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Abstract 

UML 2.0 provides a rich set of diagrams for systems 
documentation and specification. Many efforts have been 
undertaken to employ different aspects of UML for 
multiple domains, mainly in the area of software systems. 
Considering the area of electronic design automation, 
however, we currently see only very few approaches, 
which investigate UML for hardware design and 
hardware/software co-design. In this article, we present 
an approach for executable UML closing the gap from 
system specification to its model-based execution on 
reconfigurable hardware. For this purpose, we present 
our Abstract Execution Platform (AEP), which is based 
on a Virtual Machine running an executable UML subset 
for embedded software and reconfigurable hardware. 
This subset combines UML 2.0 Class, StateMachine and 
Sequence Diagrams for complete system specification. We 
describe how these binary encoded UML specifications 
can be directly executed and give the implementation of 
such a virtual machine on a Virtex II FPGA. Finally, we 
present evaluation results comparing the AEP 
implementation with C code on a C167 microcontroller.  

1. Introduction 

We currently can identify multiple gaps in the design 
of embedded and electronic systems, from specification to 
a first implementation. In current practice, all approaches 
follow a platform-specific code generation. For most 
tools, various code generator targets are available for 
different microcontrollers such as C167 and different 
Real-Time Operating Systems (RTOSs) like OSEK [10]. 
There have been many efforts to investigate retargetable 
compilers to easily adopt them to different hardware 
platforms [7]. 

Most recently, the MDA approach (Model-Driven 
Architecture) [17] became well recognized in the domain 
of embedded software and hardware systems. MDA is 
based on the idea of platform-independent development 

with platform-independent models (PIMs). PIMs have to 
be mapped to platform-specific models (PSMs), which are 
used for the actual implementation. In that context, the 
notion of Executable UML plays a significant role, as it 
enables a UML-based PSM to become executable.  

We introduce a novel approach to efficiently execute 
specifications on FPGAs. The specifications are defined 
by an UML 2.0 subset with precise behavioral semantics 
executing on our Abstract Execution Platform (AEP). Our 
UML subset covers Classes, StateMachines, and 
Interactions (given as Sequence Diagrams) with software 
exceptions, interrupts, and timeouts. We apply a virtual 
machine concept to implement the AEP on a FPGA. The 
AEP virtual machine directly executes binary encoded 
specifications, which resemble the object-oriented 
structure of the UML specification and combine efficient 
execution of state-transition tables with Activities, and 
Actions compiled to a Motorola 68K-like bytecode with 
object-oriented extensions. 

The remainder of this paper is structured as follows. 
The next section discusses related works. Section 3 
introduces the UML subset defining syntax and semantics 
for AEP specifications. Section 4 presents the concept of 
direct execution of specifications on a virtual machine. 
Section 5 introduces our implementation on a FPGA 
before Section 6 closes with summary and conclusion.  

2. Related Works 

 Based on Starr’s approach to executable UML [15], 
which is mainly based on class and state diagrams, Project 
Technology developed X

TUML [12] as an executable and 
translatable UML subset for embedded real-time systems 
in the areas of flight-critical systems, performance-critical 
fault-tolerant telecom systems, and resource-constrained 
consumer electronics. Their Nucleus Modeling tools 
basically integrate abstract, macro-like constructs, which 
are easily retargetable to the various C-dialects of 
different microcontroller platforms. A second approach to 
executable UML is xUML [19], which also includes a 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1530-1591/05 $20.00 © 2005 IEEE 



complete development methodology. The concept of 
xUML is based on the Action Specification Language 
(ASL), which defines the behavioral semantics of active 
objects for code generation. ASL has been integrated into 
the OMG-adopted UML Standard for precise action 
semantics [16]. However, for creating an executable 
model, xUML still relies on a programming language-
specific code generation (e.g., for Ada, C, C++). 

In the area of platform independent execution, the most 
prominent approaches to portable code are the UCSD 
Pascal p-Code and the bytecode of the Java Virtual 
Machine [8]. The Java compiler generates low-level 
bytecode, which is executed on a Java Virtual Machine 
(VM). Though Java was originally designed for 
embedded systems, due to the large footprint of its 
runtime environment and the garbage collection memory 
management, the Java2 Standard Edition is not suited for 
small microcontrollers and real-time applications. 
Though, there exist Java profiles of the Java2 Micro 
Edition for limited devices like the CLDC (Connected 
Limited Device Configuration) and the CDC (Connected 
Device Configuration), we currently see no VM 
implementations for microcontrollers and no support for 
Real-Time Java for those platforms..  

