
Multithreaded Extension to Multicluster VLIW
Processors for Embedded Applications

Domenico Barretta, William Fornaciari, Mariagiovanna Sami
Politecnico di Milano, Dipartimento di Elettronica e Informazione

Daniele Bagni
STMicroelectronics

Abstract

Instruction Level Parallelism (ILP) extraction for multi-
cluster VLIW processors is a very hard task. In this paper,
we propose a retargetable architecture that can exploit ILP
and thread level parallelism jointly, thus allowing an eas-
ier parallelism extraction and improving the performance
with respect to traditional multicluster VLIW processors.

1. Introduction

In current Very long Instruction Word (VLIW) architec-
tures, exploiting high amounts of latent Instruction Level
Parallelism (ILP) may be a very difficult task [4], because
the degree of ILP is mainly limited by the number of func-
tional units that can work simultaneously when they are
connected to a single register file.

Multicluster VLIW architectures tackle this problem by
introducing more than one register file and clustering the
functional units based on the register files they are con-
nected to. This approach allows higher ILP levels than the
base VLIW architectures. However, since each functional
unit can access just its own register file, communication
may have a significant negative impact on the overall per-
formance when data are moved from a register file to an-
other.

Furthermore, with few exceptions, complex applications
do not exhibit a constantly predominant type of parallelism
through the set of procedures of which they are composed
and massive ILP can be found only in some segments of the
application, leading to low usage of VLIW CPU resource.
This fact limits the efficiency of highly parallel architec-
tures when executing such an application and is the reason
for the interest in flexible architectures that can exploit dif-
ferent types of parallelism in order to increase the overall
performance. Some examples of this trend are constituted
by [1, 3, 6, 7]. All the cited examples are based on super-
scalar architectures.

Other architectures that exploit both ILP and thread level
parallelism are dynamically scheduled architectures. In our

case we must confront with the problem of introducing
thread level parallelism in a “pure” VLIW processor, that
is therefore totally static.

2. The proposed architecture

The goal of our work is introducing thread level paral-
lelism in a multicluster VLIW processor by allowing each
cluster to execute a different thread. Since this approach is
very scalable, we will consider for simplicity a processor
that is composed of two clusters.

The main idea is to design a processor that can switch at
run time between two different computation models. In ILP
mode all clusters execute one single thread using long in-
structions (bundles) composed of up to 2M possible opera-
tions (where M is the issue width). In MT mode each clus-
ter executes a different thread using bundles composed of
up to M operations.

Instruction issue unit (IIU) and instruction cache are
strictly correlated, therefore they must be designed jointly
so that both ILP and MT fetch behaviors may be imple-
mented.

Consider a single-ported, n-way set associative (where n
is the number of clusters) multibank instruction cache com-
posed by 2M banks. In ILP mode we can fetch 2M oper-
ations from the only program counter in use. In MT mode,
at each cycle we fetch 2M instructions - starting from the
address pointed by the program counter of a thread - and
store the instructions in a buffer. At the following cycle, we
fetch from the other program counter. This solution allows
the issue, at each cycle, of M instructions per thread, while
reading from the cache 2M consecutive instructions, as de-
scribed in Fig. 1. The control signal named TS (Thread Se-
lection) is applied either to select the program counter to ac-
cess the instruction cache or to enable the input for the cor-
rect instruction buffer. The addressing logic between the in-
struction buffer and the instruction issue unit is used to se-
lect the correct M operations in the buffer to be issued.

In the original architecture we have just one branch
unit that computes the program counter. Since the pro-
posed architecture may execute instructions from more than

1530-1591/05 $20.00 © 2005 IEEE

Figure 1. The proposed instruction issue
mechanism

one control flow, we need a branch unit for each program
counter we introduce. We need therefore a branch unit per
cluster. This allows a simple way for each cluster to update
its program counter based on the subroutine in execution.

