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Abstract 
Current algorithms for bounded model checking use 

SAT methods for checking satisfiability of Boolean 
formulae. These methods suffer from the potential memory 
explosion problem. Methods based on the validity of 
Quantified Boolean Formulae (QBF) allow an 
exponentially more succinct representation of formulae to 
be checked, because no “unrolling” of the transition 
relation is required. These methods have not been widely 
used, because of the lack of an efficient decision procedure 
for QBF. We evaluate the usage of QBF in bounded model 
checking (BMC), using general-purpose SAT and QBF 
solvers. We develop a special-purpose decision procedure 
for QBF used in BMC, and compare our technique with the 
methods using general-purpose SAT and QBF solvers on 
real-life industrial benchmarks. 

 
 

1 Introduction* 
 
Model checking is a technique for the verification of the 

correctness of a finite-state system with respect to a desired 
behavior. Symbolic model checking uses image 
computation to verify properties. Symbolic model checking 
methods include, among others, BDD-based techniques, 
SAT-based methods for image computation that use an 
explicit quantifier elimination, and SAT-based reachability 
analysis based on “all-solutions” SAT solvers. All these 
methods suffer from the memory explosion problem on 
modern test cases.   

Bounded Model Checking (BMC) with a specific bound 
k represents the paths of length k in the system by 
“unrolling” the transition relation k times, and examines 
whether the set of states falsifying the property is reached 
by these paths. To implement a complete model checking 
procedure the bound should be increased iteratively up to 
the length of the longest simple path in the system, causing 
the number of copies of the transition relation within the 
formulae being checked for validity to increase from 
iteration to iteration up to an exponential number of times, 

                                                           
* Due to space constraints references have been omitted in this text. 

leading, again, to a memory explosion for large systems 
and large bounds. 

Induction based methods provide another technique for 
estimating whether a bound is sufficient to ensure a full 
proof, but there are still many cases where the induction 
depth is exponential in the size of the model. 

Finally, the methods based on Craig interpolation as an 
over-approximation technique for image computation 
aimed at reducing the number of iterations for a complete 
model checking procedure. The interpolants are obtained as 
a by-product of the SAT solver used to check BMC 
problems. This technique, like other techniques based on 
image computation, also suffers from a potential memory 
blow-up. 

In this paper we present a short abstract of our research 
on the usage of Quantified Boolean Formulae (QBF) for 
BMC, in which the unrolling of the transition relation is not 
performed and, thus, the memory explosion problem is 
avoided. We evaluate available general-purpose QBF 
solvers, and develop a special-purpose decision procedure 
for QBF used in BMC. We also compare our technique 
with the classical SAT-based BMC methods. 

 

2 Formulations of bounded reachability 
checking problem 

 
Given a system M=(S, I, TR), where S is the set of 

states, I is the characteristic function of the set of the initial 
states, and TR is the transition relation, the problem of 
reachability of the final states given by a characteristic 
function F in exactly k steps can be expressed in a number 
of ways. 

As in classical BMC, the fact that the state Zk is 
reachable from the state Z0 in exactly k steps may be 
formulated by “unrolling” the transition relation k times: 
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The validity of this formula may be proven or disproved 

by performing the SAT decision procedure on its 
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propositional part. Noticeably, the number of copies of the 
transition relation in this formula is as the number of steps 
being checked. To partially overcome the potential memory 
explosion, a QBF formulation of bounded reachability 
problem can be used: 
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Note that (2) contains only one copy of the transition 

relation. Increasing the bound, thus, would mean an 
addition of a new intermediate state and a term of the form 
(U↔Zi)∧(V↔Zi+1). Hence, the formula increase from 
iteration to iteration does not depend on the size of the 
transition relation, which is usually the biggest formula in 
the specification of the model.  

The solution of (2) with a QBF solver usually requires a 
transformation of the propositional part of the formula into 
a CNF, which introduces artificial variables, resulting with 
a QBF having ∃∀∃ pattern of the quantifier prefix. The 
number of the universally quantified variables does not 
change in the QBF from iteration to iteration. 

This approach to reachability checking partially solves 
the issue of formula growth, reducing the growth of the 
formula from iteration to iteration, but still requires an 
exponential number of iterations to fully verify the 
reachability. 

To reduce the number of iterations, it is possible to 
apply the “iterative squaring” technique, similar to the one 
used in BDD-based model checking. In this technique, each 
successive iteration checks the reachability of a final state 
in twice as many steps as the previous iteration. Given a 
formula Rk/2(X,Y) for checking reachability in k/2 steps, 
the following formula checks the reachability in k steps: 
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The transition relation appears in (3) only once, as in the 

previously described technique. However, the number of 
universally quantified variables and the number of 
quantifier alternations grows from iteration to iteration. 

This technique allows reducing the number of iterations 
to be as the number of the state encoding variables in the 
model. Note that not all bounds are checked by this 
technique, but only the bounds that are a power of 2. It is 
possible, however, to overcome this problem by adding a 
self-loop in each state of the model, which would not 
change the reachability between states, but rather make (3) 
check reachability in k or fewer steps, instead of exactly k 
steps. 

3 BMC using QBF 
 
We have used a bounded model checker to generate the 

three kinds of formulae mentioned in the previous section. 
We have evaluated a few available state-of-the-art DPLL-
based SAT and QBF solvers, to check the feasibility of the 
QBF formulations of the reachability checking problem on 
a set of thirteen proprietary Intel® model checking test 
cases of different sizes. It appeared that the general-purpose 
QBF solvers were unable to solve practically any of the 
formulae of the forms (2) and (3), while many of the 
corresponding propositional formulae of the form (1) were 
solved by the SAT solvers, the majority of them in a matter 
of seconds. 

Motivated by the inefficiency of the general-purpose 
QBF solvers demonstrated on formulae of the form (2), we 
develop a special-purpose DPLL-based decision procedure, 
called jSAT, for formulae of this specific structure. As in 
(2), jSAT holds in memory the encoding variables 
representing the states Z0, Z1, …, Zk, U and V, but only 
holds the following propositional formula: 
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The states Zi represent a path; the states U and V 

represent two neighboring states in that path. Instead of 
explicitly holding the fact that U and V represent a pair of 
neighboring states as done in (2) with assistance of the 
terms of the form (U↔Zi)∧(V↔Zi+1), our algorithm 
implicitly assumes this information. The idea of the 
algorithm is to iteratively associate U and V with a pair of 
successive states, called the current state and the next state, 
until all states are decided. 

Intuitively, jSAT algorithm can be seen as a depth-first 
search in the state graph of the system from the initial states 
to the final ones. The algorithm starts by associating U with 
Z0 and V with Z1; thus the formula (4) becomes 
semantically equivalent to: 
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The states Z0 and Z1 are then decided, if possible, so that 

Z0 is an initial state and Z1 is its successor. As soon as they 
are decided, the algorithm makes Z1 to be the current state 
and Z2 to be the next one. The algorithm proceeds so on, 
until all states are successfully decided, or until it discovers 
that such a decision is impossible. 

The first implementation of our algorithm succeeded to 
solve 143 out of 234 instances of the form (2) in our test 
base, compared to 184 corresponding SAT instances solved 
by the solver on which we based our implementation, and 3 
instances solved by the general purpose QBF solvers, 
within 300 seconds time limit and 1GB memory limit. 
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