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Abstract
With new sophisticated compiler technology, it is pos-

sible to schedule distant instructions efficiently. As a
consequence, the amount of exploitable instruction level
parallelism (ILP) in applications has gone up consider-
ably. However, monolithic register file VLIW architectures
present scalability problems due to a centralized register
file which is far slower than the functional units (FU). Clus-
tered VLIW architectures, with a subset of FUs connected
to any RF are the solution to this scalability problem.

Recent studies with a wide variety of inter-cluster inter-
connection mechanisms have presented substantial gains in
performance (number of cycles) over the most studied RF-
to-RF type interconnections. However, these studies have
compared only one or two design points in the RF-to-RF
interconnects design space. In this paper, we extend the
previous reported work. We consider both multi-cycle and
pipelined buses. To obtain realistic bus latencies, we syn-
thesized the various architectures and found out post layout
clock periods. The results demonstrate that while there is
very little variation in interconnect area, all the bus based
architectures are heavily performance constrained. Also,
neither multi-cycle or pipelined buses nor increasing the
number of buses itself is able to achieve performance com-
parable to point-to-point type interconnects.

1 Introduction
Media applications have large amount of instruction

level parallelism (ILP) which justifies building very high
issue-rate processors [5,17,18]. While, the exact amount of
achievable ILP is still a point of debate, published work on
future directions for architecture research points in the di-
rection of very high issue-rate processors [6, 14]. Whereas
SuperScalar processors are more popular in the general ap-
plication domain, VLIW processors have gained wide ac-
ceptance in the embedded systems domain e.g. TriMedia,
TiC6x, Equator’s MAP-CA and MAP-1000 [9], HP-ST Mi-
croelectronic’s Lx [3] etc.

VLIW architectures with a monolithic register file with
all the FUs connected to it lead to an increase in the register
file (RF) delay, power and area. The centralized RF thus

becomes a bottleneck in performance on all these metrics
[15]. The RF delay, power and area are more sensitive to the
increase in number of ports rather than the RF size (number
of registers) itself. Clustering the VLIW architecture into a
number of small sets of FUs, wherein each such set has its
own RF is a natural solution to such a scalability problem.
However, the inter-cluster interconnect in such architectures
plays a crucial role in processor performance [19] and [8].

Till recently only one type of inter-cluster cluster inter-
connect, a simple bus connected to all the clusters, was
used and researched in both industry and academia. How-
ever, two published results on evaluation of various inter-
cluster interconnect mechanisms in clustered VLIW proces-
sors [19] and [8] reported substantial performance gains in
number of cycles when various other mechanisms are used.
However, both these studies used few specific design points
for evaluating bus based interconnects. In [19], a single cy-
cle transfer bus was connected to all the clusters and in [8]
two single cycle transfer buses were connected to all.

In this paper we extend the previous reported work
on performance of bus based inter-cluster interconnects in
clustered VLIW processors. We start by showing that the
clock-period is heavily constrained beyond two cluster ar-
chitectures if single cycle transfer buses are used. Towards
this end, we model the various clustered architectures in
VHDL and perform synthesis, place and route using indus-
try standard tools. We next use these results to arrive at
realistic latencies for multi-cycle and pipelined buses such
that the clock-period is not affected. Finally we carry out
exhaustive performance evaluation of these bus-based ar-
chitectures using the obtained latencies.

2 Inter-cluster Interconnect Architectures
Figure 1 shows the various interconnect architectures.

Figures 1(a) and 1(b) show two alternatives for RF-to-RF
architectures. In Figure 1(a) buses either run at processor
frequencies, in which case the overall operation frequency
of the processor comes down or they run at frequencies
slower than the actual processor clock (multi-cycle). In Fig-
ure 1(b), buses are explicitly pipelined so that the processor
operation frequency is not affected i.e. the inter-clusterin-
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Figure 1. Some Inter-cluster Interconnect Architectures

terconnect path does not become the critical path. Figures
1(c), 1(d), 1(e), 1(f) and 1(g) show what have been termed
as the direct communication architectures [8]. In these ar-
chitectures, FUs from one cluster can directly communicate
with the RF of another cluster.

