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Abstract 
Developing a functional prototype of a system-on-chip 

provides a unifying vehicle for model validation and 
system refinement. Keeping the prototype executable 
across several abstraction levels, clock domains and 
design tools is a key requirement to effective prototyping. 
This paper presents how model-level transactors address 
design heterogeneity by unifying event-based and cycle-
based worlds from specification to implementation. 
Transactors are used to build a functional prototype of a 
software-radio component. An executable UML model is 
bridged to a hardware abstraction of a radio stream 
developed with Simulink to implement a realistic and 
working prototype. Model validation and performance 
measurements are realized through prototype execution 
and real-time monitoring. 

 
 

1. Introduction 
The development of complex systems on chip (SoC) 

faces a paradox. Developing a system of a reasonable 
scale requires an extensive analysis and design phase 
before implementation. But the very nature of these 
systems is dynamic and intricate, thus requiring some sort 
of implementation to carry out a knowledgeable and 
effective design. Hence, it has been accepted that design 
and implementation are two activities that are profitably 
carried out at once.  

Leveraging this association between design and 
implementation, the concept of functional prototype has 
emerged as a means to handle the rising complexity of 
design. A functional prototype is a machine-executable 
specification of the system and its operating environment 
that is used for early system validation. More generally, a 
prototype is a primitive but working version of the system 
that can be executed and observed in real-time using real 
world stimuli.  

In electronic design, the prototyping activity ranges 
from a software specification of the final product to an 

implementation on a FPGA-based prototyping board. 
What differentiates a prototype from a simulated model is 
the ability of the former to work in real-time, maybe at 
some low but useful performance, and to allow different 
blocks to execute seamlessly while the system appears as a 
coherent whole.  

The concept has been around since top down 
methodologies took over ASIC design. Early prototypes 
have been used for formal specifications and model 
validation [1, 2]. The functional virtual prototype recently 
presented by Cadence is at the heart of its proprietary 
verification methodology [3]. This virtual prototype is 
used as a unifying vehicle expressed at the transaction 
abstraction level. So far, functional prototyping has been 
hardware-centric, and meant to represent hardware 
systems at high level of abstraction. This is becoming 
inefficient and unnatural, as software plays an increasing 
role in systems-on-chip. In this paper we make extensive 
use of the software-centric UML-RT (Unified Modeling 
Language – Real-Time) to build a more neutral, yet 
executable, functional prototype of a SoC. 

This paper presents a transaction mechanism that 
enables several levels of abstraction to be represented in a 
functional prototype built around UML. This leads to:  
• Matching the expressiveness of a language with the 

desired level of details across the prototype. 
• Distributing the development effort among different 

experts working with different tools. 
• Providing an executable and unifying specification 

built in a well accepted modeling language, UML. 
Model level transactors are used to couple asynchronous 
components such as behavioral description with synchro-
nous components. Multiple abstraction levels coexist and 
collaborate through a unifying software backplane 
described in UML-RT. The resulting prototype is 
executable, observable and compatible with hardware 
descriptions and verification environments.  

The first section of the paper describes the functional 
prototype and the role of UML-RT in its development. 
The next section presents the details of model transactors 
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and their exact role in the prototype. The final section 
presents how a complete functional prototype was built for 
a software-defined radio component. Some observations 
and recommendations conclude the paper.  

2. Prototyping and the Real World 
2.1. Concept 

The functional prototype of an electronic system is an 
unambiguous executable specification of the system 
coupled with a realistic test environment. It is built from 
the paper specification in collaboration with design and 
verification engineers, as well as application specialists. 
The executable specification is a model that iterative 
refinement will transform into a network of collaborating 
objects, much like the final system. The test environment 
provides realistic data right from the beginning of the 
design cycle to allow model observation and validation. It 
can be put together in the most efficient manner with 
fourth generation languages and verification IPs. If the 
proper tools are used, the model will gradually become the 
system, and the test environment will be reused all along 
the development, increasing design reuse and productivity 
[4, 5]. 

An important aspect of the functional prototype has 
been purposely left out of this discussion so far: the 
communication mechanisms between the different parts of 
the prototype. These mechanisms play a crucial role in 
preserving the executability of a prototype. One 
mechanism is necessary to transfer test data between the 
test environment and the executable model. Another 
similar mechanism is used by the model to communicate 
with lower-abstraction components introduced during the 
refinement, e.g. hard IP cores. The next two sections will 
describe these important mechanisms in more detail, while 
the rest of the paper is devoted to their implementation and 
analysis. 

