
A Model-Based Approach for Executable Specifications
on Reconfigurable Hardware

Tim Schattkowsky, Wolfgang Mueller, Achim Rettberg
University of Paderborn/C-LAB

Paderborn, Germany

Abstract

UML 2.0 provides a rich set of diagrams for systems
documentation and specification. Many efforts have been
undertaken to employ different aspects of UML for
multiple domains, mainly in the area of software systems.
Considering the area of electronic design automation,
however, we currently see only very few approaches,
which investigate UML for hardware design and
hardware/software co-design. In this article, we present
an approach for executable UML closing the gap from
system specification to its model-based execution on
reconfigurable hardware. For this purpose, we present
our Abstract Execution Platform (AEP), which is based
on a Virtual Machine running an executable UML subset
for embedded software and reconfigurable hardware.
This subset combines UML 2.0 Class, StateMachine and
Sequence Diagrams for complete system specification. We
describe how these binary encoded UML specifications
can be directly executed and give the implementation of
such a virtual machine on a Virtex II FPGA. Finally, we
present evaluation results comparing the AEP
implementation with C code on a C167 microcontroller.

1. Introduction

We currently can identify multiple gaps in the design
of embedded and electronic systems, from specification to
a first implementation. In current practice, all approaches
follow a platform-specific code generation. For most
tools, various code generator targets are available for
different microcontrollers such as C167 and different
Real-Time Operating Systems (RTOSs) like OSEK [10].
There have been many efforts to investigate retargetable
compilers to easily adopt them to different hardware
platforms [7].

Most recently, the MDA approach (Model-Driven
Architecture) [17] became well recognized in the domain
of embedded software and hardware systems. MDA is
based on the idea of platform-independent development

with platform-independent models (PIMs). PIMs have to
be mapped to platform-specific models (PSMs), which are
used for the actual implementation. In that context, the
notion of Executable UML plays a significant role, as it
enables a UML-based PSM to become executable.

We introduce a novel approach to efficiently execute
specifications on FPGAs. The specifications are defined
by an UML 2.0 subset with precise behavioral semantics
executing on our Abstract Execution Platform (AEP). Our
UML subset covers Classes, StateMachines, and
Interactions (given as Sequence Diagrams) with software
exceptions, interrupts, and timeouts. We apply a virtual
machine concept to implement the AEP on a FPGA. The
AEP virtual machine directly executes binary encoded
specifications, which resemble the object-oriented
structure of the UML specification and combine efficient
execution of state-transition tables with Activities, and
Actions compiled to a Motorola 68K-like bytecode with
object-oriented extensions.

The remainder of this paper is structured as follows.
The next section discusses related works. Section 3
introduces the UML subset defining syntax and semantics
for AEP specifications. Section 4 presents the concept of
direct execution of specifications on a virtual machine.
Section 5 introduces our implementation on a FPGA
before Section 6 closes with summary and conclusion.

2. Related Works

 Based on Starr’s approach to executable UML [15],
which is mainly based on class and state diagrams, Project
Technology developed X

TUML [12] as an executable and
translatable UML subset for embedded real-time systems
in the areas of flight-critical systems, performance-critical
fault-tolerant telecom systems, and resource-constrained
consumer electronics. Their Nucleus Modeling tools
basically integrate abstract, macro-like constructs, which
are easily retargetable to the various C-dialects of
different microcontroller platforms. A second approach to
executable UML is xUML [19], which also includes a

1530-1591/05 $20.00 © 2005 IEEE

complete development methodology. The concept of
xUML is based on the Action Specification Language
(ASL), which defines the behavioral semantics of active
objects for code generation. ASL has been integrated into
the OMG-adopted UML Standard for precise action
semantics [16]. However, for creating an executable
model, xUML still relies on a programming language-
specific code generation (e.g., for Ada, C, C++).

