Functional Coverage Driven Test Generation for Validation of
Pipelined Processors

Prabhat Mishra Nikil Dutt
Dept. of Computer and Information Science and Engineering Center for Embedded Computer Systems
University of Florida, Gainesville, FL 32611, USA Donald Bren School of Information and Computer Sciences
prabhat@cise.ufl.edu University of California, Irvine, CA 92697, USA

dutt@uci.edu

Abstract processors. The fault model should be applicable to the wide
Functional verification of MICIonrocessors is one of the most\/arieties of today’s microprocessors from various architectural

; op .~ domains (such as RISC, DSP, VLIW and Superscalar) that dif-
complex and expensive tasks in the current system-on-chip dg-

sign process. A significant bottleneck in the validation of sucher widely in terms of their structure (organization) and behav-
gnp ’ 9 Jor (instruction-set). We have developed a graph-theoretic model

systems is the lack of a suitable functional coverage metric. Thi . o
. . at can capture a wide spectrum of pipelined processors, copro-
paper presents a functional coverage based test generation tech- ! :
cessors, and memory subsystems. We have defined functional

hique for p|pe_I|ned archltectqres_. The proposed methodolog overage based on the effects of faults in the fault model applied
makes three important contributions. First, a general graph- . i
. ! t the level of the graph-theoretic model. This allows us to com-
theoretic model is developed that can capture the structure an . o .
S ! . : S pute functional coverage of a pipelined processor for a given set
behavior (instruction-set) of a wide variety of pipelined proces- .
8f random or constrained-random test sequences.

sors. Second, we propose a functional fault model that is use We have developed test generation procedures that accept the
to define the functional coverage for pipelined architectures. Fi- P 9 P P

nally, test generation procedures are presented that accept th%raph model of the pipelined processor as input and generate test

graph model of the architecture as input and generate test proP'°9/ams to detect all the faults in the functional fault model.

grams to detect all the faults in the functional fault model. OurWe applied our methodology on two pipelined processors: a

experimental results on two pipelined processor models demor\1/—L|W |mplerr_1entat|on of the DLX archl_tecture [5], and aRISC
implementation of the SPARC V8 architecture [19]. Our exper-
strate that the number of test programs generated by our ap-

proach to obtain a fault coverage is an order of magnitudeimemal results demonstrate two important aspects of our tech-
less than those generated by traditional random or constrained?'dY¢: F.'rSt’ I .ShOV.VS how our functional coverage can be used in
random test generation techniques an existing validation flow that uses random or directed-random

' test programs. Second, it demonstrates that the required number
of test sequences generated by our algorithms to obtain a given
1 Introduction fault (functional) coverage is an order of magnitude less than the

random or constrained-random test programs.

As embedded systems continue to face increasingly higher The rest of the paper is organized as follows. Section 2
performance requirements, deeply pipelined processor architeBresents related work addressing validation of pipelined proces-
tures are being employed to meet desired system performand®rs. Section 3 presents a graph-based modeling of pipelined
Functional validation of such programmab|e processors isone (ﬁrChiteCtUreS. The functional fault models are described in Sec-
the most Comp|ex and expensive tasks in the current Systemgon 4. Section 5 defines the functional coverage based on the
on-Chip (SOC) design methodology. Simulation is the mosffault model. Section 6 presents the test generation procedures
widely used form of microprocessor verification: millions of cy- followed by a case study in Section 7. Finally, Section 8 con-
cles are spent during simulation using a combination of randorfiludes the paper.
and directed test cases in traditional validation flow. Several
coverage measures are commonly used, such as code coverage, Related Work
toggle coverage and fault coverage. Unfortunately, these mea-
sures d_o not have any direct relationship to the_ fur_lctionality_ of Traditionally, validation of a microprocessor has been per-
_the dev!ce. For example, none of these d.etermlne if all p.oss'bh%rmed by applying a combination of random and directed
mteractlc_ms _of hazards, stal!s and exceptions are tested in & prRsst programs using simulation techniques. Many techniques
cessor plpelllne. Thus there is a need for a coverage metric basggye peen proposed for generation of directed test programs
on the functionality of the design. _ [1, 4,9, 11, 12]. These techniques do not consider pipeline be-
. To define a useful functlona_l coverage metnp, we need to dejavior for generating test programs.
f!ne a fault modgl of the design thaﬁ is descrlbgd at the_ func- r and Yadin [16] have presented a method for generation
tional level and independent of the implementation details. Iny¢ ogsembler test programs that systematically probe the micro-
this paper, we present a functional fault model for pipelined,chitecture of a PowerPC processor. Iwashita et al. [7] use an

