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Abstract: 
New nanotechnology based devices are replacing CMOS 
devices to overcome CMOS technology’s scaling 
limitations.  However, many such devices exhibit non-
monotonic I-V characteristics and uncertain properties 
which lead to the negative differential resistance (NDR) 
problem and the chaotic performance. This paper proposes 
a new circuit simulation approach that can effectively 
simulate nanotechnology devices with uncertain input 
sources and negative differential resistance (NDR) 
problem. The experimental results show a 20-30 times 
speedup comparing with existing simulators.   
 
1. Introduction 
 
 Due to the increasing circuit complexities and scaling 
limits of the CMOS devices, new devices, such as resonant 
tunneling diodes (RTD), resonant tunneling transistors 
(RTT) and carbon nanotubes (CNT), are being investigated 
to replace the traditional CMOS devices. Different from the 
existing CMOS devices, the new devices exhibit non-
monotonic I-V characteristics which consist of multiple 
peaks and valleys. In additional, the new devices may also 
demonstrate strong sensitiveness towards uncertain 
environmental changes. The non-monotonic I-V 
characteristics and the response to uncertain changes are the 
two main issues in the circuit modeling and simulation for 
the nanotechnologies.    

The traditional deterministic circuit simulators, such as 
SPICE, estimate the nonlinear device performance by the 
differential conductance technique together with Newton-
Raphson (NR) iterations. When used to simulate the non-
monotonic I-V characteristics, differential conductance 
technique introduces negative differential resistance (NDR) 
problem which either causes oscillations of Newton-
Raphson iterations or results in false convergence during 
transient simulation. When applied to analyzing systems 
with uncertain sources, especially time variant uncertain 
sources, SPICE-like deterministic simulators require several 
hundreds to over thousands of Monte Carlo simulations at 
each time point.  The high computational complexity at 
each time step makes the traditional circuit simulators 
unable to analyze practical circuits.  

Recent research work attempts to modify the Newton-
Raphson method to force it to converge to meaningful 
solutions. For example, Bhattacharya and Mazumder [1] 
proposed current stepping and time-step auto reduction 
schemes to modify the SPICE simulators. Le et al. in [2] 
proposed a piece-wise linear approach to replace Newton-

Raphson iterations. The paper approximated the nonlinear 
nanodevice by piece-wise linear conductance.   By applying 
an adaptive time step control mechanism together with the 
current stepping approach, the method generates accurate 
results within reasonable run time.   
 This paper presents two new approaches for nanocircuit 
modeling and analysis. The first approach models the 
nanodevice as step-wise equivalent conductance (SWEC) to 
avoid non-linear devices related Newton-Raphson 
iterations. In cases of non-monotonic I-V characteristics, 
the new approach always models the devices as positive 
conductance. Thus, the SWEC technique completely 
prevents the occurrence of the NDR problem. The second 
approach predicts the nanocircuit performance with 
uncertain inputs by a new stochastic integration technique 
called Euler-Maruyama method (EM). Equivalent to Euler 
integration approaches in the deterministic differential 
equations, the EM method numerically integrates the 
stochastic differential equations in the time domain to 
approximate the solutions at each time step.    

The rest of this paper adheres to the following format. 
Section 2 summarizes the anticipated characteristics of the   
nanoelectronic devices and the existing techniques for the 
simulation of nanocircuits. Section 3 discusses the features 
and methodology of SWEC and its application to the 
resonant tunneling diodes. Section 4 explains the EM based 
performance prediction. Section 5 presents the results and 
Section 6 concludes this paper. 
 
2. Background 
 
2.1 Anticipated characteristics 

Strong quantum effects in nanotransistors and nanowires 
manifest themselves in a level of “potentialities” and a level 
of “actualizations”.  “Potentialities” point to a probabilistic 
approach to the modeling of nanodevices and nanowires. 
“Actualizations” demand an accurate estimation approach 
to capture the discrete nature of the devices and wires.  The 
proposed two approaches in this paper target both 
“potentialities” and “actualizations”. 
 
