + s, @(—a) + Bp(a) (6)
Ohpse = (&, +05)®P(a) + (U, + 05,)®(—0)
+ (psy + psy)Bo(a) — pi,,,
where,
Si = Ami+Di; i=1,2 @)
Hs; = Ay, T pD;
a%i = aimyi + a%i + 2 cov(Ain,i, Di)

A, 04z, . 4D, @ndop, are the mean and the standard deviation
of input arrival time and the gate delay, respectivelyv(A;n,:, D;)

are the covariance between the input arrival time and thespond-
ing gate delaya andg in Eq. (6) are given by,

8)
9)

o = (Nsl_usz)/ﬁ
,62

2 2
05, + 05, —205,05,p



where,

p = cov(S1,52)/0s,05, (10)
cov(S1,S2) = cov(Ain, D2) + cov(Ain,2, D1)

+  cov(Ain, Ain,2) + cov(Di, D2)

will be zero due to the random placement of dopants.

Covariance among the output signals

We have mentioned above that in order to calculate the saniahl
time (ua,,, andoa,,,) at the output of a gate in a particular logic
level, covariance between the input signals are obtairged fhe pre-

& () andg(a) in Eq. (6) represent the CDF (cumulative distributionvious logic level. In other words, the signal correlatiofoimation

function) and PDF (probability density function) of stardiaormal
distribution, respectively.

The meanga,,,) and variancea(?%m) of the arrival time at the
output of a 2-input gate thus, can be obtained using the lsigna
formation of the input edges such as input arrival time imfation
(na,,, andoa,, .,i = 1,2), gate delay informationp, andop,)
and the covariance information dov(Ain,1, Ain,2), cov(Ain, D)
and COU(Dl7 Dz)) MAin,iy OAin,i and COU(Ain"l7 Aing) are ob-

among all output edges of a particular logic level needs tprbpa-
gated to the next logic level. Consider the example cirduits in
Fig. 2. The covariance between the arrival times at the dsiipi(;
andG, can be expressed as,

cov(Aout,1, Aout,2)

=cov(MAX (a1,1,a1,2), MAX (az,1,a2,:2)) (14)

tained from the previous logic levelup,, op, are obtained using WheréAou:,1 and Ao > are the signal arrival times at the output of
Eq. (3) and 4.cov(D1, D2) can be calculated using Eq. (3) and (4) 9atesG1 andGa, respectivelya; ;'s are given by,

as follows,

COU(D17D2) = COU(Dl,o +Zsl,iXi7D2,0 +ZS2,iXi)

n n
E E s1,582,5c00(X1,i, X2,5)
i

(11

whereX;'s are the random variables representing the parameter vari

ation in length, width, oxide thickness and the thresholttage.

SinceD; and D- represent the delay of the same gate, they are co

related by the parameter variations of all the transistoithat gate.
While due to the spatial correlation, a single random véeiahn be
used to represent the variation in a process parametetlflengith,
or oxide thickness) for all transistors in the gate, theécadly separate
variables should be used to represent the variation intibtés/olt-
age (due to the random placement of dopants) of individaakistor.
However, the covariances among the threshold voltageti@raof
different transistors will be zero:a?v(XVthi,vaj) =0; ¢ # 7,

where Xy, represents the variation in threshold voltage). Hence, t21 =

the Eq. (11) is simplified to,

cov(D1, D2) = 281,i82,i¢7§(i (12)

whereo x,’s are the standard deviation of the process paraniéter
ovr Of €ach transistor in the circuit is pre-calculated and hence,
no additional random variable is required in the algorithm to incor-
porate the threshold voltage variation due to random placement of
dopants. cov(D1, D7) carries the information regarding the, vari-
ation of all transistors in a gate. This information is useddlculate
the correlation between the signals in reconvergent paths.
Finally, cov(Ain, D) is obtained as follows,
cov(Ain, D) =

cov(Ain, Do + Z 5iXi) (13)

Zsicov(Am, Xi)

Ain,zﬁ,j +D;j; 4,7=1,2 (15)

aij =

where A;,,;,; represents signal arrival time at thgh input of the
7'th gate andD;,; is the corresponding pin-to-pin gate delay. In order
to solve Eq. (14), we used the following relationship giveis].

cov(X, MAX (Y1,Y2))