Considering execution on FPGAs, the Hardware 
Virtual Machine project targets at the specification of an 
abstract FPGA to overcome the problem of incompatible 
bit files. Designs for abstract FPGAs are automatically 
transformed into a bit file for a specific FPGA. The 
transformation is based on an automated creation of the 
design for the target FPGA from small fragments, which 
are then subject to place and route. 

Lange and Kebschull introduce the idea of a virtual 
machine for abstracting hardware implementations from 
particular FPGA types [6]. The approach is based on the 
execution of a binary encoded register transfer level 
description of the logic that is referred to as bytecode. The 
bytecode is composed of blocks of instructions that are 
scheduled into multiple equal execution units within the 
actual virtual machine implementation. This virtual 
machine implementation is specific for a particular FPGA 
and may vary in the number of execution units. However, 
their bytecode describes low level hardware designs 
comparable with a direct FPGA implementation. High 
level constructs like control structures are not supported. 

Our approach presents a runtime environment for 
FPGAs, which directly executes the binary representation 
of a platform independent UML specification. In contrast 
to other approaches, our concepts implement a completely 
model-based approach for the specification of real-time 
systems covering interrupts and timeouts. In contrast, to 
the Java Virtual Machine, we provide explicit separation 
of concerns by integrating StateMachines and Sequence 
Diagrams into one language. Hereby, the user has explicit 

control on the use of efficiently running control-oriented 
StateMachine and data-oriented Sequence Diagrams. 
Additionally, our approach supports object-orientation at 
the bytecode level, where the Java compiler elaborates the 
object-oriented constructs before the bytecode generation. 
To our knowledge, our work presents the first real model-
based approach, which generates binaries from UML for 
FPGA runtime environments.  

3. Executing UML Models 

Our approach is based on the concept of the Abstract 
Execution Platform (AEP). The AEP provides syntax and 
semantics for complete system specification based on a 
well-defined executable UML subset with precise 
execution semantics. Actual implementations of the AEP 
may apply inherently different techniques to implement 
the AEP semantics. Section 4 describes our AEP 
implementation given by a virtual machine on an FPGA. 
However, the AEP can also be implement as a complete 
software solution, e.g., on embedded microcontrollers. 

The behavioral part of the UML is based on the 
concepts of StateMachines, Activities, and Interactions. 
StateMachines invoke Activities when executing states or 
state transitions as Entry, Do, Exit, or Effect Activities, 
which in turn are composed of Actions. Transitions of 
StateMachines fire when an event occurs. Interactions are 
based on the concepts of partially ordered traces and are 
represented by Sequence Diagrams.  

Our concepts for executable UML are based on a UML 
2.0 subset covering Class-, StateMachine-, and Sequence 
Diagrams. System specification is based on the definition 
of a Class Diagram with classes, their properties, and their 
operations. In contrast to other approaches, we consider 
each operation as a StateMachine and use Sequence 
Diagrams as an action language for describing the 
Activities. Note that the case of a trivial StateMachine 
(i.e., a single state with a single Activity) equals to the use 
of Sequence Diagrams for the definition of an operation. 

We support StateMachines with composite and simple 
states. Concurrent States are intentionally not supported, 
because concurrency is already supported through 
asynchronous operations that may be described by 
StateMachines. For events, we support timeout, interrupts, 
exceptions, explicit events, and the completion of the 
embedded Activities/Actions. Fig. 1 gives a simple 
controller with interrupts and timeouts as an example.  
Interactions are embedded as Activities and have one 
active object representing the currently activated instance. 
The Activity is described by the sequence of outgoing 
invocations from that active object. An example is given 
in Fig. 3 and will be further discussed in the next section. 
Asynchronous operation calls are instantiations of 
StateMachines. This leads to a dynamic composition of 



multiple concurrent hierarchical StateMachines along the 
operation call hierarchy. Thus, state- and control-oriented 
modeling can be seamlessly combined following a fully 
object-oriented reactive concurrent system designs.   
 