2.1.1. Actualizations. In most RTT based nanotransistors, 
for example, the different discrete energy levels of each 
material within the transistor terminals act as barriers to 
current flow.  Current flows only when a modulated voltage 
aligns these energy levels.  Electrons may then resonate, 
"tunnel" across the base, and thus provide current flow from 
the emitter to the collector. The resulting I-V characteristics 
exhibits multiple peaks with a staircase contour that leads to 
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the negative differential resistance problems.  Figure 1(a) 
shows the collector current  versus the collector-
emitter voltage  for the RTT. A similar curve applies 
to nanowires. Figure 1(b) illustrates the I-V characteristics 
of an individual carbon nanotube (CNT). The staircase 
characteristics of the conductance signal confirms that the 
carbon nanotubes behave as quantum wires. 

)( CI
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Figure 1 - I-V curves for (a) RTT (b) CNT [9] 

 
2.1.2 Potentialities. Nanocircuits are sensitive to the 
environmental changes and have been widely accepted as 
best candidates for future biomedical sensors. However, the 
highly sensitive property also leads to uncertain 
performance.   One way to predict the performance is to 
model the nanocircuit as a system with random inputs.   

Conventional circuit simulation tools, such as SPICE, 
can only handle circuits with deterministic inputs.  The 
current paper is the first one which discusses the possible 
extension of Euler integration method to Euler-Maruyama 
integration method.  

In the next two sections, we demonstrate the SWEC 
application in the RTD-based circuit and the EM approach 
to analyze circuit with random inputs.  
 
3. Step Wise Equivalent Conductance Model 
 
3.1 NDR problem in Existing Simulators 

SPICE-like simulators use Newton-Raphson method to 
solve nonlinear circuit equations. One important 
assumption made during these iterations is that the initial 
guess is close enough to the correct solution of the 
equation. When the initial guess is far from the correct 
solution, successive iterations produce oscillatory results 
even if the circuit is not oscillatory.  

 
Figure 2 - Dependence of NR method on initial guess [8] 

 
Figure 2 shows the dependence of the convergence of 

Newton-Raphson method on the initial guess. Starting with 
initial guess x0 leads to oscillations between points x1 and 
x2 whereas having x0’ as the initial guess makes the 
simulation converge [8]. 

During transient analysis, SPICE uses the solution at one 
time point as the initial guess for the next iteration. This 
strategy works when the applied voltage change is very 
small. However, if the previous simulation point had a 
much different applied voltage than the current point, this 
could also lead to convergence problems. In order to avoid 
such problems, SPICE employs techniques such as source 
stepping and device limiting. But, as pointed out by [8], 
none of these techniques are helpful while simulating 
circuits having non-monotonic I-V characteristics.  
 
3.2 Step Wise Equivalent Conductance Model 

Due to the quantum effect, nanotechnology devices 
exhibit the staircase I-V characteristics shown in Figure 1 
(a) and (b). The Step Wise Equivalent Conductance 
technique approximates the non-linear characteristics of a 
nanodevice with a stepwise constant conductance that 
captures the staircase characteristics accurately. It is a non-
iterative method and involves computation of the equivalent 
conductance at each time step. The technique exploits the 
fact that within a reasonably small time step, every non-
linear circuit behaves linearly [4]. It replaces a nonlinear 
circuit by a linear circuit composed of time-varying 
conductors. For the integration of the time-varying circuit 
within one time step, an effective constant conductance is 
determined for each time-varying conductor. The implicit 
integration of the equivalent linear time-varying circuit 
does not require solution of any non-linear equation. The 
method is consistent, absolutely stable and convergent. 
 The idea of Step-Wise Equivalent Conductance can be 
best explained by the nodal equation of a circuit 

)()()()( tbutVCtVtG s=+ &  
G  is the conductance matrix and  is the capa
matrix. At every time point, the value of d
equivalent conductance is evaluated and the  m
updated. It is important to note that the estimation
equivalent conductance of the device at every time 
very prone to error and the accuracy of the ap
depends on how the time step is chosen. Too large
step might lead to the failure of implicit inte
methods to capture the response of the circuit, wh
small a time step hampers the speed of the simula
achieve a good tradeoff between the accuracy and
we need to adaptively control the time step accordin
situation at every time point.  The adaptive tim
control scheme is explained in detail in the Section 3
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conductance  is the ratio of  and , evaluated 
at that time [3].  
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3.3 Application of SWEC to R