3 Clock Period and Chip Interconnect Area
for Clustered Architectures

To obtain realistic bus latencies and also to get a com-
prehensive performance estimate we evaluated the clock-
period obtained for various interconnect and cluster config-
urations. Towards this end we modeled the processors using
parameterized VHDL. Our modeled processor has a stan-
dard load store architecture with RISC style instructions.
The ALU components: adder, multiplier and divider are
obtained using the Synopsys DesignWare libraries. This
ensures that the critical path is not constrained due to in-
efficient implementation of these modules. The load/store
unit follows standard Static RAM (SRAM) timing, such as
that presented in [7]. RF for any processor is custom de-
signed [1, 20]. Since RFs cannot be synthesized efficiently
by the common synthesizers, these are usually hand crafted.
For lack of availability of such a handcrafted RF design, we
included a dummy RF during synthesis. This RF doesn’t
contain the complicated muxing logic which a real RF has,
however, it does ensure that proper port mappings are in
place so that static timing analysis (STA) reports proper
paths. The entire VHDL has been written at Register Trans-
fer Level (RTL) to obtain most efficient implementation.
Our parameterized VHDL model allows variation of: In-
terconnect architecture, Number of clusters, Register file
size, Register file (and ALU) width, Data RAM size and
Instruction RAM size. The flow used is industry standard
Synopsys frontend (Design Compiler) and Cadence back-
end (SoC Encounter). We followed a hierarchical place and
route approach in which clusters are first placed and routed
and then processor floorplan is done. Pin positions on clus-
ters are fixed manually to obtain good top-level floorplan.

We ran our experiments for two ASIC Technologies,
UMC’s 0.13µ six metal layer process and UMC’s 0.18µ five
metal layer process. The results are presented in Tables 1
and 2. Table 1 shows variation of clock period for different
interconnect mechanisms with an increase in the number of
clusters. Table 2, shows variation of interconnect area as a
percentage of the total chip area for different interconnect
mechanisms with an increase in number of clusters. Ab-
breviationRF has been used in this table for single cycle
transfer RF-to-RF architecture,WA for Write Across, RA
for Read Acrossand WR for Write/Read Across. Results
of both clock period and interconnect area are similar for
0.18µ technology and hence have not been shown.

Looking at these results, it is clear that point-to-point
type interconnects scale very well with increase in number
of clusters. In these cases the critical path is not through



NClust WA.1 RA.1 WA.2 RA.2 WR.2 RF

2 0.851 0.859 1.036 0.894 0.891 1.152
4 0.883 0.944 1.030 1.001 0.956 1.987
6 0.929 0.977 1.104 1.015 1.051 2.760
8 1.005 1.065 1.077 1.108 1.112 3.891
10 1.026 1.064 1.126 1.091 0.995 5.110

Table 1. Clock Period (ns) for UMC 0.13µ ASIC Tech.

NClust WA.1 RA.1 WA.2 RA.2 WR.2 RF

2 39.45 39.34 39.42 39.16 39.33 43.43
4 36.71 36.65 36.63 36.53 36.65 36.67
6 35.69 35.66 35.73 35.61 35.55 35.71
8 34.90 34.62 35.02 34.82 34.84 34.98
10 34.89 34.84 34.95 34.73 34.81 34.89

Table 2. Interconnect Area (as % of Chip Area) for UMC

0.13µ ASIC Tech.

the inter-cluster interconnects. However, for RF-to-RF type
interconnects beyond the two cluster configuration, the crit-
ical path does lie through inter-cluster communication bus
and hence scalability is limited if the buses are run at pro-
cessor frequency. We next use these clock-period numbers
to arrive at realistic bus latencies for pipelined buses. These
various bus configurations (pipelined and multi-cycle) are
in turn used to perform an exhaustive design-space explo-
ration.
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Figure 2. DSE Framework