In the area of platform independent execution, the most
prominent approaches to portable code are the UCSD
Pascal p-Code and the bytecode of the Java Virtual
Machine [8]. The Java compiler generates low-level
bytecode, which is executed on a Java Virtual Machine
(VM). Though Java was originally designed for
embedded systems, due to the large footprint of its
runtime environment and the garbage collection memory
management, the Java2 Standard Edition is not suited for
small microcontrollers and real-time applications.
Though, there exist Java profiles of the Java2 Micro
Edition for limited devices like the CLDC (Connected
Limited Device Configuration) and the CDC (Connected
Device Configuration), we currently see no VM
implementations for microcontrollers and no support for
Real-Time Java for those platforms..

Considering execution on FPGAs, the Hardware
Virtual Machine project targets at the specification of an
abstract FPGA to overcome the problem of incompatible
bit files. Designs for abstract FPGAs are automatically
transformed into a bit file for a specific FPGA. The
transformation is based on an automated creation of the
design for the target FPGA from small fragments, which
are then subject to place and route.

Lange and Kebschull introduce the idea of a virtual
machine for abstracting hardware implementations from
particular FPGA types [6]. The approach is based on the
execution of a binary encoded register transfer level
description of the logic that is referred to as bytecode. The
bytecode is composed of blocks of instructions that are
scheduled into multiple equal execution units within the
actual virtual machine implementation. This virtual
machine implementation is specific for a particular FPGA
and may vary in the number of execution units. However,
their bytecode describes low level hardware designs
comparable with a direct FPGA implementation. High
level constructs like control structures are not supported.

Our approach presents a runtime environment for
FPGAs, which directly executes the binary representation
of a platform independent UML specification. In contrast
to other approaches, our concepts implement a completely
model-based approach for the specification of real-time
systems covering interrupts and timeouts. In contrast, to
the Java Virtual Machine, we provide explicit separation
of concerns by integrating StateMachines and Sequence
Diagrams into one language. Hereby, the user has explicit

control on the use of efficiently running control-oriented
StateMachine and data-oriented Sequence Diagrams.
Additionally, our approach supports object-orientation at
the bytecode level, where the Java compiler elaborates the
object-oriented constructs before the bytecode generation.
To our knowledge, our work presents the first real model-
based approach, which generates binaries from UML for
FPGA runtime environments.

3. Executing UML Models

Our approach is based on the concept of the Abstract
Execution Platform (AEP). The AEP provides syntax and
semantics for complete system specification based on a
well-defined executable UML subset with precise
execution semantics. Actual implementations of the AEP
may apply inherently different techniques to implement
the AEP semantics. Section 4 describes our AEP
implementation given by a virtual machine on an FPGA.
However, the AEP can also be implement as a complete
software solution, e.g., on embedded microcontrollers.

The behavioral part of the UML is based on the
concepts of StateMachines, Activities, and Interactions.
StateMachines invoke Activities when executing states or
state transitions as Entry, Do, Exit, or Effect Activities,
which in turn are composed of Actions. Transitions of
StateMachines fire when an event occurs. Interactions are
based on the concepts of partially ordered traces and are
represented by Sequence Diagrams.

Our concepts for executable UML are based on a UML
2.0 subset covering Class-, StateMachine-, and Sequence
Diagrams. System specification is based on the definition
of a Class Diagram with classes, their properties, and their
operations. In contrast to other approaches, we consider
each operation as a StateMachine and use Sequence
Diagrams as an action language for describing the
Activities. Note that the case of a trivial StateMachine
(i.e., a single state with a single Activity) equals to the use
of Sequence Diagrams for the definition of an operation.

We support StateMachines with composite and simple
states. Concurrent States are intentionally not supported,
because concurrency is already supported through
asynchronous operations that may be described by
StateMachines. For events, we support timeout, interrupts,
exceptions, explicit events, and the completion of the
embedded Activities/Actions. Fig. 1 gives a simple
controller with interrupts and timeouts as an example.
Interactions are embedded as Activities and have one
active object representing the currently activated instance.
The Activity is described by the sequence of outgoing
invocations from that active object. An example is given
in Fig. 3 and will be further discussed in the next section.
Asynchronous operation calls are instantiations of
StateMachines. This leads to a dynamic composition of

multiple concurrent hierarchical StateMachines along the
operation call hierarchy. Thus, state- and control-oriented
modeling can be seamlessly combined following a fully
object-oriented reactive concurrent system designs.

