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Abstract: We propose an efficiently preconditioned 
generalized minimal residual (GMRES) method for fast 
SPICE-accurate transient simulation of parasitic-sensitive 
deep-submicron VLSI circuits. First, when time step-sizes 
vary within a predefined range, the preconditioned 
GMRES method is applied to solve circuit matrix equations 
rather than LU factorization. The preconditioner we use 
comes directly from the previously factorized L and U 
matrices. Second, to keep using the same preconditioner 
during nonlinear iteration, the successive variable chord 
method is applied as an alternative to the Newton-Raphson 
method. An improved piecewise weakly nonlinear 
definition of MOSFETs is adopted and the low-rank update 
technique is implemented to refresh the preconditioner 
efficiently. With these techniques, the number of required 
LU factorizations during transient simulation is reduced 
dramatically. Experimental results on power/ground 
networks have demonstrated that the proposed method 
yields SPICE-like accuracy with an about 18X overall 
CPU time speedup over SPICE3 for circuits with tens of 
thousands elements.  
 
 
1. Introduction 

In modern deep-submicron VLSI circuit design, 
parasitic effects are no longer ignorable with the higher 
operation frequency, lower supply voltage and smaller 
device feature size [10]. Accurate post-layout verification 
requires full-chip simulation of large-scale circuits together 
with massive extracted parasitic elements, which come 
from substrate, power/ground networks, interconnects, etc. 
For such kind of circuits, the per-iteration cost with SPICE 
[9] during transient simulation is dominated by costly LU 
factorizations. New approaches are required for fast-yet-
accurate simulation of parasitic-sensitive circuits. For 
example, several efficient methods [2][4][5][12] have been 
proposed to speedup the simulation of power/ground 
networks. These methods, although orders of magnitude 
faster than SPICE, are mainly tailored for purely linear 
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circuits and have difficulties with nonlinear circuits 
incorporated for full-chip simulation. Recently, [7] 
proposed to couple nonlinear circuits together with 
power/ground networks based on the Gauss-Seidel style 
relaxation [8]. However, when nonlinear and linear circuits 
are strongly coupled, the number of nonlinear iterations 
could be very large. 

A key approach to improving the efficiency of SPICE-
accurate simulation of large-scale parasitic-sensitive 
circuits is to reduce the number of LU factorizations during 
time-domain simulation. In [1], a fixed time step-size is 
assumed and the successive chord method [8] is applied to 
linearize nonlinear devices. Thus, only one LU 
factorization is required during the whole transient 
simulation. However, the application of this method is 
limited since excessive nonlinear iterations might be 
required with only a single chord defined for the entire 
operating region of nonlinear devices. Further, the 
assumption of a fixed time step-size is not adequate for 
circuits with widely distributed time constants. 

Recently, we proposed SILCA [6] for VLSI circuits 
containing strong parasitic coupling effects. Two linear-
centric ideas were used to help keep a circuit matrix 
constant during transient simulation with variable time 
step-sizes: 1) Semi-implicit iterative integration scheme to 
keep equivalent conductance of capacitor/ inductor 
companion models constant for a large time interval; 2) 
Successive variable chord method to keep linearized 
conductance of nonlinear devices constant for a large 
voltage/current range. With these two ideas, the number of 
LU factorizations can be reduced dramatically. However, 
as pointed out in [6], the absolute stability region of the 
iterative integration corrector is related to the number of 
iterations. Consequently, the stability of the iterative 
trapezoid formula could become worse than that of the 
standard trapezoid formula in practice. Therefore, heuristic 
measures have been incorporated in SILCA to ensure the 
A-stability at the cost of more iterations and/or more LU 
factorizations. 

The proposed preconditioned GMRES method [11] in 
this paper borrows the ideas in SILCA to reduce the 
number of LU factorizations during variable time step-size 
transient simulation. Instead of using semi-implicit 
integration predictor and iterative integration corrector in 
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SILCA, standard integration formulas are applied here. 
Thus, the stability problem encountered in SILCA is 
naturally avoided. Furthermore, the number of nonlinear 
iterations with the preconditioned GMRES method is 
smaller than that with SILCA and could be comparable to 
that with SPICE. 