2.2. Connecting the World Around 
The primary role of the test infrastructure in functional 

prototyping is to act as the world around the system being 
developed. The test infrastructure has the following 
characteristics:  
1. It must provide realistic data to the executable model. 
2. It is described at high-level of abstraction for speed of 

development and convenience. 
3. It improves controllability and observability over the 

test scenarios. 
4. In some cases, the test infrastructure must act as a 

placeholder for the analog circuitry that will convey 
the signal to the system. 

It is in the context of an executable specification that 
the importance of testing arises so early: besides the exten-
sive verification that will be performed along the design 
cycle, test is used early to validate the model. The execu-
table model will respond to stimuli, encouraging test reuse 
from the executable specification down to implementation.  

The connection mechanisms between the test 
environment and the model should be minimally intrusive 
in order to stay clear of the model execution and 
refinement. Extensive interaction between the test and the 
model might be necessary to feed a model that is dataflow 
dominated. To allow large amounts of data to be 
processed, the communication mechanisms should use fast 
transfer techniques such as shared memory, memory 
mapped files and sockets.  

2.3. Connecting the World Below 
As model refinement progresses, several clocked 

components expressed at lower levels of abstraction or 
described in different models of computations may get 
involved in model execution. Some hardware components 
may be used to enhance performance of critical parts or to 
reuse some existing hardware IP. Eventually, the exe-
cutable model will reach implementation, meeting all 
temporal constraints of the application.  

Although this is a powerful property of functional 
prototyping, model heterogeneity raises a communication 
issue: most hardware functions are synchronized on a 
clock signal, while the initial model behavior is described 
in UML using asynchronous operation calls, which leads 
to some sort of globally asynchronous locally synchronous 
system. In all cases, preserving the model integrity and 
executability after the inclusion of these clocked 
components is a priority. This is part of the challenge of 
seamlessly connecting the executable model to the world 
below with model level transactors. 

Somewhat similar concepts are found in the Ptolemy 
project, where a framework enables collaboration of 
executable models built under different models of 
computations [12]. The framework uses domain-
polymorphic actors to wrap executable entities and has its 
own design entry interface. In contrast, model-level 
transactors live at the boundary of real-time and 
simulated-time domains, which encompasses model-of-
computation boundaries. In that sense, model-level 
transactors are closer to existing design and 
implementation tools.  

The MASCOT methodology [13] implements a com-
munication protocol between control and dataflow 
domains, defined in SDL and Matlab respectively. This 
co-simulation method is also bound to models of 
computations, which is an issue efficiently addressed by 
tool vendors. Mathworks has since launched an integrated 
tool that manages state machine and dataflow models 
transparently. The primary issue addressed by model level 
transactors is how components developed in different time 
domains (real vs. simulated) can cooperate to form a 
complete functional prototype. The specificity of tools and 
vendor methodologies prevent this kind of interaction. 

Figure 1 puts in context the executable model, the test 
infrastructure and a hardware component model. The 
stopwatch emphasizes the fact that the model is executed 
in real-time, not simulated. 
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Figure 1. Overview of the functional prototype 

3.  Event-Based UML and SoC prototyping 

3.1. UML for the Executable Model 

The Unified Modeling Language (UML) offers all the 
objects and diagrams needed to build an unambiguous 
specification of a SoC.  Originally a software modeling 
tool, UML has recently been extended to model real-time 
systems, an extension we will refer to as UML-RT [6]. Its 
usage in SoC design is an active field of research [11]. The 
usage of UML-RT allows building a model of a SoC that 
is not biased towards a hardware or software 
implementation. The basic architectural unit is a capsule 
and its associated state machine, which describe the 
structure and the behavior of a system respectively.  

A capsule is a stereotype of a class that is the 
equivalent of a VHDL entity, a SystemC SC_MODULE or 
an independent software execution thread. Some vendors 
of UML editing tools have implemented efficient model to 
code translation, which will be used in this paper [8]. 
Populating the capsule’s state machine with platform-
independent C++ code produces a complete executable 
model of the system under development, which can be 
executed and profiled on different CPUs. In that regard, 
this approach differs from the Seamless co-verification 
environment [14], which runs software over an 
instruction-set-simulator (ISS) of the target CPU.  

As introduced earlier, this executable model is the 
entity that must be connected to the test infrastructure as 
well as to the hardware implementation components used 
during the refinement. In both cases, the communication 
mechanism must resolve real-time events vs. cycle-based 
events, which are two totally different ways to describe the 
dynamic aspect of a system. 

