
Space-Efficient Bounded Model Checking

Jacob Katz1, Ziyad Hanna1, Nachum Dershowitz2

1 Intel Corporation, Haifa, {jacob.katz, ziyad.hanna}@intel.com
2 School of Computer Science, Tel Aviv University, Tel Aviv, Israel,

nachum.dershowitz@cs.tau.ac.il

Abstract
Current algorithms for bounded model checking use

SAT methods for checking satisfiability of Boolean
formulae. These methods suffer from the potential memory
explosion problem. Methods based on the validity of
Quantified Boolean Formulae (QBF) allow an
exponentially more succinct representation of formulae to
be checked, because no “unrolling” of the transition
relation is required. These methods have not been widely
used, because of the lack of an efficient decision procedure
for QBF. We evaluate the usage of QBF in bounded model
checking (BMC), using general-purpose SAT and QBF
solvers. We develop a special-purpose decision procedure
for QBF used in BMC, and compare our technique with the
methods using general-purpose SAT and QBF solvers on
real-life industrial benchmarks.

1 Introduction*

Model checking is a technique for the verification of the

correctness of a finite-state system with respect to a desired
behavior. Symbolic model checking uses image
computation to verify properties. Symbolic model checking
methods include, among others, BDD-based techniques,
SAT-based methods for image computation that use an
explicit quantifier elimination, and SAT-based reachability
analysis based on “all-solutions” SAT solvers. All these
methods suffer from the memory explosion problem on
modern test cases.

Bounded Model Checking (BMC) with a specific bound
k represents the paths of length k in the system by
“unrolling” the transition relation k times, and examines
whether the set of states falsifying the property is reached
by these paths. To implement a complete model checking
procedure the bound should be increased iteratively up to
the length of the longest simple path in the system, causing
the number of copies of the transition relation within the
formulae being checked for validity to increase from
iteration to iteration up to an exponential number of times,

* Due to space constraints references have been omitted in this text.

leading, again, to a memory explosion for large systems
and large bounds.

Induction based methods provide another technique for
estimating whether a bound is sufficient to ensure a full
proof, but there are still many cases where the induction
depth is exponential in the size of the model.

Finally, the methods based on Craig interpolation as an
over-approximation technique for image computation
aimed at reducing the number of iterations for a complete
model checking procedure. The interpolants are obtained as
a by-product of the SAT solver used to check BMC
problems. This technique, like other techniques based on
image computation, also suffers from a potential memory
blow-up.

In this paper we present a short abstract of our research
on the usage of Quantified Boolean Formulae (QBF) for
BMC, in which the unrolling of the transition relation is not
performed and, thus, the memory explosion problem is
avoided. We evaluate available general-purpose QBF
solvers, and develop a special-purpose decision procedure
for QBF used in BMC. We also compare our technique
with the classical SAT-based BMC methods.

2 Formulations of bounded reachability
checking problem

Given a system M=(S, I, TR), where S is the set of

states, I is the characteristic function of the set of the initial
states, and TR is the transition relation, the problem of
reachability of the final states given by a characteristic
function F in exactly k steps can be expressed in a number
of ways.

As in classical BMC, the fact that the state Zk is
reachable from the state Z0 in exactly k steps may be
formulated by “unrolling” the transition relation k times:

(1) 0 1 1 0 1

1

0
(,) ,..., : () () (,)k k k k i i

k

i
R Z Z Z Z I Z F Z TR Z Z− +

−

=
= ∃ ∧ ∧∧

The validity of this formula may be proven or disproved

by performing the SAT decision procedure on its

1530-1591/05 $20.00 © 2005 IEEE

propositional part. Noticeably, the number of copies of the
transition relation in this formula is as the number of steps
being checked. To partially overcome the potential memory
explosion, a QBF formulation of bounded reachability
problem can be used:

(2)
0 1 1 0

1

1

0

(,) ,..., : () ()

, : () () (,)

k k k k

i i

k

i

R Z Z Z Z I Z F Z

U V U Z V Z TR U V

−

+

−

=

= ∃ ∧ ∧
 
 ∀ ↔ ∧ ↔ →
 
 
∨

Note that (2) contains only one copy of the transition

relation. Increasing the bound, thus, would mean an
addition of a new intermediate state and a term of the form
(U↔Zi)∧(V↔Zi+1). Hence, the formula increase from
iteration to iteration does not depend on the size of the
transition relation, which is usually the biggest formula in
the specification of the model.

