

The Role of Model-Level Transactors and UML in Functional Prototyping of

Systems-on-Chip: a Software-radio Application

Alexandre Chureau1 Yvon Savaria1 El Mostapha Aboulhamid2
1École Polytechnique de Montréal, Dép. de Génie Électrique

C.P. 6079, succ. centre-ville, Montréal, Canada, {chureau|savaria@grm.polymtl.ca}
2Université de Montréal, Dép. d’Informatique et de Recherche Opérationnelle

C.P. 6128, succ. centre-ville, Montréal, Canada, em.aboulhamid@umontreal.ca

Abstract
Developing a functional prototype of a system-on-chip

provides a unifying vehicle for model validation and
system refinement. Keeping the prototype executable
across several abstraction levels, clock domains and
design tools is a key requirement to effective prototyping.
This paper presents how model-level transactors address
design heterogeneity by unifying event-based and cycle-
based worlds from specification to implementation.
Transactors are used to build a functional prototype of a
software-radio component. An executable UML model is
bridged to a hardware abstraction of a radio stream
developed with Simulink to implement a realistic and
working prototype. Model validation and performance
measurements are realized through prototype execution
and real-time monitoring.

1. Introduction
The development of complex systems on chip (SoC)

faces a paradox. Developing a system of a reasonable
scale requires an extensive analysis and design phase
before implementation. But the very nature of these
systems is dynamic and intricate, thus requiring some sort
of implementation to carry out a knowledgeable and
effective design. Hence, it has been accepted that design
and implementation are two activities that are profitably
carried out at once.

Leveraging this association between design and
implementation, the concept of functional prototype has
emerged as a means to handle the rising complexity of
design. A functional prototype is a machine-executable
specification of the system and its operating environment
that is used for early system validation. More generally, a
prototype is a primitive but working version of the system
that can be executed and observed in real-time using real
world stimuli.

In electronic design, the prototyping activity ranges
from a software specification of the final product to an

implementation on a FPGA-based prototyping board.
What differentiates a prototype from a simulated model is
the ability of the former to work in real-time, maybe at
some low but useful performance, and to allow different
blocks to execute seamlessly while the system appears as a
coherent whole.

The concept has been around since top down
methodologies took over ASIC design. Early prototypes
have been used for formal specifications and model
validation [1, 2]. The functional virtual prototype recently
presented by Cadence is at the heart of its proprietary
verification methodology [3]. This virtual prototype is
used as a unifying vehicle expressed at the transaction
abstraction level. So far, functional prototyping has been
hardware-centric, and meant to represent hardware
systems at high level of abstraction. This is becoming
inefficient and unnatural, as software plays an increasing
role in systems-on-chip. In this paper we make extensive
use of the software-centric UML-RT (Unified Modeling
Language – Real-Time) to build a more neutral, yet
executable, functional prototype of a SoC.

This paper presents a transaction mechanism that
enables several levels of abstraction to be represented in a
functional prototype built around UML. This leads to:
• Matching the expressiveness of a language with the

desired level of details across the prototype.
• Distributing the development effort among different

experts working with different tools.
• Providing an executable and unifying specification

built in a well accepted modeling language, UML.
Model level transactors are used to couple asynchronous
components such as behavioral description with synchro-
nous components. Multiple abstraction levels coexist and
collaborate through a unifying software backplane
described in UML-RT. The resulting prototype is
executable, observable and compatible with hardware
descriptions and verification environments.

The first section of the paper describes the functional
prototype and the role of UML-RT in its development.
The next section presents the details of model transactors

1530-1591/05 $20.00 © 2005 IEEE

and their exact role in the prototype. The final section
presents how a complete functional prototype was built for
a software-defined radio component. Some observations
and recommendations conclude the paper.

2. Prototyping and the Real World
2.1. Concept

The functional prototype of an electronic system is an
unambiguous executable specification of the system
coupled with a realistic test environment. It is built from
the paper specification in collaboration with design and
verification engineers, as well as application specialists.
The executable specification is a model that iterative
refinement will transform into a network of collaborating
objects, much like the final system. The test environment
provides realistic data right from the beginning of the
design cycle to allow model observation and validation. It
can be put together in the most efficient manner with
fourth generation languages and verification IPs. If the
proper tools are used, the model will gradually become the
system, and the test environment will be reused all along
the development, increasing design reuse and productivity
[4, 5].