Completion
transitions
triggered by
completion
event

Forward

exit / stopMotor()
do / blink
entry / startMotor(true)

ForwardInterrupted

entry / handleReverse()

Backward

exit / stopMotor()
do / blink()
entry / startMotor(false)

BackwardInterrupted

entry / handleReverse()

RunCompleted

«interrupt»

after 1000 ms

after 2000 ms

«interrupt»

Fig. 1: StateMachine Example

4. The AEP Virtual Machine

Our UML specifications are compiled to equivalent
binary representations, which are directly executed on our
Abstract Execution Platform (AEP). The AEP is realized
as a virtual machine that can be implemented on different
platforms, e.g., completely in software or directly in
hardware on an FPGA.

In their binary specifications, StateMachines are
encoded as binary state-transition tables, which we denote
as Executable State Machines (ESMs). Interactions
defining Activities are compiled into equivalent UML
bytecode.

Fig. 2: AEP Virtual Machine - Architecture

The AEP virtual machine consists of the Model
Execution Unit (MEU) and the Runtime Kernel (RK) as
given in Fig. 2. The RK is an executable specification that
on the hand is used for bootstrapping including
initialization of the initial executable specification and on
the other hand implements memory management, thread
scheduling. The RK is executed by the MEU, which is
composed of two interacting interpreters for the different
parts of the binary UML representation; one for the
Executable StateMachines (ESM) and another one for the
Bytecode. A separate timer manages hard timeouts.

The ESM Interpreter performs immediate state
transitions when events occur. Currently, five pre-defined
events are supported: Completion, Interrupt, Timeout,
Division-by-Zero, and Memory-Overflow. When a state is
entered or a transition executed, the interpreter first
checks, if an Activity in form of an Interaction with
bytecode is defined. If there is bytecode in the embedded
Activity, the bytecode interpreter is invoked. A generated
bytecode sequence typically finishes with a COMPLETE
instruction, which generates a completion event. If no
Activity is defined or when the final state is reached, an
immediate completion event is generated.

The Bytecode Interpreter executes the Bytecode in a
microprocessor-like manner using an instruction pointer
and a 32 bit word stack for program control. To provide a
hardware-independent execution platform, the interpreter
has no registers. All variables are managed on the stack.

Our UML bytecode is based on a instruction set
derived from the Motorola 68K family [14], which is
extended for the control of the ESM interpreter and the
handling of classes and their instances (cf. Table 1).

Classes and interfaces are identified in our approach at
runtime using unique identifiers. This allows late binding
and lays the foundation for a software component
architecture based on our approach like in COM [11].

Each class is a single block of binary data in memory.
It essentially consists of the unique class identifier (the
CLASSID), a function table for the implemented
operations, an absolute pointer to the base class in
memory (if any), and a reference to the linked list of
implemented interfaces. Each of the interfaces, like the
class itself, has a table with references to the actual
method implementations. All absolute references are
resolved by the RK class loader when loading a class.

Because static class attributes are private in our
approach, subclasses must use operations to access
inherited attributes. Thus, there is no need to distinguish
between local and inherited attributes, which in turn
simplifies the address management. The attributes are
trailing to the actual base address of the class to enable
consistent access to the operation table of a class and its
subclasses. Much like a C++ vtable (virtual function
table), this table grows in subclasses when appending

subclass operations. It is worth noting here, that in our
approach, all non-private operations are technically virtual
and can be overridden in subclasses. Private operations
are directly resolved by the bytecode compiler and
compiled into subroutines of the bytecode. Thus, these
operations are not represented in those tables.

The table for each class includes three basic operations.
These are the base constructor for filling the fields of an
instance and two operations for initializing and finalizing
the class when it is loaded or unloaded.