Figure 4 - RTD I-V Cha
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where A , , C , ,B D H ,  and  are device parameters 
which define the I-V characteristics of a particular RTD. 
The I-V characteristics of an RTD are shown in Figure 4. It 
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region (NDR) followed by a second positive differential 
resistance region (PDR2).  
 Based on 1st order Taylor expansion, Equation (5) 
approximates the value of the equivalent conductance of the 
non-linear circuit elements at the next time point:  
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where  is the value of the time step at  and nh n )(nGeq′ is 
the time derivative of the equivalent conductance evaluated 
at . The values of  and  for an RTD can be 
evaluated using equation (6) and (7) respectively. 
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 The expression for the equivalent conductance of an 
RTD (equation (6)) contains the voltage across the RTD as 
the only time varying quantity. Hence, the time derivative 
of the equivalent conductance of an RTD can be written as 
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 Figure 5 shows the differential conductance result for an 
RTD from [1] and stepwise equivalent conductance result 
from our approach. The differential conductance approach 
generates negative values of the conductance as the device 
enters the resistance decreasing region (RDR), whereas the 
stepwise equivalent conductance approach always generates 
positive values of the conductance.  
 
 

Figure 5 - RTD conductance as function of applied b
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3.4 Adaptive control of Time Steps 
 Selection of step size is one of the critical steps of circuit 
simulation. SWEC employs adaptive control of time step 
according to the situation at each time point [4]. For a given 
percent error, we try to maximize the size of the time step 
so as to speed up the simulations. The percentage local 
error, ε , at the output at time   is given as 1+nt

),(

),(

1

1

+

+

∆

∆−∆

nno

onno

ttV

VttV
n  

where  is the actual change in output vo
and  is the estimated change by using the equiv
conductance model [4]. For a given value of

),( 1+∆ nno ttV

noV∆
ε ,

constraint on the time step can be calculated. 
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 Experimental results indicate that a good accura
achieved if these constraints are satisfied for all the de
in the circuit [4]. 

 
Figure 6 - Inverter and its RC equivalent circuit

 
Thus the time step constraints can be calculated for 
transistor and the minimum of those can be used as the
time step, i.e. 
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4.  Transient Simulation with Random Inpu
 
 Circuit response with random noise is an active res
topic in the analog circuit design area. Because o
uncertain behavior of nanodevices, a few recent papers
[12] also discussed the power grid analysis with ran
current draws from nanodevices.  In both research to
the stochastic differential equation (SDE) model play
important role in finding the expected value of the c
response or performance. 

 However, as pointed out by some recent publications 
[15], the expected value of the performance can only 
provide an average performance, while the transient value 
is also important to most applications. For example, in the 
power grid analysis case, even though the average voltage 
drop is zero, if the transient voltage drop at a certain time 
point exceeds certain constraints, the whole design is still 
going to fail. Likewise, the transient response of nanocircuit 
offers real time performance estimation and catches the (
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possible signal integrity problems in the circuits.   
 Existing simulators only analyze circuits with 
deterministic inputs, the current paper is the first one 
discussing the transient simulation technique for nanocircuit 
with uncertain inputs.  
 
4.1 Model the Input as Wiener Process 

The state equation for a nanocircuit can be written as  
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with 0)0( xx =   as the initial value. Here is the response 
of the circuit, G  and C are the parasitic matrices. Since G  
is time variant, Equation (13) also includes cases with the 
nonlinear nanodevices. Assume represents the random 
time domain input. Because of its high randomness, is 
generally modeled as white noise. Let 
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By analogy with the above two ways, the stochastic integral 