An important aspect of the functional prototype has
been purposely left out of this discussion so far: the
communication mechanisms between the different parts of
the prototype. These mechanisms play a crucial role in
preserving the executability of a prototype. One
mechanism is necessary to transfer test data between the
test environment and the executable model. Another
similar mechanism is used by the model to communicate
with lower-abstraction components introduced during the
refinement, e.g. hard IP cores. The next two sections will
describe these important mechanisms in more detail, while
the rest of the paper is devoted to their implementation and
analysis.

2.2. Connecting the World Around
The primary role of the test infrastructure in functional

prototyping is to act as the world around the system being
developed. The test infrastructure has the following
characteristics:
1. It must provide realistic data to the executable model.
2. It is described at high-level of abstraction for speed of

development and convenience.
3. It improves controllability and observability over the

test scenarios.
4. In some cases, the test infrastructure must act as a

placeholder for the analog circuitry that will convey
the signal to the system.

It is in the context of an executable specification that
the importance of testing arises so early: besides the exten-
sive verification that will be performed along the design
cycle, test is used early to validate the model. The execu-
table model will respond to stimuli, encouraging test reuse
from the executable specification down to implementation.

The connection mechanisms between the test
environment and the model should be minimally intrusive
in order to stay clear of the model execution and
refinement. Extensive interaction between the test and the
model might be necessary to feed a model that is dataflow
dominated. To allow large amounts of data to be
processed, the communication mechanisms should use fast
transfer techniques such as shared memory, memory
mapped files and sockets.

2.3. Connecting the World Below
As model refinement progresses, several clocked

components expressed at lower levels of abstraction or
described in different models of computations may get
involved in model execution. Some hardware components
may be used to enhance performance of critical parts or to
reuse some existing hardware IP. Eventually, the exe-
cutable model will reach implementation, meeting all
temporal constraints of the application.

Although this is a powerful property of functional
prototyping, model heterogeneity raises a communication
issue: most hardware functions are synchronized on a
clock signal, while the initial model behavior is described
in UML using asynchronous operation calls, which leads
to some sort of globally asynchronous locally synchronous
system. In all cases, preserving the model integrity and
executability after the inclusion of these clocked
components is a priority. This is part of the challenge of
seamlessly connecting the executable model to the world
below with model level transactors.

Somewhat similar concepts are found in the Ptolemy
project, where a framework enables collaboration of
executable models built under different models of
computations [12]. The framework uses domain-
polymorphic actors to wrap executable entities and has its
own design entry interface. In contrast, model-level
transactors live at the boundary of real-time and
simulated-time domains, which encompasses model-of-
computation boundaries. In that sense, model-level
transactors are closer to existing design and
implementation tools.

The MASCOT methodology [13] implements a com-
munication protocol between control and dataflow
domains, defined in SDL and Matlab respectively. This
co-simulation method is also bound to models of
computations, which is an issue efficiently addressed by
tool vendors. Mathworks has since launched an integrated
tool that manages state machine and dataflow models
transparently. The primary issue addressed by model level
transactors is how components developed in different time
domains (real vs. simulated) can cooperate to form a
complete functional prototype. The specificity of tools and
vendor methodologies prevent this kind of interaction.

Figure 1 puts in context the executable model, the test
infrastructure and a hardware component model. The
stopwatch emphasizes the fact that the model is executed
in real-time, not simulated.

Test Infrastructure

Functional Prototype

Executable Model

Hardware Component Model

Figure 1. Overview of the functional prototype

3. Event-Based UML and SoC prototyping

3.1. UML for the Executable Model

The Unified Modeling Language (UML) offers all the
objects and diagrams needed to build an unambiguous
specification of a SoC. Originally a software modeling
tool, UML has recently been extended to model real-time
systems, an extension we will refer to as UML-RT [6]. Its
usage in SoC design is an active field of research [11]. The
usage of UML-RT allows building a model of a SoC that
is not biased towards a hardware or software
implementation. The basic architectural unit is a capsule
and its associated state machine, which describe the
structure and the behavior of a system respectively.