Completion 
transitions 
triggered by 
completion 
event

Forward

exit / stopMotor()
do / blink
entry / startMotor(true)

ForwardInterrupted

entry / handleReverse()

Backward

exit / stopMotor()
do / blink()
entry / startMotor(false)

BackwardInterrupted

entry / handleReverse()

RunCompleted

«interrupt»

after 1000 ms

after 2000 ms

«interrupt»

 
Fig. 1: StateMachine Example 

4. The AEP Virtual Machine  

Our UML specifications are compiled to equivalent 
binary representations, which are directly executed on our 
Abstract Execution Platform (AEP). The AEP is realized 
as a virtual machine that can be implemented on different 
platforms, e.g., completely in software or directly in 
hardware on an FPGA.  

In their binary specifications, StateMachines are 
encoded as binary state-transition tables, which we denote 
as Executable State Machines (ESMs). Interactions 
defining Activities are compiled into equivalent UML 
bytecode.  

 

 

Fig. 2: AEP Virtual Machine - Architecture 

The AEP virtual machine consists of the Model 
Execution Unit (MEU) and the Runtime Kernel (RK) as 
given in Fig. 2. The RK is an executable specification that 
on the hand is used for bootstrapping including 
initialization of the initial executable specification and on 
the other hand implements memory management, thread 
scheduling. The RK is executed by the MEU, which is 
composed of two interacting interpreters for the different 
parts of the binary UML representation; one for the 
Executable StateMachines (ESM) and another one for the 
Bytecode. A separate timer manages hard timeouts. 

The ESM Interpreter performs immediate state 
transitions when events occur. Currently, five pre-defined 
events are supported: Completion, Interrupt, Timeout, 
Division-by-Zero, and Memory-Overflow. When a state is 
entered or a transition executed, the interpreter first 
checks, if an Activity in form of an Interaction with 
bytecode is defined. If there is bytecode in the embedded 
Activity, the bytecode interpreter is invoked. A generated 
bytecode sequence typically finishes with a COMPLETE 
instruction, which generates a completion event. If no 
Activity is defined or when the final state is reached, an 
immediate completion event is generated.  

The Bytecode Interpreter executes the Bytecode in a 
microprocessor-like manner using an instruction pointer 
and a 32 bit word stack for program control. To provide a 
hardware-independent execution platform, the interpreter 
has no registers. All variables are managed on the stack.  

Our UML bytecode is based on a instruction set 
derived from the Motorola 68K family [14], which is 
extended for the control of the ESM interpreter and the 
handling of classes and their instances (cf. Table 1).  

Classes and interfaces are identified in our approach at 
runtime using unique identifiers. This allows late binding 
and lays the foundation for a software component 
architecture based on our approach like in COM [11]. 

Each class is a single block of binary data in memory. 
It essentially consists of the unique class identifier (the 
CLASSID), a function table for the implemented 
operations, an absolute pointer to the base class in 
memory (if any), and a reference to the linked list of 
implemented interfaces. Each of the interfaces, like the 
class itself, has a table with references to the actual 
method implementations. All absolute references are 
resolved by the RK class loader when loading a class.  

Because static class attributes are private in our 
approach, subclasses must use operations to access 
inherited attributes. Thus, there is no need to distinguish 
between local and inherited attributes, which in turn 
simplifies the address management. The attributes are 
trailing to the actual base address of the class to enable 
consistent access to the operation table of a class and its 
subclasses. Much like a C++ vtable (virtual function 
table), this table grows in subclasses when appending 



subclass operations. It is worth noting here, that in our 
approach, all non-private operations are technically virtual 
and can be overridden in subclasses. Private operations 
are directly resolved by the bytecode compiler and 
compiled into subroutines of the bytecode. Thus, these 
operations are not represented in those tables.  

The table for each class includes three basic operations.  
These are the base constructor for filling the fields of an 
instance and two operations for initializing and finalizing 
the class when it is loaded or unloaded.  

There is no need for code relocation in our approach, 
since the bytecode for an operation contains only relative 
branches. Thus, the code is completely relative except for 
operation invocations. Absolute instance and class 
references are used for such invocations, but are obtained 
during runtime. 

Our bytecode introduces instructions to support object 
instantiation and destruction as well as operation 
invocations. The NEW instruction creates a new object 
allocating dynamic memory for the instance. The 
DESTROY instruction releases dynamically allocated 
instance memory. INVOKE* and FORK/JOIN execute 
synchronous and asynchronous operation calls using an 
operation identifier (the actual offset in the operation 
table) and the instance or interface as parameters. 
Synchronization is implemented by the SYNC and 
RELEASE instructions for obtaining and releasing a 
mutex semaphore on an instance. The TRYSYNC 
instruction is a non-blocking variant of SYNC. 