There is no need for code relocation in our approach,
since the bytecode for an operation contains only relative
branches. Thus, the code is completely relative except for
operation invocations. Absolute instance and class
references are used for such invocations, but are obtained
during runtime.

Our bytecode introduces instructions to support object
instantiation and destruction as well as operation
invocations. The NEW instruction creates a new object
allocating dynamic memory for the instance. The
DESTROY instruction releases dynamically allocated
instance memory. INVOKE* and FORK/JOIN execute
synchronous and asynchronous operation calls using an
operation identifier (the actual offset in the operation
table) and the instance or interface as parameters.
Synchronization is implemented by the SYNC and
RELEASE instructions for obtaining and releasing a
mutex semaphore on an instance. The TRYSYNC
instruction is a non-blocking variant of SYNC.

Three additional instructions provide explicit ESM
control. The TRANS instruction performs an immediate
transition to an explicitly given new state with all side
effects. The EVENT instruction causes the ESM
interpreter to process the event in the context of the
current state hierarchy. COMPLETE causes the immediate
execution of the completion transition for the current
state.

Finally, the CONTINUE instruction explicitly changes
the execution context to the specified thread. The state of
the current thread is saved on the stack before the state of
the new thread is restored from the stack. This new thread
will be passed to the RK scheduler implementation for
immediate schedule for execution.

A called operation uses the stack to create local
variables and hold temporary values during nested
computations. For this, the bytecode interpreter
distinguishes three address spaces on the stack denoted as
frames, which are created when invoking an operation (cf.
Fig. 4). The Parameter Frame holds all input and output
parameters. Output parameters are pushed on the stack
with their default values. The Local Frame is for local
variables and temporary data. Both frames have fixed
sizes, which can be computed at compile time. The Pass
Frame holds the designated parameters for a suboperation

call. That frame is dynamically expanded when additional
parameters are pushed on the stack. The pass frame
becomes the parameter frame during the invocation of that
suboperation. It is extended with data for restoring the
current state upon return, a reference to the parent state
and, for non-static invocations, the reference to the called
this instance.

An additional local address space is provided for
accessing local instance attributes. All instructions
fetching and storing stack data refer to one of the three
stack frames or this local address space. This guarantees
full memory protection, but comes at the cost of a
significant overhead in stack use during operation
invocations as address and size of parameter and local
frames have to be saved when invoking an operation.

Mnemonic Dst Src Semantics
Data Movement & Stack Instructions
move.[b,l,d] mem mem/im Dst ← Src
push.[b,l,d] mem [-sp] ← Dst
pop.[b,l,d] mem Dst ← [sp+]
enter imm (Initialize local frame)
Math Instructions
add.[b,l,d] mem mem/im Dst ← Dst + Src
sub.[b,l,d] mem mem/im Dst ← Dst - Src
neg.[b,l,d] mem Dst ← 0 - Dst
mul.[l,d] mem mem/im Dst ← Dst * Src
div.[l,d] mem mem/im Dst ← Dst / Src
mod.[l,d] mem mem/im Dst ← Dst % Src
cmp.[b,l,d] mem mem/im [Flags according]
Logical Instructions
not.[b,l,d] mem Dst ← ~Dst
and.[b,l,d] mem mem/im Dst ← Dst ∧ Src
or.[b,l,d] mem mem/im Dst ← Dst ∨ Src
xor.[b,l,d] mem mem/im Dst ← Dst ⊕ Src
Shift Instructions
asl.[b,l,d] mem mem/im Dst ← Dst << Src
asr.[b,l,d] mem mem/im Dst ← Dst >> Src
lsl.[b,l,d] mem mem/im Dst ← Dst <<< Src
lsr.[b,l,d] mem mem/im Dst ← Dst >>> Src
Control Instructions
bCC disp Conditional branch
bra disp Unconditional branch
OO Control Instructions
new mem mem/im Dst ← (instanceof Src)
destroy mem (destroy instance Dst)
interface mem mem Dst ← Dst as Src
invoke mem Im (invoke Src on Dst)
invokes mem Im (invoke static Src on Dst)
invokei mem Im (interface op Src on Dst)
fork mem Im (fork Src on Dst)
forks mem Im (fork static)
Synchronization Instructions
join mem (join thread Dst)
sync mem (obtain instance lock)
trysync mem (lock if possible)
release mem (release instance lock)
ESM Control Instructions
trans mem (transition to Dst)
event mem (event Dst will be
complete (return)
Thread Control Instructions
continue Mem (continue Thread Dst)