A capsule is a stereotype of a class that is the
equivalent of a VHDL entity, a SystemC SC_MODULE or
an independent software execution thread. Some vendors
of UML editing tools have implemented efficient model to
code translation, which will be used in this paper [8].
Populating the capsule’s state machine with platform-
independent C++ code produces a complete executable
model of the system under development, which can be
executed and profiled on different CPUs. In that regard,
this approach differs from the Seamless co-verification
environment [14], which runs software over an
instruction-set-simulator (ISS) of the target CPU.

As introduced earlier, this executable model is the
entity that must be connected to the test infrastructure as
well as to the hardware implementation components used
during the refinement. In both cases, the communication
mechanism must resolve real-time events vs. cycle-based
events, which are two totally different ways to describe the
dynamic aspect of a system.

3.2. Real-time Events and Cycle-based Events
UML-RT offers state machines inspired from Harel’s

statecharts [8] to model the behavior of a capsule. These
state machines have the following characteristics:
• Concurrent: state machines in different capsules can

be executed concurrently.
• Reactive: transitions occur when an event is raised on

the capsule’s communication ports.
• Hierarchical: state machines can be nested to simplify

behavior modeling

Through code generation, these state machines become
executable software, where events are operation calls
processed in real-time. Although a UML-RT state machine
has many advantages to model a system’s dynamic
aspects, some caveats are observed when interacting with
components described in a cycle-based environment. For
instance, some cycle-based components rely on registered
inputs that are sampled on clock ticks (typical to the
discrete-time and discrete-events models of computation).
In UML-RT state machines, information is transferred
during punctual operation calls and therefore the
communication link retains no information. On the other
hand, toggling a signal in a cycle-based system does not
generate an event by default: an observer must listen
passively on the line to capture the state of the signal and
react upon a change (defined as the sensitivity of a
process). In UML, state machine transitions are actively
triggered by a calling system in a one-shot manner.

The test infrastructure will manifest itself to the
executable model under a cycle-based form. Since the
primary role of the test infrastructure is to represent the
world outside, it will include the role of the analog-to-
digital and digital-to-analog processing happening on the
outskirts of the SoC. On a smaller-scale, the test
infrastructure can also act as some clocked co-processor
available in an IP library and used during system
refinement. In either case, it is safe to assume that the real
world will communicate with the executable model via
clocked samples.

To enable both worlds to communicate efficiently,
cycle-based data must translate to active events interpreted
by the model’s statecharts. We will present a
communication mechanism based on a simple client-
server model that solves this problem.

4. Role of Transactors in Prototyping
4.1. Model-Level Transactors vs. Transaction-

Level Modeling
It is first important to define what a transactor is in the

context of our work, and how it relates to other usage of
the concept. A transactor enables communication between
simulated-time and real-time components. Model-level
transactors are used in the UML-RT model as capsules
that communicate with clocked or cycle-based models
running in simulators. Figure 2 depicts the location of
transactors in the functional prototype.

Test Infrastructure

Functional Prototype

Executable Model

Hardware Component Model

Tr

Tr

Figure 2. Location of transactors (Tr)

In SystemC, transactors are used for transaction-level
modeling and verification. They enable transactions from
one level of abstraction to the other, inside the same
simulated-time environment. A SystemC transactor is a
hardware device that, on the software side, communicates
at the transactional level, and, on the hardware side, at the
signal level [9].

This usage of transactors is very hardware-biased, as
are models issued from SystemC. Moreover, these
transactors are dependent on the SystemC scheduler that
controls the timing and order of process execution [10].
By contrast, model-level transactors are high abstraction
entities with built-in synchronization standing between
real-time and simulated time domains. Their imple-
mentation handles transactions between a working
prototype, running in real-time without the support of a
simulator, scheduler or ISS, and another component
running under one of these constraints.

As a side note, transactors do not exist in the final
implementation of the system. Iterative refinement will
transform them into one of the following forms that are
relevant in systems-on-chip:
• drivers or interrupt service routines for software-

hardware interaction;
• bus slaves and masters or custom signals for

hardware-hardware interaction;
• Application Programming Interface (APIs) for

software-software interaction.