Three additional instructions provide explicit ESM 
control. The TRANS instruction performs an immediate 
transition to an explicitly given new state with all side 
effects. The EVENT instruction causes the ESM 
interpreter to process the event in the context of the 
current state hierarchy.  COMPLETE causes the immediate 
execution of the completion transition for the current 
state. 

Finally, the CONTINUE instruction explicitly changes 
the execution context to the specified thread. The state of 
the current thread is saved on the stack before the state of 
the new thread is restored from the stack. This new thread 
will be passed to the RK scheduler implementation for 
immediate schedule for execution. 

A called operation uses the stack to create local 
variables and hold temporary values during nested 
computations. For this, the bytecode interpreter 
distinguishes three address spaces on the stack denoted as 
frames, which are created when invoking an operation (cf. 
Fig. 4). The Parameter Frame holds all input and output 
parameters. Output parameters are pushed on the stack 
with their default values. The Local Frame is for local 
variables and temporary data. Both frames have fixed 
sizes, which can be computed at compile time. The Pass 
Frame holds the designated parameters for a suboperation 

call. That frame is dynamically expanded when additional 
parameters are pushed on the stack. The pass frame 
becomes the parameter frame during the invocation of that 
suboperation. It is extended with data for restoring the 
current state upon return, a reference to the parent state 
and, for non-static invocations, the reference to the called 
this instance. 

An additional local address space is provided for 
accessing local instance attributes. All instructions 
fetching and storing stack data refer to one of the three 
stack frames or this local address space. This guarantees 
full memory protection, but comes at the cost of a 
significant overhead in stack use during operation 
invocations as address and size of parameter and local 
frames have to be saved when invoking an operation.  

 
 

Mnemonic Dst Src Semantics 
Data Movement & Stack Instructions 
move.[b,l,d] mem mem/im Dst ← Src 
push.[b,l,d] mem  [-sp] ← Dst 
pop.[b,l,d] mem  Dst ← [sp+] 
enter imm  (Initialize local frame) 
Math Instructions 
add.[b,l,d] mem mem/im Dst ← Dst + Src 
sub.[b,l,d] mem mem/im Dst ← Dst - Src 
neg.[b,l,d] mem  Dst ← 0 - Dst 
mul.[l,d] mem mem/im Dst ← Dst * Src 
div.[l,d] mem mem/im Dst ← Dst / Src 
mod.[l,d] mem mem/im Dst ← Dst % Src 
cmp.[b,l,d] mem mem/im [Flags according] 
Logical Instructions 
not.[b,l,d] mem  Dst ← ~Dst 
and.[b,l,d] mem mem/im Dst ← Dst ∧ Src 
or.[b,l,d] mem mem/im Dst ← Dst ∨ Src 
xor.[b,l,d] mem mem/im Dst ← Dst ⊕ Src 
Shift Instructions 
asl.[b,l,d] mem mem/im Dst ← Dst << Src 
asr.[b,l,d] mem mem/im Dst ← Dst >> Src 
lsl.[b,l,d] mem mem/im Dst ← Dst <<< Src 
lsr.[b,l,d] mem mem/im Dst ← Dst >>> Src 
Control Instructions 
bCC disp  Conditional branch  
bra disp  Unconditional branch 
OO Control Instructions 
new mem mem/im Dst  ← (instanceof Src) 
destroy mem  (destroy instance Dst) 
interface mem mem Dst ←  Dst as Src 
invoke mem Im (invoke Src on Dst) 
invokes mem Im (invoke static Src on Dst)
invokei mem Im (interface op Src on Dst) 
fork mem Im (fork Src on Dst) 
forks mem Im (fork static) 
Synchronization Instructions 
join mem  (join thread Dst) 
sync mem  (obtain instance lock) 
trysync mem  (lock if possible) 
release mem  (release instance lock) 
ESM Control Instructions 
trans mem  (transition to Dst) 
event mem  (event Dst will be 
complete   (return) 
Thread Control Instructions 
continue Mem  (continue Thread Dst) 

Table 1: AEP Bytecode Instruction Set 



Current Instance Attributes Parameters Local

this :List First :ListNode Last :ListNode Result :Object Local :ListNode

int i:=0

loop 

[(i<index)&&(Current!=null)]

i:=i+1

opt 

[Current!=null]

Current:= getFirst()