“This work was partially supported by NSF grants: CCR-0203813 and ccCRFF-SM based processor modeling to automatically generate test
0205712. programs. Campenhout et al. [3] have proposed a test genera-

1530-1591/05 $20.00 © 2005 IEEE

i \
{PC m---e

Figure 1 shows the graph-based model of this architecture that
can issue up to three operations (an ALU operation, a mem-
ory access operation, and a coprocessor operation) per cycle.
In the figure, oval boxes denote units, dotted ovals are storages,

! : bold edges are pipeline edges, and dotted edges are data-transfer

: edges. A path from a root node (e.g., Fetch) to a leaf node (e.g,

: WriteBack) consisting of units and pipeline edges is called a
Ve pipeline path For example, one of the pipeline path{igetch,

Decode, ALU, WriteBagk A path from a unit to main memory

or register file consisting of storages and data-transfer edges is

o : called adata-transfer path For example{MemCntrl, L1, L2,

e nines = iene) - MainMemory} is a data-transfer path.

. : T o

) storage --+ Datatransfer edge

—= Pipeline edge

3.2 Behavior

Figure 1. A Structure Graph of a Simple Architecture The behavior of the architecture is typically captured by the

instruction-set (ISA) description in the processor manual. It

tion algorithm that integrates high-level treatment of the datapconsists of a set of operationthat can be executed on the ar-
ath with low-level treatment of the controller. Kohno et al. [8] chitecture. Each operation in turn consists of a set of fields (e.g.
have presented a tool that generates test programs for verifyinghcode, arguments) that specify, at an abstract level, the exe-
pipeline behavior in the presence of hazards and exceptions. Reition semantics of the operation. We model the behavior as
etal. [6] have presented a technique for generating test vectogsgraph, where the nodes represent the fields of each operation
for verifying the corner cases of the design. Mishra et al. [10Jand the edges represent orderings between the fields. Figure 2
have proposed a graph-based functional test program generatig8scribes a portion of the behavior (consisting of two operation
technique for pipelined processors using model checking. Nongraphs) for the example processor shown in Figure 1.
of these techniques provides a comprehensive metric to mea- Nodes are of two types: opcode and argument. The opcode
sure the coverage of the pipeline interactions. An extensive sufiodes represent the opcode (i.e. mnemonic), and the argument
vey on coverage metrics in simulation-based verification is prenodes represent argument fields (i.e., source and destination ar-
sented by Tasiran et al. [13]. Andrew Piziali [2] has presenteuments). In Figure 2, the ADD and STORE nodes are opcode
a comprehensive study on functional verification coverage meawodes, while the others are argument nodes. Edges are also of
surement and analysis. two types: operation and execution. The operation edges link

Many researchers have proposed techniques for generationie fields of the operation and also specify the syntactical or-
functional test programs for manufacturing testing of micropro-dering between them. On the other hand, the execution edges
cessors ([14], [15]). These techniques use stuck-at fault cowspecify the execution ordering between the fields. In Figure 2,
erage to demonstrate the quality of the generated tests. To thige solid edges represent operation edges while the dotted edges
best of our knowledge, there are no previous approaches thagpresent execution edges. For the ADD operation, the oper-
describe functional fault models for pipelined architectures, usation edges specify that the syntactical ordering is opcode fol-
it to define functional coverage, and generate test programs {ewed by DEST, SRC1 and SRC2 arguments (in that order), and
detect all the functional faults in the fault model. the execution edges specify that the SRC1 and SRC2 arguments

are executed (i.e., read) before the ADD operation is performed.