Table 1: AEP Bytecode Instruction Set

Current Instance Attributes Parameters Local

this :List First :ListNode Last :ListNode Result :Object Local :ListNode

int i:=0

loop

[(i<index)&&(Current!=null)]

i:=i+1

opt

[Current!=null]

Current:= getFirst()

Current:= getNext()

Result:= getData()

Fig. 3: get(index) operation for a linked list

4.1 UML Bytecode Example

To illustrate our UML bytecode, we briefly outline it by
the example of the get(index) operation of a linked
list. The StateMachine for the operation is given by a
trivial StateMachine with a single state and a single
Activity for the completion of the state. Fig. 3 gives the
Activity as a Sequence Diagram. The get() operation
searches the linked list up to the given index. This is
defined by a loop CombinedFragment for iterating the list
until the given index or the end of the list is reached.
Then, the data attribute of the ListNode is returned.
The bytecode for that operation is given by the following
sequence and the corresponding stack is shown in Fig. 4.

 enter 8 // 8 bytes Local
 move.l #0,[Current] // Current = default
 move.l #0,i // i:=0
 push.l #0 // default return
 invoke #getFirst,[this] // invoke nonstatic
 pop.l [Current] // store in Current
L1: cmp.l [Index],[i] // Index<i ?
 bnb LE
 cmp.l #0,Current // Current!=null ?
 beq LE
 invoke #getNext,[Current // invoke nonstatic
 add.l #1,[i] // i=i+1
 jmp L1 // loop
LE: cmp.l #0,[Current] // Curren!=null ?
 beq END // Curren!=null ?
 push.l #0 // default return
 invoke #getData,[Current // invoke nonstatic
 pop.l [Result] // store in Result
END complete // leaves stack

Note that the this reference on the stack is added

together with the parent stack frames of the non-static
invoke instruction. The corresponding complete
operation restores the parent frames from the stack and
discards the this reference by adjusting the stack pointer
accordingly.

Fig. 4: Stack for a get(index) operation call

5. Evaluation Results

We have implemented a prototype of the AEP virtual
machine using Handel-C on a Celoxica RC 200 evaluation
board equipped with a Virtex II XC2V 1000-4. The
virtual machine resides on the SmartMedia Card (SMC)
and the binary encoded UML programs are loaded to the
SRAM via the RS-232 interface. The current
implementation runs with 35 MHz. However, this is just a
limitation of the RC 200 board due to the SMC card
without any implications for our concepts.

Our evaluation focused on the runtime of the bytecode
interpreter, as it is essential for computations. We
implemented five different UML examples and compared
their runtimes with C implementations on a C167 with 20
MHz. These examples include a factorial calculation (fak),
an adder-tree (tree), a Fibonacci calculation (fib), a
butterfly node (butterfly) with 4 multipliers and two
adders, and a matrix addition (mmadd).

All program data including stacks and dynamically
allocated memory resides in the SRAM. Each instruction
has to be fetched from SRAM during execution.

 Bytecode/AEP C/C167
Fak 0.010 ms 0.032 ms
Tree 0.009 ms 0.009 ms
Fib 0.012 ms 0.015 ms
butterfly 0.021 ms 0.124 ms
Mmadd 0.067 ms 0.109 ms

Table 2: Bytecode on AEP vs. C on C167

The test results are summarized in Table 2. All tests
were repeated 1000 times and the average is presented.
During these tests, no anomalies (e.g., strong variance)
where detected. In summary, our AEP prototype achieves
a per-clock performance comparable to the C167
embedded microprocessor running C code. Considering
the early stage of our prototype and the high-level model-
based design method applying UML specifications, we
think that this is a considerable result. However, the above
examples are small and make no significant use of deep
call hierarchies and state machines. While this is still not
crucial for many designs, it is necessary to further explore
the performance of more complex ESM models.