= cov(X,Y1)®(a) + cov(X, Y2)P(—a) (16)

where,a can be obtained using Eq. (8). Using the above relationship,
Eq. (14) can be rewritten as,
cov(Aout,1, Aout,2) 17

= cov(ai,1,a2,12)P(aa) + cov(ai,2, az,12)P(—aa)

_|_

(
cov(a,1,a2,1)t11 + cov(ai,1,az,2)ti2
cov(a,2,a2,1)t21 + cov(ai,2, az,2)tze
D(a,1)P(a,2), tiz = P(Aa,1)P(—a,2)
D(—a,1)P(ta,2), t22 = P(—a,1)P(—a,2)
(az,12 = MAX(az2,1,a2,2))

t11

cov(aa,s, az,;) are calculated as follows,

cov(Ain,1,i, Ain,2,5) + cov(Ain,1,i, D2,;)
(18)

cov(aii,az;) =
+  cov(Ain,2,j, D1,i) + cov(D1,s, D2 ;)

where the first termin the right hand side of Eq. (18) is ol&diftom
the previous logic level. The second and third terms areutztied
using Eq. (13). The last term in Eq. (18) is obtained as fadlow

cov(D1,i, D2,5) = Z Z 51,4,652,5,100( X1k, X2,1) (19)
k l

whereX; and X, are the random variables representing the process
parameter variations in gate 1 and 2, respectiveby. ; . is the
sensitivity of k’'th parameter to the'th delay of gate 1 (similarly
s2,5,1 is the sensitivity ofi'th parameter to thg’th delay of gate 2).
Following the above method, the covariances among theaatiimes

wheres;’s are the sensitivity of the gate delay to parameter variaat all output edges can be calculated. The covariance itafioomis
tions. cov(Ain, X;) is the covariance between the input signal arrivalstored in anV x N matrix and propagated to the next logic level.

time and the process parameter variation, and is obtaired fne

Note that, the use of the above corrélation information in timing

previous logic level. X;’s are the random variables representing theanalysis automatically takes care of the signal correlation due to the

variation in length, width and the oxide thickness. The elation
between the input arrival time and the threshold voltagéatian

reconvergent paths.



e The covariances among the input signalsv(Ain,i, Ain,;);

Levelize the Circuit i,5 =1,2,...,n;, wheren is the number of primary inputs).

] e The covariance between the input arrival time and the psoces
< Initialize Primary Inputs > parameterscov(Ain, X)).
Based on the signal information at the primary input, theaig
| information at the output edges of logic level 1 is calcudaising the
Compute Signal Information method described in the previous section. The signal irddion is
at the output edges then propagated to the next logic level. Finally, at the pryroutput

we apply theM A X function to calculate the circuit delay.

X Dci'rcuit = MAX(APO,out,h APO,out,27 aeey APO,out,n) (22)
final level ? Move to
Next Level whereApo 0wt is the arrival at the'th primary output, anch rep-

resents the total number of primary outputs.

MAX(Primary Output Edges) . .
=> Circuit Delay 4.3. Complexity of the Algorithm
In this section, we present a run-time complexity analy$ighe
) ) ) ) proposed algorithm. Let us assume thereldraumber of gates and
Figure 4. Levelized Covariance Propagation Al- m logic levels in a given circuit. The computational comptgaf
gorithm the algorithm involves the calculation of (1) Means andaackes, (2)
covariances among the signal arrival times and (3) the @vess
between signal arrival time and the process parameterscdrmeu-
tation time for (1) and (3) has linear dependency on the nurabe
gates in a particular level. In addition to that, the comporetime of
(3) also depends on the number of random variables repiegeahe
spatial correlation of process parameters. On the othet, ltla@ com-
cov(Aput, X) = coo(MAX (Ain1 + D1, Ain o + D2), X) putation time for (2) depends quadratically on the numbeyadés in
a particular logic level. This is because the covariancésdmn all
cov(Ain,1 + D1, X)®(@) + cov(Ain,z + D2, X)@(—a) possible pairs of output signals are computed. Hence, thetvun-

Covariance between the signal arrival time and the process pa-
rameters

The covariance between signal arrival time at the outputfrgput
gate and the process parameters can be expressed as,