4.2. Client-Server Model
A server is an entity that responds to a client’s requests.

Likewise, an embedded application is a processing entity
offering a service to clients. If the processing entity is
disabled, client requests are denied. If client requests stop,
the server will go idle or do some internal business. In this
paper, the server is the executable model and the client is
the cycle-based test environment. From a hardware
refinement perspective, the executable model becomes the
client of multiple hardware accelerators seen as servers.
This case is a conjugate of the first one and will not be
covered here.

The transactor that will enable the communication

between these two entities is divided into a server half and
a client half that live in the executable model and the
cycle-based model respectively. Of course, each half is
itself divided in a front-end that is compatible with the
model and a back-end that implements the client-server
signaling. From this standpoint, different communication
scenarios are described in Table 1.

Dataflow synchronization between cycle-based and
event-based domains relies on the identification of atomic
processes in the capsule’s state machines. An atomic
process is a chain of events occurring between two inter-
actions of the executable model with the clocked model.
These interactions may occur every cycle (as assumed in
this paper) or span across n clock periods. Determining the
value of n can be used as a partitioning metric, which is
left as a topic of future research.

4.3. Implementing Transactors with Sockets
The Berkeley sockets are an efficient communication

mechanism that can be used to implement the back-end of
a model-level transactor. On the UML side, the transactor
is a capsule connected to the ports of the design, hiding the
socket implementation from the model. On the client side,
the same socket mechanism is implemented using a client
compatible front-end. In Simulink, for example, the client
transactor is implemented in a user-defined block called a
C++ S-function. This is a special block that can be inserted
in a Simulink model to execute custom C++ code during a
simulation. When the Simulink scheduler executes the S-
Function block, the custom code is executed and all the
transactions with the UML-RT model relevant to this
cycle are performed. The characteristics of this socket
mechanism are:
• Communication between the executable model and

the clocked component is synchronous and inter-
active. A socket can act as a signal observer similar to
a latch, enabling fine resolution feedback and rea-
listic execution scenarios.

• The communication overhead is still significant from
a real-time perspective, and therefore the capsule
transactor must be easy to remove for proper model
refinement.

Table 1. Communication Scenarios between Event-Based (Server) and Cycle-Based (Client) Behavior
Flow of communication Initiator Typical Situation Example

1.1 Server
(with handshaking)

When a server requires information from a client, it
sends a message on its transactor. A client transactor
is observing this trigger on the cycle-based side. The
information is sent back to the server

UML capsule ready to
receive data from
Simulink environment

1. Client Server

1.2 Client
(no handshaking)

Upon a cycle tick, the client transactor checks for a
change in a given signal state. If a change is
detected, a message is sent to the server through the
transactor. The transaction requires polling or
interruption on the server side.

Reset signal sent from
Simulink to UML

2.1 Server
(no handshaking)

Data is sent to the client transactor that monitors the
line. The cycle at which data is expected must be
known precisely, or an observer must be
implemented on the client side.

Processed data returned
back to the test
environment after n client
cycles

2. Server Client

2.2 Client
(with handshaking)

When the conditions apply, the clocked module that
needs data activates a request line on the transactor.
A request event is sent to the server and data is
returned at a known time.

Simulink retrieves the
value of a state register in
the executable model

Sporadic signals such as a reset signal expose a limit of
a UML-RT model. The delay produced by the translation
of the toggle on the line into an event for the capsule state
machine is less deterministic than in hardware (c.f.
scenario 1.2 in Table I). The granularity of events in the
capsule world is a lot coarser than in the cycle-based
world and it is the role of the transactor to act as a buf-
fering and recovery mechanism. This leads to an important
observation in the usage of UML-RT for integrated
systems: a statechart is a high-level construct that cannot
profitably imitate the timing granularity of clocked
hardware components. Knowing this limit, unnecessary
modeling efforts can be avoided.

5. Case Study
5.1. Prototyping of a Software Radio Component

Model-level transactors have been used in the
functional prototyping of an adaptive equalizer for a
software radio. The prototype will be presented here as a
case study. The tool used to build the executable model is
Rose-RT from IBM-Rational, which offers efficient
model-to-code translation. The UML-RT state machines
are detailed using C++ code, which is essential to obtain a
complete behavioral model. The generated C++ code is
compiled into an executable file and runs on a host station.