The solution of (2) with a QBF solver usually requires a
transformation of the propositional part of the formula into
a CNF, which introduces artificial variables, resulting with
a QBF having ∃∀∃ pattern of the quantifier prefix. The
number of the universally quantified variables does not
change in the QBF from iteration to iteration.

This approach to reachability checking partially solves
the issue of formula growth, reducing the growth of the
formula from iteration to iteration, but still requires an
exponential number of iterations to fully verify the
reachability.

To reduce the number of iterations, it is possible to
apply the “iterative squaring” technique, similar to the one
used in BDD-based model checking. In this technique, each
successive iteration checks the reachability of a final state
in twice as many steps as the previous iteration. Given a
formula Rk/2(X,Y) for checking reachability in k/2 steps,
the following formula checks the reachability in k steps:

(3)
0 0

0 /2

(,) : () () , :

() () () () (,)
k k k

k k

R Z Z Z I Z F Z U V

U Z V Z U Z V Z R U V

=∃ ∧ ∧∀

↔ ∧ ↔ ∨ ↔ ∧ ↔ →  

The transition relation appears in (3) only once, as in the

previously described technique. However, the number of
universally quantified variables and the number of
quantifier alternations grows from iteration to iteration.

This technique allows reducing the number of iterations
to be as the number of the state encoding variables in the
model. Note that not all bounds are checked by this
technique, but only the bounds that are a power of 2. It is
possible, however, to overcome this problem by adding a
self-loop in each state of the model, which would not
change the reachability between states, but rather make (3)
check reachability in k or fewer steps, instead of exactly k
steps.

3 BMC using QBF

We have used a bounded model checker to generate the

three kinds of formulae mentioned in the previous section.
We have evaluated a few available state-of-the-art DPLL-
based SAT and QBF solvers, to check the feasibility of the
QBF formulations of the reachability checking problem on
a set of thirteen proprietary Intel® model checking test
cases of different sizes. It appeared that the general-purpose
QBF solvers were unable to solve practically any of the
formulae of the forms (2) and (3), while many of the
corresponding propositional formulae of the form (1) were
solved by the SAT solvers, the majority of them in a matter
of seconds.

Motivated by the inefficiency of the general-purpose
QBF solvers demonstrated on formulae of the form (2), we
develop a special-purpose DPLL-based decision procedure,
called jSAT, for formulae of this specific structure. As in
(2), jSAT holds in memory the encoding variables
representing the states Z0, Z1, …, Zk, U and V, but only
holds the following propositional formula:

(4) 0() (,) ()kI Z TR U V F Z∧ ∧

The states Zi represent a path; the states U and V

represent two neighboring states in that path. Instead of
explicitly holding the fact that U and V represent a pair of
neighboring states as done in (2) with assistance of the
terms of the form (U↔Zi)∧(V↔Zi+1), our algorithm
implicitly assumes this information. The idea of the
algorithm is to iteratively associate U and V with a pair of
successive states, called the current state and the next state,
until all states are decided.

Intuitively, jSAT algorithm can be seen as a depth-first
search in the state graph of the system from the initial states
to the final ones. The algorithm starts by associating U with
Z0 and V with Z1; thus the formula (4) becomes
semantically equivalent to:

(5) 0 0 1() (,) ()kI Z TR Z Z F Z∧ ∧

The states Z0 and Z1 are then decided, if possible, so that

Z0 is an initial state and Z1 is its successor. As soon as they
are decided, the algorithm makes Z1 to be the current state
and Z2 to be the next one. The algorithm proceeds so on,
until all states are successfully decided, or until it discovers
that such a decision is impossible.

The first implementation of our algorithm succeeded to
solve 143 out of 234 instances of the form (2) in our test
base, compared to 184 corresponding SAT instances solved
by the solver on which we based our implementation, and 3
instances solved by the general purpose QBF solvers,
within 300 seconds time limit and 1GB memory limit.

	Main Page
	DATE'05
	Front Matter
	Table of Contents
	Author Index