Figure 2 shows the overall design space exploration
methodology. The Trimaran system is used to obtain an
instruction trace of the whole application from which a
DFG is extracted for each of the functions. Trimaran also
performs a number of ILP enhancing transformation. The
chain detection phase finds out long sequences of operations
in the generated DFG. The clustering phase, which comes
next, forms groups of chains iteratively, till the number of
groups is reduced to the number of clusters in the architec-
ture. The binding phase, binds these groups of chains to
the clusters. We agree that ideal results are obtained, when
all the problems i.e. operation to cluster and FU assign-
ment, register allocation and scheduling are done simultane-
ously [10,13]. However, this makes the problem intractable
for large graphs. We thus divide the problem as follows:
First operation to cluster binding is done and next operation

to FU in a cluster binding is done. Since, during cluster-
ing, the partial schedules are calculated (explained in detail
later), the typical phase coupling problem [10, 13], is con-
tained to a large extent, while still keeping the overall prob-
lem size manageable. Lastly, a scheduling phase schedules
the operations into appropriate steps. More details on each
of these phases is presented below.

DFG Generation: The DFG generation is carried out
by matching source destination pair of register and mem-
ory usage. The machine model used for Trimaran is an
extremely flexible one, with 256 GPR and 1024 Predicate
registers. Trimaran also performs a number of ILP enhanc-
ing transformation, which in turn lead to an increase in the
achievable ILP.
Chain Detection: The second phase is the chains detection
phase. In this phase long sequences of operations are found
in this DFG. The idea is to bind these chains to one cluster
(similar to the one discussed in [11].
Singleton Merger: The chain detection phase returns a
large number of chains. Including a significant number
which have only one element (singleton). After observing
the large number of singletons we specifically introduced
a singleton merging phase. In this phase, the singletons
which do not have any source or destination are distributed
in nclustersnumber of chains (groups). The idea is that these
would not constrain the scheduler in any way, as they donot
have any source or destinations. Nodes, which have no des-
tinations (sources) are merged with the shortest chain of
their sources (destinations).

Clustering:

Algorithm 1 Clustering Algorithm
1: resources⇐

⋃

All ClustersRes. per cluster
2: do pure vliw scheduling(graph, resources)
3: while (no o f chains(graph) > n clust) do
4: for (i = 1 tono o f chains(graph)) do
5: for ( j = 0 to i) do
6: dup graph⇐ graph dup(graph)
7: dup chains⇐ graph dup(chains)
8: mergechains(dup graph,du chains, i, j)
9: ci, j ⇐ est sched(dup graph,dup chains)

10: end for
11: end for
12: SORT(C); Sorting priority function:

i) Increase in schedlength
ii) Larger communication edges, if schedlength is
same
iii) Smaller chains, if schedlength and communica-
tion edges are equal

13: n merge⇐ MIN(0.1∗nchains,nchains−nclust)
14: merge topn mergechains fromA
15: end while

The next phase is the clustering phase (Algorithm 1).



Here the number of chains is reduced to the number of clus-
ters, by grouping selected chains together. The idea here
is to reduce the inter-cluster communication between vari-
ous groups. However, the closeness between these groups
is architecture dependent. This can be better understood
by examining architectures shown in Figures 1(a) and 1(b).
While in the former, data transfer from any cluster to any
other cluster takes same number of cycles, in the latter this
varies. This stage assumes that finally the communication
would happen through the best possible inter-cluster inter-
connects. Thus, this schedule length effectively represents
an upper bound on the actual schedule.

The loop (steps 3 to 15) reduces the number of chains to
nclustersby pairwise merger of chains. The chains are exam-
ined pairwise for their affinity (step 4 to 11) and a lower tri-
angular matrixC is formed. Here each elementci j gives the
estimated schedule length due to merger ofi and j (step 9).
TheC matrix is sorted according to multiple criteria (step
12). At each stage most beneficialnmergepairs are selected
and merged (steps 13 to 14).