6. Conclusions and Outlook

We have presented a novel approach for executable
UML specifications on FPGAs. This approach is based on
an executable UML subset with precise execution
semantics given by our Abstract Execution Platform
(AEP). We have introduced the concept of a virtual
machine for executing binary representations of UML
specifications. Our evaluation compared our executable
specifications on FPGA with corresponding C
implementations on a C167 microcontroller. This showed

promising results considering that we start from a model-
based, platform independent object-oriented UML
specification and directly execute it on a virtual machine.

However, the evaluation of more complex programs is
still necessary. Furthermore, we plan to evaluate different
memory management and scheduling implementations

Acknowledgements
We gratefully acknowledge the work of Alexander

Krupp and Jörg Viermann for implementing the examples.

References
[1] Harel, D., Namaad, A.: The STATEMATE Semantics of

Statecharts. ACM Transactions on Software Engineering
and Methodology, Vol. 5, No. 4, 1996.

[2] Gajski, D.D.; Peng, J.; Gerstlauer, A.; Yu, H.; Shin, D.:
System Design Methodology and Tools, CECS Technical
Report 03-02, Irvine, 2003.

[3] Goldstein, S.C., Schmit, H., Moe, M., Budiu, M., Cadambi,
S., Taylor, R.R., Laufer, R.: PipeRench: A Coprocessor for
Streaming multimedia Acceleration. In Proc. 24th
International Symposium on Computer Architecture, 1999.

[4] Ha, Y., Schaumont, P., Engels, M., Vernalde, S.,
Potargent, F., Rijnders, L., de Man, H.: A Hardware
Virtual Machine fort he Networked Reconfiguration. In
Proc. of 11th IEEE International Workshop on Rapid
System Prototyping (RSP 2000), 2000.

[5] Kopetz, H.: Real-Time Systems – Design Principles for
Distributed Embedded Applications. Kluwer, 1997.

[6] Lange, S., Kebschull, U.: Virtual Hardware Byte Code as a
Design Platform for Reconfigurable Embedded Systems. In
Proc. DATE 2003, 2003.

[7] Leupers, R.; Marwedel, P.: Retargetable Compiler
Technology for Embedded Systems. Kluwer, 2001.

[8] Lindholm, T., Yellin, F.: Java Virtual Machine
Specification. Second Edition, Addison-Wesley. 1999.

[9] Marwedel, P.; Goosens, G. (eds.): Code Generation for
Embedded Processors. Kluwer, 1995.

[10] Marwedel, P.: Embedded Systems Design. Kluwer, 2003.
[11] Microsoft Corporation.: The Component Object Model

Specification, Version 0.9. 1995.
[12] Project Technology. www.projtech.com, 2003.
[13] Mellor, S.J., Balcer, M.J.: Executable UML - A Foundation

for Model-Driven Architecture Addison-Wesley, 2002.
[14] Motorola Inc.: M68000 Family Programmer’s Reference

Manual. 1992.
[15] Starr, L.: Executable UML How to Build Class Models,

Prentice Hall PTR, 2001.
[16] The Object Management Group: Action Semantics for the

UML. OMG ad/2000-08-04, 2000.
[17] The Object Management Group: Model Driven

Architecture (MDA). OMG ormsc/2001-07-01, 2001.
[18] The Object Management Group: Unified Modeling

Language: Superstructure. OMG ad/2003-04-01, 2003.
[19] Raistrick, C., Francis, P., Wright, J.: Model Driven

Architecture with Executable UML. Cambridge University
Press, 2004.

	Main Page
	DATE'05
	Front Matter
	Table of Contents
	Author Index