It is well known that the key to fast convergence of the 
GMRES method is to design an efficient preconditioner 
[11]. A good preconditioner should be as close to the 
inverse of a circuit matrix as possible and easy to derive. In 
this paper, we reuse the previously factorized L and U 
matrices as the preconditioner in transient simulation. The 
details are described as below,  

1) When time step-sizes hn vary within a predefined 
range of the basis time step-size h, the 
preconditioned GMRES method rather than LU 
factorizations is applied to solve circuit matrix 
equations. The preconditioner comes directly from 
the previously factorized L and U matrices base on 
the basis time step-size h. 

2) To keep using the already factorized L and U 
matrices as the preconditioner during nonlinear 
iteration, we apply the successive variable chord 
method [6] as an alternative to the Newton-Raphson 
method and improve the piecewise nonlinear 
definition of MOSFETs. The low-rank update 
technique is implemented to refresh the 
preconditioner efficiently. Further, incomplete L 
and U matrices can be derived to act as the 
preconditioner for the better performance. 

With these techniques, the GMRES method is able to 
converge in a small number of iterations and the number of 
required LU factorizations is reduced dramatically. 

This paper is organized as follows. Section 2 presents 
the improved piecewise nonlinear definition of MOSFETs. 
The new preconditioned GMRES method is proposed in 
Section 3. Section 4 summarizes experimental results on 
general nonlinear circuits and power/ground network 
examples. Finally, conclusions are drawn in Section 5. 
 

2. PWNL definition of MOSFETs 
In SILCA, a heuristic piecewise weakly nonlinear 

(PWNL) definition of MOSFETs was proposed. The 
purpose was to keep the circuit matrices constant when 
nonlinear iterations are performed within a PWNL region. 
Therefore, the number of LU factorizations can be reduced. 
In this section, we start from discussing the convergence 
property of the successive variable chord (SVC) method. 
Then systematic rules to generate the PWNL regions of 
MOSFETs are described. Finally, we briefly review the 
low-rank update technique. 

Suppose that nonlinear iterations are performed within 
a PWNL region of a nonlinear function f(x) to solve f(x)=0, 
as shown in Fig. 1, nonlinear iteration can be expressed by, 
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where g is the chord for this PWNL region. Let the exact 
solution be x* = xi + εi = xi+1 + εi+1. Subtracting x* from both 
sides of Eq. (1) gives, 
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By the Taylor expansion of f(x) at xi, we obtain the 
following error estimation, 
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Eq. (3) shows clearly that a quadratic convergence rate 
is achieved if g is equal to f’(xi), which is the Newton-
Raphson method. Otherwise, the convergence rate is 
reduced to be linear, which is the case for the successive 
variable chord method. We observed that, on one hand, the 
smaller the |1- f’(xi)/g| is, the closer to the quadratic 
convergence rate Eq. (3) is. On the other hand, the larger 
the |1- f’(xi)/g| is, the larger the range of a PWNL region 
could be. Apparently, there exists a tradeoff between the 
convergence rate and the range of a PWNL region. We 
define the following condition with a parameter δ<1, 
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For a PWNL region as shown in Fig. 1, it can be derived 
from Eq. (4) that, 
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Figure 1. SVC method for f(x) within a PWNL region. 

It should be noted that the above analysis is done in the 
context that nonlinear iterations are performed within a 
PWNL region. In case that nonlinear iterations run across 
two or more PWNL regions, such as the example shown in 
Fig. 2 where the exact solution resides at the boundary of 
two PWNL regions, the following condition should be 
satisfied to achieve convergence, 
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Thus, g1 and g2 should satisfy the following inequality, 
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In our experiments, to satisfy both Eq. (5) and Eq. (7), the 
chord is chosen to be the maximum derivative in each 
PWNL region. With the knowledge of device model 
behaviors, such as monotonicity, the maximum derivative 
for each PWNL region can be computed. 
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Figure 2. SVC method for f(x) near the boundary of two PWNL 

regions. 

It should be noted that PWNL regions of a nonlinear 
function is equivalent to piecewise constant (PWC) regions 
of the first-order derivatives of the nonlinear function. The 
following three rules can be used to generate PWNL 
regions for the MOSFET model.  

1) The maximum voltages of Vds and Vgs are 
predefined. In our experiments, we use Vdd as the 
maximum voltage for both of them. Given model 
parameters, the maximum gds and gm can be 
calculated. 