The schedule estimation algorithm, which has not been
shown due to paucity of space works as follows: Each of
the nodes in the particular merged group of chains is sched-
uled taking into account data dependency. For scheduling
we assume that each operation takes one cycle. The basic
scheduling algorithm is list scheduling with distance from
sink as the heuristic. If at any stage a node has any outgo-
ing edge, then the node connected to that particular edge is
marked dirty. However, the schedule of this particular node
and all its children is not updated till it is needed. If at a later
stage any node has an incoming edge from this node or its
children, then the schedule of the dirty node along with the
schedule of all its connected nodes is updated. This leads to
a significant saving in computation.
Binding: The next step is to bind these groups of chains to
clusters. Although the value ofnclusters is quite small (not
more than sixteen in our case), still the no. of possible bind-
ings is quite large. This effectively rules out any exhaustive
exploration of the design space. The following observation,
established through experimentation, makes this stage ex-
tremely important:while a good result propagation algo-
rithm can affect the schedule length by around a factor of
two, a poor binding at times can lead to schedules which
are more than three to four times larger than the optimal
ones.

The binding heuristics are driven by the impact which
communication latency of a particular node will have on
final schedule. In effect we recognize that the data trans-
fer edges from each of the merged group of chains to some
other group are not equivalent. Some are more critical than
the others in the sense that they would affect the schedule to
a larger extent. The heuristics try to capture this, withoutex-
plicit scheduling. We calculate the ASAP and ALAP sched-
ules for each of the individual nodes. A first order estimate

of this impact is given by the mobility of each individual
node. Say, we have a communication edge fromAi to A j ,
and ASAP and ALAP schedules for these nodes areai , a j

and l i , l j respectively. Then if(a j − l i) ≥ δ, whereδ is the
maximum communication distance between any two clus-
ters, then this edge is not critical at all. As there is enough
slack to absorb the effect of even the largest communication
latency. On the other hand if,(l j = ai +1) the node has zero
mobility and is thus most critical. We calculate the weight
of each communication edge as follows:

Wi, j = max
(

0,δ−
(

a j+l j
2 − ai+l i

2

))

While weighting measure is able to segregate non-critical
edges from critical ones, it is not able to distinguish clearly
between edges whose nodes have equal mobility. To take
this second effect into consideration, we also pull in the dis-
tance from sink, or path length for each of the source nodes.
This path length when multiplied withWi, j, gives us the
final weight for each of the communication edges.

Algorithm 2 Binding Algorithm

1: connectgraph⇐ genconnectgraph(graph,chains)
2: while (Not all nodes in connect graph are bound) do
3: sourcenode⇐ f ind highestwt edg(connectgraph)
4: Bind both nodes of this edge to closest clusters
5: end while
6: while (Not all clusters have been considered) do
7: prev schedlen⇐ schedlen(graph)
8: Swap binding for two adjacent clusters
9: schedlen⇐ schedulegraph(graph)

10: if (prev schedlen< schedlen) then
11: Swap back bindings for these clusters
12: end if
13: end while

Algorithm 2, shows the binding algorithm. The algo-
rithm works on a weighted connectivity graph, which is
generated as discussed above. The initial part of the algo-
rithm (step 2 to 5) is basically a greedy one. While it seems
to work well for architectures which communicate only in
onedirection, the algorithm fails to take advantages for ar-
chitectures with bidirectional connectivity (buses). Partially
motivated by this and partially by [11], we thus bring in an
additional iterative improvement phase, by performing a lo-
cal search around this initial binding (step 6 to 13).
Scheduling: The scheduling phase is architecture specific.
We have separate schedulers for multi-cycle RF-to-RF type
architectures and pipelined bus architectures. Although a
few scheduling algorithms for clustered architectures have
been reported in literature, they all are specifically meant
for single cycle RF-to-RF type of architectures [2, 11, 16].
Our scheduling algorithm again is a list scheduling algo-
rithm with distance of the node from sink as the heuristic.
What it additionally contains is steps to transfer data from



one cluster to other. The result propagation algorithm, tries
to move data to clusters using the bus paths by scheduling
transfer operations.