3.2. Real-time Events and Cycle-based Events 
UML-RT offers state machines inspired from Harel’s 

statecharts [8] to model the behavior of a capsule. These 
state machines have the following characteristics:  
• Concurrent: state machines in different capsules can 

be executed concurrently. 
• Reactive: transitions occur when an event is raised on 

the capsule’s communication ports.  
• Hierarchical: state machines can be nested to simplify 

behavior modeling 

Through code generation, these state machines become 
executable software, where events are operation calls 
processed in real-time. Although a UML-RT state machine 
has many advantages to model a system’s dynamic 
aspects, some caveats are observed when interacting with 
components described in a cycle-based environment. For 
instance, some cycle-based components rely on registered 
inputs that are sampled on clock ticks (typical to the 
discrete-time and discrete-events models of computation). 
In UML-RT state machines, information is transferred 
during punctual operation calls and therefore the 
communication link retains no information. On the other 
hand, toggling a signal in a cycle-based system does not 
generate an event by default: an observer must listen 
passively on the line to capture the state of the signal and 
react upon a change (defined as the sensitivity of a 
process). In UML, state machine transitions are actively 
triggered by a calling system in a one-shot manner. 

The test infrastructure will manifest itself to the 
executable model under a cycle-based form. Since the 
primary role of the test infrastructure is to represent the 
world outside, it will include the role of the analog-to-
digital and digital-to-analog processing happening on the 
outskirts of the SoC. On a smaller-scale, the test 
infrastructure can also act as some clocked co-processor 
available in an IP library and used during system 
refinement. In either case, it is safe to assume that the real 
world will communicate with the executable model via 
clocked samples.  

To enable both worlds to communicate efficiently, 
cycle-based data must translate to active events interpreted 
by the model’s statecharts. We will present a 
communication mechanism based on a simple client-
server model that solves this problem. 

4. Role of Transactors in Prototyping 
4.1. Model-Level Transactors vs. Transaction-

Level Modeling 
It is first important to define what a transactor is in the 

context of our work, and how it relates to other usage of 
the concept. A transactor enables communication between 
simulated-time and real-time components. Model-level 
transactors are used in the UML-RT model as capsules 
that communicate with clocked or cycle-based models 
running in simulators. Figure 2 depicts the location of 
transactors in the functional prototype. 

Test Infrastructure

Functional Prototype

Executable Model

Hardware Component Model

Tr

Tr

 
Figure 2.  Location of transactors (Tr) 



In SystemC, transactors are used for transaction-level 
modeling and verification. They enable transactions from 
one level of abstraction to the other, inside the same 
simulated-time environment. A SystemC transactor is a  
hardware device that, on the software side, communicates 
at the transactional level, and, on the hardware side, at the 
signal level [9].  

This usage of transactors is very hardware-biased, as 
are models issued from SystemC. Moreover, these 
transactors are dependent on the SystemC scheduler that 
controls the timing and order of process execution [10]. 
By contrast, model-level transactors are high abstraction 
entities with built-in synchronization standing between 
real-time and simulated time domains. Their imple-
mentation handles transactions between a working 
prototype, running in real-time without the support of a 
simulator, scheduler or ISS, and another component 
running under one of these constraints. 

As a side note, transactors do not exist in the final 
implementation of the system. Iterative refinement will 
transform them into one of the following forms that are 
relevant in systems-on-chip:  
• drivers or interrupt service routines for software-

hardware interaction; 
• bus slaves and masters or custom signals for 

hardware-hardware interaction; 
• Application Programming Interface (APIs) for 

software-software interaction.  

4.2. Client-Server Model  
A server is an entity that responds to a client’s requests. 

Likewise, an embedded application is a processing entity 
offering a service to clients. If the processing entity is 
disabled, client requests are denied. If client requests stop, 
the server will go idle or do some internal business. In this 
paper, the server is the executable model and the client is 
the cycle-based test environment. From a hardware 
refinement perspective, the executable model becomes the 
client of multiple hardware accelerators seen as servers. 
This case is a conjugate of the first one and will not be 
covered here.  

The transactor that will enable the communication 

between these two entities is divided into a server half and 
a client half that live in the executable model and the 
cycle-based model respectively. Of course, each half is 
itself divided in a front-end that is compatible with the 
model and a back-end that implements the client-server 
signaling. From this standpoint, different communication 
scenarios are described in Table 1.  

Dataflow synchronization between cycle-based and 
event-based domains relies on the identification of atomic 
processes in the capsule’s state machines. An atomic 
process is a chain of events occurring between two inter-
actions of the executable model with the clocked model. 
These interactions may occur every cycle (as assumed in 
this paper) or span across n clock periods. Determining the 
value of n can be used as a partitioning metric, which is 
left as a topic of future research.  

