

Design Refinement for Efficient Clustering of Objects in Embedded Systems

Waseem Ahmed
1
, Doug Myers

2

1
Curtin University of Technology, Sarawak Campus, Malaysia

2
Curtin University of Technology, Bentley Campus, Western Australia

Abstract
Hardware software co-design seeks to meet

performance objectives via a combination of hardware

and software modules. One difficulty in reaching these

objectives lies in lack of cohesion and increased

coupling amongst the implemented modules that results

in an increased inter module communication cost. While

most of the traditional partitioning approaches are

initiated in the post-coding phase, we suggest the design

stage may be a better focus of attention in addressing

this problem.

In this paper, we propose a novel approach that uses

information from sequence diagrams in UML designs to

help ease the partitioning problem.

1. Introduction

A key phase in the design of an embedded system is

hardware/software partitioning that refers to the

partitioning of the application into separate hardware and

software modules. Traditional approaches to this

problem as highlighted in [1][2] have been to initiate the

process after the system specifications have been

translated into code. The input to such partitioning

approaches is thus the source code of the application, a

binary implementation, or an internal format generated

from the source code during analysis as seen in Figure 1.

An exception to the above is a work based on UML

design specification [3] that uses function point analysis

and COCOMO to compare different design alternatives

at an early stage of analysis.

A major assumption in most of these approaches is

that the source code reflects the best possible design,

which may not be always true, as the designer of the

code might not have taken into consideration the mixed

nature of the final implementation. The limitations of the

design in terms of mixed implementation are thus carried

unchanged into the implementation phase.

In this paper we propose to analyze the design of an

application with a mixed hardware software

implementation, prior to subjecting it to the partitioning

process.

Figure 1. Traditional Partitioning ApproachesFigure 1. Traditional Partitioning ApproachesFigure 1. Traditional Partitioning ApproachesFigure 1. Traditional Partitioning Approaches

2. Cohesion, Coupling and Design Shuffle

An effective hardware software co-design is one that

maximizes cohesion (the degree to which

communication takes place among the module’s

elements) while minimizing coupling (the degree of

inter-modular communication) amongst modules [4].

Modules that have been designed by not taking into

account the mixed nature of implementation may have

high coupling, resulting in a high inter module

communication cost (IMCC), that cannot be wholly

rectified by the current partitioning approaches.

Reducing coupling between components may involve

either minimizing the interaction between them by

shifting the onus of communication to another

component or by shifting the entire function (and/or any

interaction between them) to another object(s) if

possible. We choose to refer to this heuristic as the

design shuffle or just shuffle in this document.

3. Sequence diagram analysis

Sequence diagrams in UML are used for depicting the

scenarios of typical interactions and message passing

between objects that constitute the system. For a single

Code

Analysis

of Code

Compile, estimate

amd analyse

Compilation

to binary

hw

sw

Analysis

of Binary

hw

sw

hw

sw

D

e

s
i

g

n

1530-1591/05 $20.00 © 2005 IEEE

use case there might be many such sequence diagrams.

Information from such sequence diagrams is used to

form an inter object dependency matrix (IDM). The

entry f(x,y) in the IDM gives the sum of all calls and/or

instances of message passing between the two objects x

and y such that f(x,y) = (f(x→y) + f(y→x)). The entries in

the matrix will thus be symmetrical across the diagonal,

i.e. f(x,y) = f(y,x). By knowing the type of message

passing the interconnect use can be minimized. For

example, if the message passing between the objects is

distinctly half-duplex, the corresponding IDM entry will

be max(f(x→y), f(y→x)). Memory, data sources and data

repositories are each depicted as symbolic objects on

these sequence diagrams. Once the matrix is prepared,

the analysis is a three step process

I. Individual object analysis

The entries for each object in the IDM are analyzed

together. Based on the values of these entries the object

may exhibit one of the three distributions based on the

variance from the mean - low, medium or high variance.

Objects that show low variance have uniform coupling

with multiple objects and if implemented as is, will result

in high IMCC. These objects are candidates for a shuffle.

Objects that have a high variance show strong

coupling with a few objects and low coupling with other

objects. Efficient partitioning in the implementation

stage will mean that the objects with strong coupling will

need to be implemented on the same architecture to

minimize IMCC.

Objects with a medium variance lie in between the

two extremes. The object pair that have coupling below

the mean will have to be shuffled such that the coupling

between them is further lowered, and the object pair that

have coupling greater than the mean are shuffled for a

higher coupling.

II. Object grouping into modules

After the initial shuffle, the IDM is updated and

objects x and y are identified that satisfy the criteria f(x,y)

> (µ + σ), where µ is the mean and σ is the standard

deviation. Such objects exhibit a relatively high coupling

and are paired together. Let m1 be the modules formed

after the first grouping.

The steps are repeated for objects that satisfy the

criteria µ < f(x,y) ≤ (µ + σ). Objects where one of its pair

has already been grouped is put in the same module, and

objects where neither of the pair has been grouped earlier

are paired into separate new modules which we denote as

m2. Steps similar to the second grouping are repeated

again for objects that satisfy the criteria σ < f(x,y) ≤ µ

and f(x,y) ≤ σ to create new groupings of modules m3

and m4 respectively.

The groups of modules in m1 have high cohesion

within them and need to be implemented on the same

architecture to minimize the IMCC. The groups of

modules in m4 are basically stand alone modules with

very little IMC with other objects. These objects may be

eliminated by a good shuffle. If not eliminated, the

objects in these modules can be subjected or one of the

many existing partitioning algorithms for a mixed

implementation. The objects in the modules of m2 and m3

are reshuffled and step II is repeated until no more

shuffles are possible. IDM is again updated to reflect the

changes.

At the end of this step we have modules that have a

high degree of cohesion between them.

III. Reduction of inter module coupling

In this step we look to minimize the coupling between

modules. All objects x and y where f(x,y)> µ, and x and y

do not belong to the same module, are subjected to a

shuffle to reduce coupling among modules. This is

repeated until no more shuffling is possible.

The modules with the redesigned objects are then

subjected to one of the many existing coarse grained,

hardware or software oriented approaches and

considering the available hardware and software

resources to get the most efficient implementation for the

system.

4. Concluding Remarks

Most of the approaches over the past decade in

solving the partitioning problem originate in the post-

design phase and are based on the premise that the code

has been designed with the mixed nature of

implementation in mind. In this paper we proposed to

initiate the partitioning process in the design phase by a

thorough analysis of the interactions between the

components for possible redesign.

References

[1] J. Henkel, An Approach to Automated Hardware/Software

Partitioning using a Flexible Granularity that is Driven by

High-level Estimation, IEEE Transactions on VLSI, April 2002

[2] G. Stitt and F.Vahid, Hardware/Software Partitioning of

Software Binaries, IEEE/ACM International Conference on

Computer Aided Design (ICCAD 2002), Nov. 2002

[3] W.Fornaciari, P.Micheli, F. Salice, L.Zampella, A First Step

Towards Hw/Sw Partitioning of UML Specifications,

Proceedings of the Design, Automation and Test in Europe

(DATE’03), 2003

[4] E. Braude, Software Engineering- An Object Oriented

Perspective, John Wiley and sons, 1st Edition, 2001

	Main Page
	DATE'05
	Front Matter
	Table of Contents
	Author Index