= cov(Ain,1, X)P(a) + cov(Ain,2, X)P(—a) time complexity of the proposed algorithm can be expressed a
+  cov(D1, X)®(a) + cov(D2, X)P(—a) (20) m
> 0(ns) + O(nis x k) + O(n3) (23)

whereX is set of the random variables representing the variation in
length, width and the oxide thicknesd;,’s andD’s are respectively, _ _ ) _
the arrival times at the inputs and the corresponding pipitiadelays Wherek is number of random varlablgs represe.ntlng the spatial cor-
of the gate cov(Ain.1, X) andcov(Aqn 2, X) are obtained from the relation andn; is the number of gates in thih logic level. It can be

previous logic levelcov(D;, X) is calculated using Eq. (3) as, seen that the complexity of the proposed algorithm depermigtiyn
on the number of gates in a logic level sif is large, the overall com-

n plexity will be dominated by the third termQ(n?)) in Eq. (23) and
cov(Di, X) = cov(Dio + Z 5iXj, X) will quadratically depend on;.
J
= D sjeou(X;, X) (21) 5. Simulation Results
J The proposed statistical timing algorithm was implemeriteG.

whereX;’s are random variables representing the spatial coreelati Ve used this algorithm to calculate the circuit delay of saMSCAS

of the process parametersov(X;, X )'s are obtained using the co- benchmark circuits. All the circuits were synth_es_lzed_ gBPTM
variance matrix described in section 2.1. Similarly, theazance ~/Onm technology [1]. We assumed 153w} variation in channel
between all output signals and the process parameters tamed length, width, oxide thickness and the threshold voltageafbour
and the covariance information is stored ininx M matrix (M is experiments. Al6 x 16 rectangular grid structure is used to model
the number of random variables used to model the spatialeion the spatial correlation of parameters such as length, veidthoxide

of process parameters) and propagated to the next logic leve thickness. ) )
In order to verify the proposed algorithm, we also compated t

4.2 Statistical Timing Analysis Algorithm simulation results with Monte-Carlo simulation. For a ddesable
’ accuracy in the analysis, we chose to t@d00 iterations for Monte-

Fig. 4 shows the flow diagram of the proposed algorithm. Thes, 4 simulation. Fig. 5 shows the circuit delay distribatiof IS-
algorithm starts with levelizing the logic gates in a givercait. In - cag 499 benchmark circuit. It can be observed from the figuae
the second step, the algorithm is initialized by feedingsigmal in- 0 cireyit delay distribution obtained using the propoatgbrithm
formation to the primary inputs of the circuit. The signdbirmation  .,nsidering both spatial correlation and the effect otican place-
contains; ment of dopants) closely matches with the Monte-Carlo st

e The meanga,, ) and the variancea(im) of signal arrival time  result. However, the circuit delay analysis considerinty ¢hhe spa-

at each primary input. tial correlation (case 2) provides optimistic results canagl to the



Table 1. Simulation results for ISCAS benchmark circuits

Circuit No. of | logic Mean delay(ps) delay sigma(ps) CPU-time (s)
TR depth MC LCP error (%) MC LCP | error (%) || MC | LCP
c74L85| 148 11 118.78 | 119.01 0.20 12.22 | 12.12 0.81 1.86 | 0.28
c74181| 372 17 197.26 | 197.35 0.05 18.44 | 18.50 0.37 2.87 | 0.39
c432 590 28 531.06 | 530.91 0.03 26.74 | 26.73 0.06 4.03 | 0.55
c1908 | 1582 38 531.30 | 533.13 0.34 38.54 | 38.05 1.28 11.81 | 0.63
€880 1642 30 364.48 | 364.00 0.13 31.11 | 31.17 0.18 12.87 | 0.86
c499 1816 29 380.43 | 381.46 0.27 29.91 | 28.93 3.28 14.48 | 0.67
c3540 | 3638 43 609.63 | 612.54 0.48 40.64 | 40.24 0.99 2455 1.19
c5315 | 6284 45 558.80 | 557.73 0.19 45.81 | 46.82 2.19 46.10 | 2.78
c6588 | 9472 | 122 || 1646.40| 1648.52 0.13 123.82| 123.78 0.03 63.19 | 3.70
4000 ‘+ Monlé—Carlo Refer ences
3500 oz
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