4.3. Implementing Transactors with Sockets 
The Berkeley sockets are an efficient communication 

mechanism that can be used to implement the back-end of 
a model-level transactor. On the UML side, the transactor 
is a capsule connected to the ports of the design, hiding the 
socket implementation from the model. On the client side, 
the same socket mechanism is implemented using a client 
compatible front-end. In Simulink, for example, the client 
transactor is implemented in a user-defined block called a 
C++ S-function. This is a special block that can be inserted 
in a Simulink model to execute custom C++ code during a 
simulation. When the Simulink scheduler executes the S-
Function block, the custom code is executed and all the 
transactions with the UML-RT model relevant to this 
cycle are performed. The characteristics of this socket 
mechanism are: 
• Communication between the executable model and 

the clocked component is synchronous and inter-
active. A socket can act as a signal observer similar to 
a latch, enabling fine resolution feedback and rea-
listic execution scenarios. 

• The communication overhead is still significant from 
a real-time perspective, and therefore the capsule 
transactor must be easy to remove for proper model 
refinement. 

Table 1. Communication Scenarios between Event-Based (Server) and Cycle-Based (Client) Behavior 
Flow of communication Initiator Typical Situation Example 

1.1 Server  
(with handshaking) 

When a server requires information from a client, it 
sends a message on its transactor. A client transactor 
is observing this trigger on the cycle-based side. The 
information is sent back to the server 

UML capsule ready to 
receive data from 
Simulink environment 

1. Client  Server 

1.2 Client 
(no handshaking) 

Upon a cycle tick, the client transactor checks for a 
change in a given signal state. If a change is 
detected, a message is sent to the server through the 
transactor. The transaction requires polling or 
interruption on the server side. 

Reset signal sent from 
Simulink to UML 

2.1 Server 
(no handshaking) 

Data is sent to the client transactor that monitors the 
line. The cycle at which data is expected must be 
known precisely, or an observer must be 
implemented on the client side. 

Processed data returned 
back to the test 
environment after n client 
cycles 

2. Server  Client 
 

2.2 Client 
(with handshaking) 

When the conditions apply, the clocked module that 
needs data activates a request line on the transactor. 
A request event is sent to the server and data is 
returned at a known time.  

Simulink retrieves the 
value of a state register in 
the executable model 

 



Sporadic signals such as a reset signal expose a limit of 
a UML-RT model. The delay produced by the translation 
of the toggle on the line into an event for the capsule state 
machine is less deterministic than in hardware (c.f. 
scenario 1.2 in Table I). The granularity of events in the 
capsule world is a lot coarser than in the cycle-based 
world and it is the role of the transactor to act as a buf-
fering and recovery mechanism. This leads to an important 
observation in the usage of UML-RT for integrated 
systems: a statechart is a high-level construct that cannot 
profitably imitate the timing granularity of clocked 
hardware components. Knowing this limit, unnecessary 
modeling efforts can be avoided.   

5. Case Study 
5.1.  Prototyping of a Software Radio Component 

Model-level transactors have been used in the 
functional prototyping of an adaptive equalizer for a 
software radio. The prototype will be presented here as a 
case study. The tool used to build the executable model is 
Rose-RT from IBM-Rational, which offers efficient 
model-to-code translation. The UML-RT state machines 
are detailed using C++ code, which is essential to obtain a 
complete behavioral model. The generated C++ code is 
compiled into an executable file and runs on a host station.  

The test infrastructure is developed in parallel with 
Simulink to produce test stimuli and analyze test results. 
Simulink has numerous pre-built components to generate 
and analyze radio signals, like QPSK encoders, channel 
models and constellation scope. The test infrastructure and 
the executable model of the equalizer, coupled with the 
appropriate transactor, constitute the first version of a 
functional prototype, which was up and running in a 
matter of days. 

5.2. Experimental Results 
The adaptive equalizer has been completely specified 

using UML-RT capsules, state machines and C++ code 
realizing the dataflow. Its development is influenced by 
the fact that the equalizer will eventually be part of a 
larger software-defined-radio system. A complete test 
environment has been set up in Simulink by a different 

team to produce realistic data and to analyze the pro-
cessing results. Figure 3 presents the block diagram of the 
complete functional prototype. 