3 Architecture Model of a Pipelined Processor ~ Finally, the DEST argumentis written.

Modeling plays a central role in the generation of test pro-

grams for validation of pipelined processors. In this section, we

briefly describe how the graph model captures the structure and
behavior of the processor using the information available in the

architecture manual.

- N - o
Q—» > DEST »—{ src1)—={ src2)
- RRES ::>——’ APt O pcode Node

—:/ Argunent Node

~ - s

-7 BN ——= Qperation Edge

- - > Execution Edge

@ =" src = sRC1 —>{OFFSET)
IR e
Y. > "

3.1 Structure Figure 2. A Fragment of the Behavior Graph

The structure of an architecture pipeline is modeled as a graph The architecture manual also provides information regard-

with the components as nodes and the connectivity as the edg<ﬁ§g the mapping between the structure and behavior. We de-

We consider two types of componentaits (.g., ALUs) and fine a set of mapping functions that map nodes in the structure

storages(e.g., register files). There are two types of edgeS'to nodes in the behavior (and vice-versa). Tit-to-opcode

plpel_lne edg_esmddata _transfer edgesA p|pe_l|ne edge trans- opcode-to-unitinapping is a bi-directional function that maps
fers instruction (operation) between two units. A data-transfe

nit nodes in the structure to opcode nodes in the behavior.

edge t_ransfer_s data betweeq units and_s_torages. _ The unit-to-opcodemappings for the architecture in Figure 1
For illustration, we use a simple multi-issue architecture con-

sisting of a processor, a co-processor and a memory subsystem.tin this paper we use the terms operation and instruction interchangeably.

include mappings fronfretchunit to opcode§ADD, STORE, (DP = U?:ld pj). Furthermore, each pipeline papip is con-
ALU unit to opcodeADD, AddrCalc unit to opcodeSTORE nected to a set of data-transfer pabRgrp (DPgrp C DP).
etc. Theargument-to-storage (storage-to-argumemngpping is During execution of an operatiamp in the pipeline pattpp;,
a bi-directional function that maps argument nodes in the behawa set of data-transfer patii¥P,, (DP,; € DPgrp) are used
ior to storage nodes in the structure. For exampleathement- (activated). Therefore, the execution path,, for operation
to-storagemappings for theADD operation are mappings from opi is, epy = ppUDPyy. Let us assume, operati@p has

{DEST, SRC1, SRCG20 RegisterFile one opcodedpcodeg), m sources L(J?‘lercj) andn destinations
(Ug_,desk). Each data-transfer pathp (dp € DP,p) is ac-
4 Functional Fault Models tivated to read one of the sources or write one of the desti-

nations ofop in execution pathep. Let val, whereval,

In this section, we present fault models for various functions= fopcode(uj":lsrcj), denote the result of computing the oper-
in a pipelined processor. We categorize various computationation op in execution pattep. The val hasn components
in a pipelined processor int@gister read/write operation ex- (UQZlvalik). In the fault-free case, the destinations will contain
ecution execution pattandpipeline executionWe outline the correct values, i.eyYk dest = valik. Under a fault, at least one of
underlying fault mechanisms for each fault model, and describéhe destinations will have incorrect value, i gk desi # vaIik .
the effects of these faults at the level of the architecture model
presented in Section 3. 4.4 Fault Model for Pipeline Execution

4.1 Fault Model for Register Read/Write The previous fault models consider only one operation at a
time. An implementation of a pipeline is faulty if it produces

To ensure fault-free execution, all registers should be writtefincorrect results due to execution of multiple operations in the
and read correctly. Inthe presence of a fault, reading of a registgjipeline. The fault could be due to incorrect implementation of
will not return the preViOUSly written value. The fault could be the pipe"ne controller. The fau|ty controller m|ght have erro-

due to an error in reading, register decoding, register storag@eous hazard detection, incorrect stalling, erroneous flushing, or
or prior ertlng The outcome is an unexpected Va'UEVFUiS wrong exception handling schemes.

written in registelR; and read back, the output should\g in Let us define stall set for a unit(S$) as all possible ways

fault-free case. In the presence of a fault, outpiz . to stall that unit. Therefore, the stall set for the architecture
StallSet= Uy, SS. Let us also define the exception set for

4.2 Fault Model for Operation Execution a unitu (ES) as all possible ways to create an exception in

. . that unit. We define the set of all possible multiple excep-
All operations must execute correctly if there are no faults. In_. . .