The test infrastructure is developed in parallel with
Simulink to produce test stimuli and analyze test results.
Simulink has numerous pre-built components to generate
and analyze radio signals, like QPSK encoders, channel
models and constellation scope. The test infrastructure and
the executable model of the equalizer, coupled with the
appropriate transactor, constitute the first version of a
functional prototype, which was up and running in a
matter of days.

5.2. Experimental Results
The adaptive equalizer has been completely specified

using UML-RT capsules, state machines and C++ code
realizing the dataflow. Its development is influenced by
the fact that the equalizer will eventually be part of a
larger software-defined-radio system. A complete test
environment has been set up in Simulink by a different

team to produce realistic data and to analyze the pro-
cessing results. Figure 3 presents the block diagram of the
complete functional prototype.

The execution of this functional prototype is a two-step
process. The UML-RT model is first launched to act as the
server. The transactor capsules are created and the server
completes its initialization procedure. Then the Simulink
test environment is launched and its client transactor
issues a connection request to the server transactor. Once
the connection is established, the Simulink fixed-step
solver starts the cyclic execution of the test environment
blocks, producing the test data we need. The diagrams of
Figure 4 illustrate the structure of the UML-RT half of the
transactor and its connection to the rest of the model.

 / theEqualizer

 / serverTransactor

+ / sam
ple_com

m

+ / eq_control_com
m

+ / training_com
m

+ / decision_com
m

+ / eq_error_com
m

 / TCPServer

/ remote_comm

Figure 4. Key UML structure diagrams

On the Simulink side, the client transactor is
implemented in a user-defined S-function block, as shown
by the model snapshot of Figure. 5.

Figure 5. Test environment in Simulink

A reliable solution to interconnect the client and server
halves of the transactor is to implement basic handshaking
between the clock-based and event-based domains (c.f.
scenario 1.1 in table I). To this end, a ready signal is sent
by the executable model when it is ready to receive new
data. Blocking TCP sockets were needed to ensure proper
synchronization, because of the sensitivity of the proto-
type to variable speed of execution on different hosts.
Indeed, on one type of computer, Simulink waited at each
cycle for the executable model to send the ready signal as
illustrated in scenario 1 of Figure 6. On a faster computer
though, the model ran faster than a Simulink cycle,
producing a “ready” signal before the completion of the
Simulink cycle, as illustrated in scenario 2. In the first
scenario, the clocked transactor socket blocks the
execution of Simulink until the “ready” signal is received.
In the second scenario, the same socket keeps the “ready”

Simulink Top UML-RT Top Capsule

BPSK
Source

Rummler
Channel
Model

C S Equalizer

Sink

Ref
eq

Ref
dec

SDR Receiver

Test Environment Executable Model

C/S

Legend:
Client / Server
Transactor
TCP Connection

Figure 3. Functional prototype built with
Simulink, UML-RT and transactors

signal in a queue until it is sampled at the beginning of a
cycle. It is interesting to note that only the first scenario
will provide continuous real-time bit rates, since the
executable model runs at its maximum speed. In the
second scenario, the bit rate is artificially slowed down by
the unrealistic execution time of Simulink, which prevents
measurement of a continuous real-time bit rate.

::ClockBasedTransactor ::EventBasedTransactor

DATA

Cycle
Tick

Cycle
Tick

READY

RESULT

Scenario 1 : Simulink runs
faster than the model

READY

IDLE

IDLE

::ClockBasedTransactor ::EventBasedTransactor

DATACycle
Tick

Cycle
Tick

READY

RESULT

Scenario 2 : the model runs
faster than Simulink

READY

IDLE

IDLEDATA

Figure 6. Execution scenarios on two
different computers

The execution of this functional prototype on a Pentium
4 CPU running at 1.7 GHz on a non real-time OS has
allowed us to reach a sample period of 32 µs for basic
BPSK modulation, or 62.5 kbps. Although the code could
be optimized to reach a higher rate or the modulation
changed to higher density, this rate would be enough to
handle digital voice communication over a radio channel.