2) With a predefined δ<1, the PWC regions for gds 
and gm are calculated as below, 
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3) A lower bound of gds and gm is predefined, so that 
the rule (2) will stop whenever gds and gm are less 
than the predefined lower bound. This is necessary 
to avoid a PWC region for gds and gm being too 
narrow. 

With the above rules, the PWC regions for gds and gm of the 
MOSFET level 1 model in the two-dimensional Vds and 
(Vgs-Vth) plane are shown in Figs. 3 and 4, respectively. 
There are five PWC regions for both gds and gm. 

It is clear from Figs. 3 and 4 that gds and gm reach their 
maximum values in different PWNL regions. It should be 
noted that effects due to Vbs have been incorporated into Vth. 
For the MOSFET level 1 model, gmbs has a simple 
relationship with gm [13], 
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For the simplification purpose, we always use the 
maximum  in our experiments. Therefore, the 

PWC regions for g

sbth dVdV /

mbs are the same as those for gm. The 
rules of generating PWNL regions can be applied to 
complicated MOSFET models such as BSIM3 [13], as well. 

As mentioned in [3], the low-rank update technique is 
an efficient method to update the factorized L and U 
matrices when only a few nonlinear devices change their 
PWNL regions. When a MOSFET switches its operating 
PWNL region, the contribution of this MOSFET to the 
circuit matrix changes as follows, 
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With the above representation, the low-rank update 
technique can be applied. 

 
Figure 3. PWC regions of gds in two-dimensional Vds-(Vgs-Vth) plane. 

 
Figure 4. PWC regions of gm in two-dimensional Vds-(Vgs-Vth) plane. 

 

3. Preconditioned GMRES method 
The transient simulation flow of the proposed 

preconditioned GMRES method is shown in Algorithm I 
described below. It is clear from Algorithm I that LU 
factorizations are only performed when time step-sizes 
vary out of the predefined hn/h range. In other cases, the L 
and U matrices are either kept constant or updated by the 
low-rank update technique when nonlinear devices switch 
their piecewise nonlinear regions. During the whole 
process, the L and U matrices are used for forward/ 



backward substitution (FBS) and act as the preconditioner 
for the GMRES method. 

Three types of preconditioners are tested in our 
experiments: 1) The full L and U matrices. 2) Type I 
incomplete L and U  (ILU) matrices approximated from the 
full L and U matrices – a matrix element a(i,j) in the L or U 
matrix is removed if |a(i,j)|<c·|a(i,i)| and |a(i,j)|<c·|a(j,j)|. 3) 
Type II incomplete L and U matrices approximated from 
the full L and U matrices – a matrix element a(i,j) is 
removed if |a(i,j)|<c·max(|a(*,j)|) in L or |a(i,j)|< 
c·max(|a(i,*)|) in U. c is a small positive number, 0.001 is 
used in our experiments. 

Algorithm I. Transient simulation flow. 
DC operating point analysis 
Choose an initial step size h0, the basis step size h = h0, t = 0 
WHILE (t<Tfinal){ 

OUTER LOOP: do{ 
α = hn/h, iter_no = 0 
INNER LOOP: do{ 

IF(0.625<α<2.5){ 
 IF(PWNL region is changed){ 

Apply low-rank update on L/U matrices 
} 
Apply preconditioned GMRES method 

}ELSE{  
IF(iter_no==0){ 

Apply LU factorization & FBS 
}ELSE{ 

IF(PWNL region is changed){ 
Apply low-rank update on L/U matrices 

} 
Apply FBS 

} 
} 
iter_no = iter_no + 1 

} while (not converged) 
Choose a new hn based on LTE requirement 

} while (LTE greater than predefined error limit) 
t = t + hn

} 

In Algorithm I, the PWNL definition of MOSFETs 
described in Section 2 is used for the preconditioner. 
However, it is not necessary for the GMRES method to use 
the same PWNL definition to construct the circuit matrix 
equations. Instead, the GMRES method could still use 
standard MOSFET models so that accurate model 
information is included. This is especially useful for 
incorporating nonlinear capacitors, since nonlinear 
capacitors are generally simplified to linear ones when used 
for the preconditioner. Furthermore, by using standard 
MOSFET models for the GMRES method, the number of 
nonlinear iterations with the preconditioned GMRES 
method could be close to that with SPICE. 
 