.o e tion scenarios aMESS Hence, the exception set for the ar-
the presence of a fault, the output of the computation is d'ﬁerbhitectureExce tionSet: Uy ES,UMESS We consider two
ent from the expected output. The fault could be due to an errqr P vu

) . . .) . types of pipeline interactions: stalls and exceptions. There-
in operation decoding, control generation or final computation . L . .]
. fore, all possible pipeline interactions (PIs) can be defined as:

This can happen if incorrect bits are decoded for the opcodgjrlsz StallSetExceptionSetLet us assume a sequence of op-

Selection of incorrect bits will also lead to erroneous decodin grationsops; causes a p|pgl|ne interactigni (i.e., pi € Pls),
o : L nd updates storage locations. Letaly denote the result
of source and destination operands. Even if the decoding is cofr-, :)
. :) of computing the operation sequeneps,. Thevaly hasn
rect, due to an error in control generation an incorrect compuz | onents(_,valk). In the fault-free case, the destinations
tation unit can be enabled. Finally, the computation unit can bée P k=1"pi’* '

faulty. The outcome is an unexpected result. vaf, where Will contain correct values, i.evk dest = val. Under a faul,
valk = fopcode(STC1, SICs, ...), denote the result of computing the at least one of the destinations will have incorrect value, i.e.,

k
operation bpcodedest srci, srcy, ...". In the fault-free case, K desk 7 val.
the destination will contain the valual,. Under a fault, the
destination is not equal teal;. 5 Functional Coverage Estimation
4.3 Fault Model for Execution Path We define functional coverage based on the fault models de-

_ _ o o _ scribed in Section 4. Consider the following cases:
During execution of an operation in the pipeline, one pipeline

path and one or more data-transfer paths get activated. We de-® @ fault in register read/writeis covered if the register is
fine all these activated paths as thecution pattior that oper- written first and read later.

ation. An execution patBpp, is faulty if it produces incorrect
result during execution of operatiarg in the pipeline. The
fault could be due to an error in one of the paths (pipeline or

data-transfer) in the execution path. A path is faulty if any one 4 3 fault inexecution patlis covered if the execution path is

of its nodes or edges are faulty. A node is faulty if it accepts activated, and the result of the computation is read.
valid inputs and produces incorrect outputs. An edge is faulty if

it does not transfer the data/instruction correctly. e a fault in pipeline executions covered if the fault is
Without loss of generality, let us assume that the processor activated due to execution of multiple operations in the
hasp pipeline pathsRP = U, pp) andq data-transfer paths pipeline, and the result of the computation is read.

¢ a fault inoperation executiois covered if the operation is
performed, and the result of the computation is read.

We compute functional coverage of a pipelined processor foR5 #212") followed by the ADD operation (“ADD R2 R3 R5"),
a given set of test programs as the ratio between the numb#allowed by the reading of the result (‘STORE R2, Rx, #07).
of faults detected by the test programs and the total number of

detectable faults in the fault model. Algorithm 2 : Test Generation for Operation Execution
Input: Graph model of the architectu.

Output: Test programs for detecting faults in operation executian.