5 Experimental Results and Observations
We ran our experiments for a set of media applications.

The main sources of benchmarks are MediaBench I [12],
proposed MediaBench II [4] and DSP-Stone [21]. Results
are shown in Figures 3, 4 and 5. In Figure 3, results are
grouped under numbers of the form(xB,yL). Herex de-
notes the number of buses andy denotes the bus latency.
From the figure it is clear that performance comparable to
point to point connected architectures is achieved by 8,1,
16,1 and 16,2. configuration if the cycle time is not consid-
ered. However, such a solution is very expensive due to the
extremely high number of buses required. Also, as shown in
Section 3, global buses with a single cycle latency lead to a
decrease in the overall clock period by up to a factor of five
leading to a drastic decrease in overall performance (Figure
5. Another interesting feature is that the performance varies
asymptotically withx/y i.e. the average data transferred per
cycle.
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While running the buses at frequencies slower than the
processor is one alternative, another one is to explicitly
pipeline the buses taking clock-period into account. To sim-
plify scheduling, we assume a homogeneous configuration
of buses. Results for these configurations are shown in Fig-
ure 4. Here results are again grouped under various numbers
of the form (xB,yS,zL). Where,x denotes the number of
buses,y, bus stride andz latency of each path between two
consecutive appearance of registers in bus. Bus stride is the
number of clusters skipped after which a pipeline register
is introduced. Whereas for a stride of two, the inter-cluster
interconnect does not appear in the critical path for a stride
of four, it does. Therefore, for this stride we have shown re-
sults only for a latency of two. Another consideration is the

divisibility of Nclustersby y. As a consequence we have only
been able to show results for four, eight and sixteen cluster
configurations.
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From Figure 4 it is clear that the performance of
pipelined buses is severely limited. To analyze this we
need to consider the factors which limit performance of
clustered architectures. These are required communication
bandwidth and communication latency. Bus based architec-
tures invariably suffer from increased latencies as compared
to direct communication. This is due to the fact that an ad-
ditional transfer (copy) instruction needs to be scheduledif
data has to be moved between clusters. Whereas introduc-
ing registers in buses allows the simultaneous usage of var-
ious links in buses for local communication, this does come
with a penalty of one additional cycle latency. Correlating
with results of multi-cycle buses in Figure 3, it is evident
that a large bandwidth is required for local transfers, how-
ever this is advantageous if the transfer does not incur any
additional penalty. However, this is not the case with con-
figurations which we have shown here as that is unrealistic
(see Table 1).

Using the clock-period results it is possible to obtain a
better picture of the final processor performance. Taking
Write Across - 1architecture as the baseline case, we scale
the reported ILPs using following formula:ILPe f f ective, x =

ILPoriginal, x ∗ Clk PeriodWA.1
Clk Periodx

. Herex is the architecture type
under consideration,ILPoriginal, x, is the original ILP re-
ported in [8],Clk PeriodWA.1 is the clock-period ofWrite
Across-1type of architecture andClk Periodx is the clock
period of architecture under consideration.

Figure 5 shows effective average ILP. It is evident from
this figure that global connectivity would annul an advan-
tage which multiple buses may bring. The clock period
scales too rapidly with global connectivity and no amount
of increase in bandwidth can compensate for this effect. It
is quite interesting to compare this figure with that obtained
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0.13µ ASIC Technology and Multi-cycle Configurations

considering only number of cycles. However, it needs to be
noted that there is considerable variation in performance if
applications are considered individually.

6 Conclusions and Future Work
In this paper we have presented an exhaustive evalu-

ation of bus based inter-cluster interconnects in clustered
VLIW processor. We have synthesized the processors with
a variety of inter-clutter interconnects and obtained the
achievable clock-period values. These values have in turn
been used to arrive at realistic bus transfer latencies. The
poor performance of such bus based interconnect in sharp
contrast to the direct-communication type of interconnects
speaks heavily against their usage. These results become
all the more significant if one takes into view the fact that
almost all the research architectures and quite a few of the
commercial ones have based their work on these architec-
tures. Our current work in progress focuses on high-level
estimations for direct-communication type architecturesto
customize them on a per application (domain) basis.
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