4. Experimental results 
4.1 General nonlinear circuit examples 

To verify the proposed GMRES method on general 
nonlinear circuits, several digital, analog and RF circuits 
have been tested and results are shown in Table I. The 

preconditioner for the GMRES method is the full L and U 
matrices. From Table 1, we see that the number of LU 
factorizations is reduced dramatically compared to that 
with SPICE. For the simplification purpose, we used the 
PWNL definition of MOSFETs for both the preconditioner 
and circuit matrix equations solved by the GMRES method. 
Therefore, the number of nonlinear iterations is generally 
increased to less than 2X of that with SPICE. Compared to 
SILCA, the proposed GMRES method generally requires 
less number of nonlinear iterations. 

Table I. Simulation results on test circuits*. 

Test Circuits
#Total 
points

#Accepted 
points 

#Tran 
Iter 

#Tran 
LU 

#GMRES 
Iter 

142 127 344 344 − Inv 
141 127 380 63 253 
369 266 1193 1193 − 20-stage inv 

chain 357 259 2029 60 5275 
132 123 306 306 − Nand2 
120 112 421 54 324 
501 421 1525 1525 − One-shot 

trigger 505 421 2650 198 5971 
145 127 444 444 − Comparator
156 138 1071 60 1354 

19812 13816 74216 74216 − Opamp 
follower 19723 13785 91808 11 219717 

243 173 1022 1022 − Ring 
oscillator 260 192 2250 38 5186 

1506 1045 7621 7621 − VCO 
1600 1137 16096 399 47609 

*Note:   For each circuit, the 1st row is the SPICE3 result, and the 2nd 
row is the GMRES result. 

 
4.2 Power/ground network examples 
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Figure 5. The power/ground network example. 

To examine the efficiency of the proposed GMRES 
method, a power/ground network example as shown in Fig. 
5 is simulated, which is similar to that used in [6]. The 
power and ground supply networks are modeled as two 
RCL mesh layers (parasitic coupling capacitors are not 
shown in Fig. 5). In our example, between these two layers 
is a 20-stage inverter chain, representing nonlinear circuits. 
Furthermore, RCL loads are added for each inverter to 
model interconnect lines between the adjacent stages. The 



size of two RCL meshes can be changed to vary the 
number of elements. 

Tables II, III and IV summarize the simulation results 
for power/ground network examples using the GMRES 
method with the full LU preconditioner, the type I ILU 
preconditioner and the type II ILU preconditioner, 
respectively. The error tolerance ε for the GMRES method 
is set to 1e-8. SPICE3 simulation results are also included 
in Table II. For clarity, the run time comparison is shown 
in Fig. 6. It is expected that more speedup could be 
achieved for larger power/ground networks. 

 
Figure 6. Run time variation with the number of elements in P/G 

network examples 

 
Figure 7. Histograms of the number of L and U matrix elements 

It is seen that the GMRES method with the type II ILU 
preconditioner achieves the best speedup over SPICE3 for 
the largest power/ground network – 18.02X. The reason is 
that the number of matrix elements in the type II ILU 
preconditioner is much less than those in the LU 
preconditioner and the type I ILU preconditioner, 
especially for large matrices. For the power/ground 
network example with 4002 elements, the histograms of the 
number of L and U matrix elements during transient 
simulation are shown in Fig. 7. The number of matrix 
elements in full L and U matrices is 3116915 for this 

example. It is observed that the number of L and U matrix 
elements in the type II ILU preconditioner is reduced to 
about 1/10~1/5 of that in the full LU preconditioner. 

With the error tolerance ε set to 1e-8, the average 
number of GMRES iterations in each GMRES solving 
process (#GMRES Iter / #GMRES) is about 3.20 to 3.35 
for the GMRES method with the full LU preconditioner  as 
shown in Table II. It increases to about 3.75 to 4.50 and 
4.05 to 4.75 for the GMRES method with the type I ILU 
preconditioner (Table III) and the type II ILU 
preconditioner (Table IV), respectively. It is clear that the 
proposed preconditioner is efficient for the GMRES 
method during time-domain VLSI circuit simulation. In our 
experiments, when the error tolerance ε is further decreased 
to 1e-10 for higher accuracy, the average number of 
GMRES iterations in each GMRES solving process 
increases to about 6.60 to 8.35 for the GMRES method 
with the type II ILU preconditioner. As a result, the 
GMRES method requires more run time when the error 
tolerance is made smaller. Therefore, there exists a tradeoff 
between the accuracy and efficiency. 