6 Test Generation Techniques begin /<** TestProgramList {} ***/
for each operatiolperin architectureG

. . . testpro = createTestProgramiger);
In this section, we present test generation procedures for de- Test‘;,m%‘;;}nust: Testprogrme'goU ?estprogper.

tecting faults covered by the fault models presented in Section 4. endfor

Different architectures have specific instructions to observe the return TestProgramList

contents of registers and memories. In this paper, we use load end

and store instructions to make the register and memory contents

observable at the output data bus. 6.3 Test Generation for Execution Path
We first describe a proceducesate TestPrograrthat is used

by the test generation algorithms. The procedure accepts a list OP:ESO:‘ETrge?:e?:;iensge?atlilizeinp;?((;iil:i:)enfg;t%en‘?La(;EI?agJult'[e?r:oFggl-
operations as input and returns a modified list. It assigns appr or the execution path is described in Section 4.3. The algo-

riate values to the unspecified locations (opcodes or operand z .
P P (op P rithm traverses the structure graph of the architecture, and for

Next, it creates initialization instructions for the uninitialized each pineline path it generates a aroun of operations supported
source operands. It also creates instructions to read the destirba— PIp P 9 group P PP

tion operands. Finally, it returns the modified list that contains y that path. It randomly selects one operation from each op-

the initialization operations, modified input operations, and the[er::tfxneggzgﬁ' -e:thhezioirtz itr:/:/r? Fi?]sés'bimgﬁr?é Ifa?rl:)tgreee;(gs/:g d
read operations (in that order). P 9 PIp P

by the selected operation, the algorithm generates all possible
source/destination assignments for that operation. However,
if different operations in the operation group activates differ-

Algorithm 1 presents the procedure for generating test pro‘-ant set of egige; in the. execution path, it genergtes_ all possible
grams for detecting faults in register read/write functions. Thesource/destmatlon assignments for each operation in the opera-

fault model for the register read/write function is described intlon group.

Section 4.1. Fpr each register in the arc.h|t.ecture, thg algorith Algorithm 3+ Test Generation for Execution Path
generates an instruction sequence consisting of a write followed npyt: Graph model of the architectu.

by a read for that register. The functi@enerateUniqueValue Output: Test programs for detecting faults in execution path.
returns unique value for each register based on register name.begin /™ TestProgramList {} ***/

. o . . for each pipeline patpathin architectureG
A test program for registdR; will consist of two assembly in 0PGroU fpatn = operations supported path

6.1 Test Generation for Register Read/Write

structions: "MOVIR;, #val” and “STORER;, R;j, #0”. The exegath = pathand all data-transfer paths connected to it
move-immediate (MOVI) instruction writegal; in registerR;. Operath = randomly select an operation fraBpgrouRatn
The STORE instruction reads the contenfRpfand writes it in if (operparn activates all edges iexegath) 0PSath = OPEMhath

else 0pSath = 0Pgroufpath endif
for all operationsoperin 0pSyath
for all source/destination operandgndof oper

memory addressed W3; (offset 0).

Algorithm 1: Test Generation for Register Read/Write for all possible register valuegl of opnd
Input: Graph model of the architectu(@. newO per= assigrval to opndof oper.
Output: Test programs for detecting faults in register read/write. testprogper = CreateTestProgram(newOper).
begin /*** TestProgramList {} **+/ TestProgramList TestProgramList test progper;
for each registeregin architectureG endfor
valugeg = GenerateUniqueValue(g); endfor
writelnst= an instruction that writesalugeg in registerreg. endfor
testprogeg = createTestProgram(itelnsf endfor '
TestProgramList TestProgramList test progeg; return TestProgramList
endfor end
return TestProgramList
end 6.4 Test Generation for Pipeline Execution

6.2 Test Generation for Operation Execution Algorithm 4 presents the procedure for generating test pro-
grams for detecting faults in pipeline execution. The fault model