In ILP mode, the buffers are bypassed, and the TS con-
trol signal is forced to always be zero, so that the pro-
gram counter from cluster 0 is always sent to the instruc-
tion cache.

Other parts of the architecture have to be replicated, such
as memory protection units, control registers, and so on.
Furthermore, memory protection units must be modified to
tackle the problem of possible concurrent memory opera-
tions accessing the same address.

Decision about which parts of the code should be run
in ILP mode and which parts should be run in MT mode
must be taken by the programmer. Source code is by default
compiled for ILP mode and the programmer must explicitly
call a function to create threads to be run in MT mode. The
call is very similar to the traditional “create thread” call,
with the exception that one thread per cluster must be cre-
ated. The compiler automatically inserts mode switch in-
structions and schedules the code for the correct execution
mode.

3. Experimental results

In order to evaluate the performance improvements that
can be obtained by our method, we have done several exper-
iments by using as driving application an industrial bench-
mark hereinafter called jpeg2ppm. Two application ker-
nels were also used: Aes encryption/decryption and Matrix
Product.

Comparisons are provided with a reference multicluster
VLIW architecture named ST200 [5]. The simulator for the
proposed architecture was developed by modifying a cycle
accurate Instruction Set Simulator (ISS), jointly developed
by STMicroelectronics and Università di Genova [2] for
micro architecture modeling of media processors and em-
bedded systems. The performance obtained on a two clus-
tered modified architecture was compared with the perfor-

mance of a two clustered ST200 that exploits only ILP.
The percentage improvement in Table 1 is computed as
CyclesNew−CyclesOld

CyclesOld
· 100. Max IPC indicates the theoret-

ical parallelism extracted by the compiler, whereas actual
parallelism indicates the average number of instructions ex-
ecuted in a clock cycle, including stall cycles.

Aes Jpeg2ppm Matrix
RISC ops 1.24% 2.04% 8.73%
Active cycles -45.72% -19.16% -49.24%
Inactive cycles -13.99% -2.19% -39.46%
Total cycles -33.74% -11.88% -46.87%
Max IPC 86.51% 26.21% 114.27%
Actual IPC 52.77% 15.79% 104.63%

Table 1. Performance Comparison

4. Concluding remarks

In this paper, we proposed a multicluster VLIW architec-
ture that can switch at run-time between two different com-
putation modes, ILP and MT, in order to better exploit the
types of parallelism present in each part of an application.

A very important consideration is scalability: ILP ex-
posure does not increase dramatically when the number of
clusters of a VLIW processor grows beyond two. The per-
formance of the proposed architecture on MT portions of
code is, instead, expected to scale well with the number of
clusters.

References

[1] http://developer.intel.com/technology/hyperthread/.
[2] I. Barbieri, M. Bariani, and M. Raggio. A VLIW architec-

ture simulator innovative approach for HW-SW co-design. In
Proceedings of ICME 2000, 2000.

[3] R. Espasa and M. Valero. Simultaneous multithreaded vec-
tor architecture: Merging ILP and DLP for high performance.
Proceedings of the 4th international conference on high per-
formance computing, pages 350–357, 1997.

[4] P. Faraboschi, J. A. Fisher, and C. Young. Instruction schedul-
ing for instruction level parallel processors. In Proceedings of
the IEEE, volume 89, pages 1638–1659, November 2001.

[5] P. Faraboschi and F. Homewood. ST200: A VLIW architec-
ture for media-oriented applications. Microprocessor Forum
2000. San Jose, CA, 2000.

[6] C. Molina, A. Gonzalez, and J. Tubella. Trace level specu-
lative multithreaded architecture. In Proceedings of the 2002
IEEE International Conference on Computer Design, pages
402–407, 2002.

[7] J. Tsai et al. The superthreaded processor architecture. IEEE
Transaction on computers, pages 881–902, Sept. 1999.

	Main Page
	DATE'05
	Front Matter
	Table of Contents
	Author Index