 
Figure 8. The output waveform of the power/ground network example 

Figure 8 shows the output waveform of the inverter 
chain between the power and ground networks. It is seen 
that the low-level voltage of the output is larger than the 
ideal ground voltage due to the IR drop and L*dI/dt effects. 
It is clear in Fig. 8 that the accuracy with the proposed 
GMRES method is comparable to that with SPICE3. 

It is worthy noting that the number of required LU 
factorizations (#Tran LU) is reduced dramatically with the 
preconditioned GMRES method compared to SPICE3 
(#Tran LU = #Tran Iter). Furthermore, compared to the 
simulation results with SILCA, a similar speedup over 
SPICE3 has been achieved by the preconditioned GMRES 
method. However, the proposed preconditioned GMRES 
method is free of numerical stability problems as 
encountered in SILCA. Although the number of iterations 
(#Tran Iter) with the preconditioned GMRES method is 
increased to about 1.5X due to the PWNL definition of 
MOSFETs, it is still much less than that with SILCA. 



 

5. Conclusion 
In this paper, an efficiently preconditioned GMRES 

method is presented to speedup the transient simulation of 
parasitic-sensitive deep-submicron VLSI circuits. The cost 
of LU factorizations is minimized since they are only 
performed if time step-sizes vary violently. When time 
step-sizes change within a predefined range, the GMRES 
method is invoked with the preconditioner coming from the 
previously factorized L and U matrices. An improved 
PWNL definition of MOSFETs is also proposed to reduce 
the number of nonlinear iterations. With these techniques, 
the cost of required LU factorizations has been reduced 
dramatically. Orders of magnitude speedup has been 
achieved on power/ground network examples with the 
SPICE-like accuracy. The speedup could be further 
boosted by the parallel implementation of the GMRES 
method [11]. 
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Table II. Simulation results for the power/ground network example (ε=1e-8, LU preconditioner). 

SPICE3 Preconditioned GMRES #Elems 
#Tran 

Iter 
Tran LU 

(sec) 
Tot Tran 

(sec) 
#Tran 

Iter 
#Tran 

LU 
#GMRES #GMRES 

Iter 
Tran LU 

(sec) 
GMRES 

(sec) 
Tot Tran 

(sec) 

Speedup 

4002 4023 371.20 403.99 6086 49 5945 19872 4.42 114.12 132.48 3.05 
34802 4006 4.549e4 4.760e4 7083 51 6922 22140 661.66 9572.16 10648.52 4.47 
61602 4377 1.797e5 1.848e5 7207 63 7000 22476 2848.69 20549.69 24275.38 7.61 

 
Table III. Simulation results for the power/ground network example (ε=1e-8, type I ILU preconditioner). 

Preconditioned GMRES #Elems 
#Tran 

Iter 
#Tran 

LU 
#GMRES #GMRES 

Iter 
Tran LU 

(sec) 
GMRES 

(sec) 
Tot Tran 

(sec) 

Speedup 

4002 6682 46 6547 24710 4.01 90.37 108.98 3.71 
34802 7017 55 6836 29143 696.01 5538.22 6637.26 7.17 
61602 6624 49 6462 29012 2123.18 10602.02 13458.90 13.73 

 
Table IV. Simulation results for the power/ground network example (ε=1e-8, type II ILU preconditioner). 

Preconditioned GMRES #Elems 
#Tran 

Iter 
#Tran 

LU 
#GMRES #GMRES 

Iter 
Tran LU 

(sec) 
GMRES 

(sec) 
Tot Tran 

(sec) 

Speedup 

4002 6771 53 6618 26886 4.72 79.11 99.08 4.08 
34802 6682 54 6509 29746 680.48 3674.44 4740.55 10.04 
61602 6758 52 6586 31354 2221.41 7249.35 10252.93 18.02 
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