can be estimated as in Equation (15) or (16):   
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Equation (15) and (16) give markedly different ans
Even with , the mismatch of the two equations
not go away. This emphasizes the significant diffe
between deterministic and stochastic integration: that 
have to be precise about the way the sum is formed. Th
the expected value of the results from Equation (15
(16) are the same, for the purpose of transient perform
prediction, each equation leads to different pred
mechanism [14].  In the current paper, we use Equation
for stochastic integration. Equation (15) is also referr
Ito integral.  
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Each of the three terms on the right-hand side of Equ
(18) approximates the corresponding term on the right
side of Equation (19). We also note that in the determi
case ( and constant), Equation (19) reduc
Euler’s method.  Following the Black-Scholes app
[13] [14], we can predict the peak performance w
certain time window. A close analogy to this problem 
stock price prediction.  
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5. Results 
  
5.1 DC Analysis: 

Figure 7(a) shows the I-V characteristics of the RTD as 
captured by our approach. The circuit consisted of a series 
combination of a resistor and an RTD across a voltage 
source (a voltage divider circuit). The figure also shows the 
I-V characteristics as captured by our implementation of the 
Modified Limiting Algorithm (MLA) presented by 
Bhattacharya and Mazumder [1]. As we can see, our 
approach is able to capture the negative resistance region of 
the I-V curve very closely and accurately. Similar curve for 
a nanowire is shown in Figure 7(b). A range of voltages 
were applied to the series combination of a nanowire and a 
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characteristics of a carbon nanotube, indicating that SWEC 
is able to simulate the circuits involving nanowires.  

 

 
 

Figure 7 - I-V characteristics using SWEC (a) RTD  
(b) Nanowire  

 
Table I compares the number of floating point operations 
needed to perform different types of simulations by SWEC 
and MLA. Due to the unavailability of the MLA code, we 
present the comparison between SWEC and the 
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implementation of the MLA done by us. As mentioned 
earlier, SWEC is a non iterative method and thus yields 
high simulation speed. This is clearly depicted by the 
results presented in table I. 
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Table I - Comparison of DC simulations performance 
 
5.2 Transient Analysis: 

We simulated an FET-RTD inverter circuit using the 
stepwise equivalent conductance technique. The input 
voltage switches between 0 and 5V. Figure 8(a) shows the 
circuit and the output obtained at the junction of two RTDs 
is shown in Figure 8(b). The values of model parameters 
used for this simulation are as follows: A = 1e-4; B = 2; C = 



1.5; D = 0.3; n1 = 0.35; n2 = 0.0172;    H = 1.43e-8. Shown 
also are the responses obtained by other circuit simulators. 
As can be seen from Figure 8(c), SPICE3 fails to converge 
to the correct solution [2]. SWEC generates more accurate 
response without needing to solve set of non linear 
equations, thus yielding better results at less computational 
expense. 

 
 

Figure 8 - (a) FET-RTD Inverter, Output generated by (b) 
SWEC, (c) SPICE3, (d) ACESn [2] 

 
 Figure 9(a) shows the circuit of an RTD-D flip-flop. 
Refer [6] for details on the working of the circuit. The 
circuit was simulated with the clock waveform as shown in 
Figure 9(b). The data applied and the output obtained is as 
shown in Figure 9(c). The input waveform switches at t = 
300ns and the output waveform switches at the rising edge 
of clock at t = 350ns. This shows that we could capture the 
right behavior of the circuit using our stepwise equivalent 
conductance technique. 
 

 
 

Figure 9 - (a) RTD-D Flip Flop, (b) Clock Signal, (c) Input 
and output waveforms 

 
5.3 Performance Prediction: 
Figure 10 demonstrates the results from both true solution 
and EM integration method. The circuit is a time-variant 
nanoscale transistor with some parasitic RCs. From 0-1ns, 
we observe a possible performance peak about 0.6 V.  
 
6. Conclusions 
 
 This paper proposes a new stepwise conductance based 
statistical simulator. It not only prevents the NDR 
problems, but also predicts the performance within certain 
time windows. The proposed simulator has over 20-30 
times speedup over the SPICE-like simulator.  
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Figure 10 – Results from EM method and Analytical
solution. X is node voltage in 1:10 ratio 
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