Figure 7 was traced dynamically by Simulink with data
gathered on the fly from the executable model. It repre-
sents the evolution of mean square errors (MSE) vs. time
in an adaptive equalizer. This kind of analysis was
extremely useful in the validation and refinement of the
specification of the system.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
-3

M
SE

 (d
B

)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
-3

0

1

Time (s)

Tracking Mode

-22

-20

-18

-16

-14

-12

-10

-8

-6

Figure 7. Mean-square error vs. time

6. Observations and Conclusion
Transactors allow breaking tool barriers and

implementing functional prototypes that can be tested in a
virtual simulated environment, and then run under realistic
conditions. To achieve an accurate stimulation of the
system, a Simulink model was used as a test environment
to produce realistic radio channel data. The coupling of a
UML-UML model to the Simulink tool with model level
transactors allowed a functional and inter-active prototype
of a system to be built.

The hardware implementation components that can be
introduced in a UML-RT model will eventually use dif-
ferent communication means such as an AMBA-AHB bus,
interrupt pins or custom protocols. Somehow, the
transactor should be transformed into one of these
hardware implementations, like a bus protocol. Modeling
such communication infrastructure is left for future
investigation. Another interesting issue is the exchange of
fixed-point data with clocked components. Fixed-point
data format are used in hardware systems where data lines
have finite widths. The translation from fixed-point to
floating point is another functionality which could be
implemented in the model-level transactors.

This work opens a variety of opportunities to bring
high-level modeling and functional prototypes closer to
hardware implementations.

7. Acknowledgements
Academic licenses of tools provided by IBM and Mathworks

enabled this research. Philippe Dumais, Stéphane Cormier,
Olivier Munger, members of the MAME team at École de
Technologie Supérieure in Montréal, developed the Simulink test
environment under the guidance of Professor François Gagnon,
team leader of the Prompt project that supports this research.

8. References
[1] E. Kemp, D. Pacitto, E. Todd, D. Gray, The role of
functional prototyping in model validation, in Proc. of the 1996
Information Systems Conference of New Zealand, IEEE
Computer Society Press, Los Almos, California, 1996.
[2] N. Habra, A transformational method for functional
prototyping, IEE Colloquium on Automating Formal Methods
for Computer Assisted Prototyping, London, U.K., 1992.
[3] L. Lev, R. Razdan, C. Tice, It’s about Time: Requirements
for the Functional Verification of Nanometer-Scale ICs [online],
Cadence White Paper, 2003, available from <http://www.
cadence.com/whitepapers/ 4451_IncisiveWP_FNL.pdf>
[4] OMG, MDA Guide Version 1.0.1, ed. J. Miller and J.
Mukerji, document number omg/2003-06-01, 2003.
[5] K. McGroddy et al., SOC – The IBM Microelectronics
Approach, Chapter 6, Winning the SoC Revolution, Kluwer
Academic Publishers, pp. 119-140, 2003.
[6] OMG, UML Profile for Schedulability, Performance, and
Time Specification, Version 1.0, September 2003.
[7] Rational Rose RealTime, ver. 2003.06.00.436.000, Rational
Software Corporation, Cupertino, Calif.
[8] D. Harel. Statecharts: A visual formulation for complex
systems. Science of Computer Programming, June 1987.
[9] Cedric Alquier Stephane Guerinneau Lauro Rizzatti Luc
Burgun, Co-Simulation Between SystemC and New Generation
Emulator, DesignCon 2003.
[10] OSCI, SystemC 2.0.1 Language Reference Manual, Revision
1.0, 2003.
[11] Presentations of the UML for SoC Design Workshop at
DAC’04, available from <http://www.c-lab.de/uml-soc/>
[12] Overview of the Ptolemy Project, Technical Memorandum
UCB/ERL M01/11.
[13] P. Bjuréus, A. Jantsch, MASCOT: A Specification and
Cosimulation Method Integrating Data and Control Flow, DATE
2000.
[14] Seamless, Mentor Graphics Corporation, Wilsonville OR.

	Main Page
	DATE'05
	Front Matter
	Table of Contents
	Author Index