Current:= getNext()

Result:= getData()

 

Fig. 3: get(index) operation for a linked list 

4.1 UML Bytecode Example 

To illustrate our UML bytecode, we briefly outline it by 
the example of the get(index) operation of a linked 
list. The StateMachine for the operation is given by a 
trivial StateMachine with a single state and a single 
Activity for the completion of the state. Fig. 3 gives the 
Activity as a Sequence Diagram. The get() operation 
searches the linked list up to the given index. This is 
defined by a loop CombinedFragment for iterating the list 
until the given index or the end of the list is reached. 
Then, the data attribute of the ListNode is returned. 
The bytecode for that operation is given by the following 
sequence and the corresponding stack is shown in Fig. 4.  

 
 enter 8 // 8 bytes Local 
 move.l #0,[Current] // Current = default 
 move.l #0,i // i:=0 
 push.l #0 // default return  
 invoke #getFirst,[this] // invoke nonstatic 
 pop.l [Current] // store in Current 
L1: cmp.l [Index],[i] // Index<i ? 
 bnb LE  
 cmp.l #0,Current // Current!=null ? 
 beq LE  
 invoke #getNext,[Current // invoke nonstatic 
 add.l #1,[i] // i=i+1 
 jmp L1 // loop 
LE: cmp.l #0,[Current] // Curren!=null ? 
 beq END // Curren!=null ? 
 push.l #0 // default return 
 invoke #getData,[Current // invoke nonstatic 
 pop.l [Result] // store in Result 
END complete  // leaves stack 

 
Note that the this reference on the stack is added 

together with the parent stack frames of the non-static 
invoke instruction. The corresponding complete 
operation restores the parent frames from the stack and 
discards the this reference by adjusting the stack pointer 
accordingly. 

 
Fig. 4: Stack for a get(index) operation call 



5. Evaluation Results 

We have implemented a prototype of the AEP virtual 
machine using Handel-C on a Celoxica RC 200 evaluation 
board equipped with a Virtex II XC2V 1000-4. The 
virtual machine resides on the SmartMedia Card (SMC) 
and the binary encoded UML programs are loaded to the 
SRAM via the RS-232 interface. The current 
implementation runs with 35 MHz. However, this is just a 
limitation of the RC 200 board due to the SMC card 
without any implications for our concepts.  

Our evaluation focused on the runtime of the bytecode 
interpreter, as it is essential for computations. We 
implemented five different UML examples and compared 
their runtimes with C implementations on a C167 with 20 
MHz. These examples include a factorial calculation (fak), 
an adder-tree (tree), a Fibonacci calculation (fib), a 
butterfly node (butterfly) with 4 multipliers and two 
adders, and a matrix addition (mmadd).   

All program data including stacks and dynamically 
allocated memory resides in the SRAM. Each instruction 
has to be fetched from SRAM during execution. 

 
 Bytecode/AEP C/C167
Fak 0.010 ms 0.032 ms
Tree 0.009 ms 0.009 ms
Fib 0.012 ms 0.015 ms
butterfly 0.021 ms 0.124 ms
Mmadd 0.067 ms 0.109 ms

Table 2: Bytecode on AEP vs. C on C167 

The test results are summarized in Table 2. All tests 
were repeated 1000 times and the average is presented. 
During these tests, no anomalies (e.g., strong variance) 
where detected. In summary, our AEP prototype achieves 
a per-clock performance comparable to the C167 
embedded microprocessor running C code. Considering 
the early stage of our prototype and the high-level model-
based design method applying UML specifications, we 
think that this is a considerable result. However, the above 
examples are small and make no significant use of deep 
call hierarchies and state machines. While this is still not 
crucial for many designs, it is necessary to further explore 
the performance of more complex ESM models.  

6. Conclusions and Outlook 

We have presented a novel approach for executable 
UML specifications on FPGAs. This approach is based on 
an executable UML subset with precise execution 
semantics given by our Abstract Execution Platform 
(AEP). We have introduced the concept of a virtual 
machine for executing binary representations of UML 
specifications. Our evaluation compared our executable 
specifications on FPGA with corresponding C 
implementations on a C167 microcontroller. This showed 

promising results considering that we start from a model-
based, platform independent object-oriented UML 
specification and directly execute it on a virtual machine. 

However,  the evaluation of more complex programs is 
still necessary. Furthermore, we plan to evaluate different 
memory management and scheduling implementations  
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