The execution of this functional prototype is a two-step 
process. The UML-RT model is first launched to act as the 
server. The transactor capsules are created and the server 
completes its initialization procedure. Then the Simulink 
test environment is launched and its client transactor 
issues a connection request to the server transactor. Once 
the connection is established, the Simulink fixed-step 
solver starts the cyclic execution of the test environment 
blocks, producing the test data we need. The diagrams of 
Figure 4 illustrate the structure of the UML-RT half of the 
transactor and its connection to the rest of the model. 

 / theEqualizer

 / serverTransactor

+ / sam
ple_com

m

+ / eq_control_com
m

+ / training_com
m

+ / decision_com
m

+ / eq_error_com
m

 / TCPServer

# / remote_comm
 

Figure 4. Key UML structure diagrams 

On the Simulink side, the client transactor is 
implemented in a user-defined S-function block, as shown 
by the model snapshot of Figure. 5. 

 
Figure 5. Test environment in Simulink 

A reliable solution to interconnect the client and server 
halves of the transactor is to implement basic handshaking 
between the clock-based and event-based domains (c.f. 
scenario 1.1 in table I). To this end, a ready signal is sent 
by the executable model when it is ready to receive new 
data. Blocking TCP sockets were needed to ensure proper 
synchronization, because of the sensitivity of the proto-
type to variable speed of execution on different hosts. 
Indeed, on one type of computer, Simulink waited at each 
cycle for the executable model to send the ready signal as 
illustrated in scenario 1 of Figure 6. On a faster computer 
though, the model ran faster than a Simulink cycle, 
producing a “ready” signal before the completion of the 
Simulink cycle, as illustrated in scenario 2. In the first 
scenario, the clocked transactor socket blocks the 
execution of Simulink until the “ready” signal is received. 
In the second scenario, the same socket keeps the “ready” 
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Source

Rummler
Channel
Model

C S Equalizer

Sink

Ref 
eq

Ref 
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C/S

Legend:
Client / Server 
Transactor
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Figure 3. Functional prototype built with 
Simulink, UML-RT and transactors 



signal in a queue until it is sampled at the beginning of a 
cycle. It is interesting to note that only the first scenario 
will provide continuous real-time bit rates, since the 
executable model runs at its maximum speed. In the 
second scenario, the bit rate is artificially slowed down by 
the unrealistic execution time of Simulink, which prevents 
measurement of a continuous real-time bit rate. 

::ClockBasedTransactor ::EventBasedTransactor

DATA

Cycle
Tick

Cycle
Tick

READY

RESULT

Scenario 1 : Simulink runs 
faster than the model

READY

IDLE

IDLE

::ClockBasedTransactor ::EventBasedTransactor

DATACycle
Tick

Cycle
Tick

READY

RESULT

Scenario 2 : the model runs 
faster than Simulink

READY

IDLE

IDLEDATA

  
Figure 6. Execution scenarios on two 
different computers 

The execution of this functional prototype on a Pentium 
4 CPU running at 1.7 GHz on a non real-time OS has 
allowed us to reach a sample period of 32 µs for basic 
BPSK modulation, or 62.5 kbps. Although the code could 
be optimized to reach a higher rate or the modulation 
changed to higher density, this rate would be enough to 
handle digital voice communication over a radio channel.  

Figure 7 was traced dynamically by Simulink with data 
gathered on the fly from the executable model. It repre-
sents the evolution of mean square errors (MSE) vs. time 
in an adaptive equalizer. This kind of analysis was 
extremely useful in the validation and refinement of the 
specification of the system. 
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Figure 7. Mean-square error vs. time 

6. Observations and Conclusion  
Transactors allow breaking tool barriers and 

implementing functional prototypes that can be tested in a 
virtual simulated environment, and then run under realistic 
conditions. To achieve an accurate stimulation of the 
system, a Simulink model was used as a test environment 
to produce realistic radio channel data. The coupling of a 
UML-UML model to the Simulink tool with model level 
transactors allowed a functional and inter-active prototype 
of a system to be built.  

The hardware implementation components that can be 
introduced in a UML-RT model will eventually use dif-
ferent communication means such as an AMBA-AHB bus, 
interrupt pins or custom protocols. Somehow, the 
transactor should be transformed into one of these 
hardware implementations, like a bus protocol. Modeling 
such communication infrastructure is left for future 
investigation. Another interesting issue is the exchange of 
fixed-point data with clocked components. Fixed-point 
data format are used in hardware systems where data lines 
have finite widths. The translation from fixed-point to 
floating point is another functionality which could be 
implemented in the model-level transactors.  

This work opens a variety of opportunities to bring 
high-level modeling and functional prototypes closer to 
hardware implementations.  
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