Algorithm 2 presents the procedure for generating test profor the pipeline execution is described in Section 4.4. The first
grams for detecting faults in operation execution. The faulloop (L1) traverses the structure graph of the architecture in a
model for the operation execution is described in Section 4.2ottom-up manner, starting at leaf nodes. The second loop (L2)
The algorithm traverses the behavior graph of the architecturepomputes test programs for generating all possible exceptions
and generates one test program for each operation graph usiimgeach unit using templates. The third loop (L3) computes test
createTestProgram For example, a test program for the op- programs for creating stall conditions due to data and control
eration graph with opcodADD in Figure 2 has three opera- hazards in each unit using templates. The fourth loop (L4) cre-
tions: two initialization operations (“MOV R3 #333", “MOV ates test programs to generate stall conditions using structural

hazards. Finally, the last loop (L5) computes test sequences for Our framework generates test programs in three different
multiple exceptions involving more than one units. Tdmm- ways: random, constrained-random, and our approach. Spec-
poseTestPrograrfunction uses orderéd-tuple units and com- man Elite [18] is used to generate both random and constrained-
bines their test programs. The function also removes dependerandom test programs from the specification. Several constraints
cies across test programs to ensure the generation of multiplge used for constrained-random test generation. For exam-
exceptions during the execution of the combined test programple, to generate test programs for register read/write, we used
the highest probability for choosing register-type operations in

Algorithm 4: Test Generation for Pipeline Execution DLX. Since register-type operations have 3 register operands,
Input: Graph model of the architectu _ the chances of reading/writing registers are higher than imme-
Output: Test programs for detecting faults in pipeline execution. diate type (2 register operands) or branch type (one register
begin /*** TestProgramList {} ***/ ;
L1: for each unit nodenitin architectureG operand) operauons._ The test programs ge_znerated by our ap-
L2: for each exceptioexonpossible inunit proach uses the algorithms described in Section 6. To ensure that
:e"t‘P'at@on te”‘tp'?tetfgf excf&'oﬁxi’”) the generated test programs are executed correctly, our frame-
estprognit = create lestProgramgm plat@xon); H i 1
TestProgramList TestProgramList) test progni: work applle_s.the. test programs on the implementation as well
endfor as the specification, and compares the contents of the program
L3: for each hazarthazin {RAW, WAW, WAR, control counter, registers and memory locations after execution of each
templat@,, = template for hazartiaz test program.
if hazis possible inunit . - .
test proging = createTestProgratenplateay): The Specman Elite framework allows definition of various
TestProgramList TestProgramList) test proginit; coverage measures that enables us to compute the functional
endif coverage described in Section 5. We defined each entry in the
endfor _ _ instruction definition (e.g. opcode, destination and sources) as
L4: for each parent unjarentof unit it inS Elite. Th for the desti
OPelyaren = an operation supported parent a coverage item in Specman Elite. The coverage for the desti-
resultOps= createTestProgramperarent); nation operand gives the measure of which registers are written.
testprognit = a test program to stallinit (if exists) Similarly, the coverage of source operands gives the measure of
test progarent = resUtOPS test progini which registers are read. We used a variable for each register
TestProgramList TestProgramList test progarent;
endfor to identify a read after a write. Computation of coverage for
endfor operation executiotis done by observing the coverage of the
L5: for each ordered n-tupleifiity, unitz, ..., unity) in graphG opcode field. The computation of coveragedgecution patls
progy = a test program for creating exceptionunit performed by observing if all the registers are used for compu-
progs = a test program for creating exceptiontinit, tation of aII/sgIected_opcheS. .This is performed by using cross
test progupie = composeTestPrograpiogy U ... U prog); coverage of instruction fields in Specman Elite that computes
» TestProgramList TestProgramList) test proguple; every combination of values of the fields. Finally, we compute
enaror
return TestProgramList the coverage fqmpelmg executlon_y maintaining variables for_
end stalls and exceptions in each unit. The coverage for multiple

exceptions is obtained by performing cross coverage of the ex-
ception variables (events) that occur simultaneously. Currently,
we consider only two simultaneous exceptions.

7 A Case Study

We applied our methodology on two pipelined architecturess 5 Rasults
a VLIW implementation of the DLX architecture [5], and a

RISC implementation of the SPARC V8 architecture [19]. In this section, we compare the test programs generated by
our approach against the random and constrained-random test
7.1 Experimental Setup programs generated by the Specman Elite. Table 1 shows the

comparative results for the DLX architecture. The rows indi-

We developed our test generation and coverage analystate the fault models, and the columns indicate test generation
framework using Verisity's Specman Elite [18]. We capturedtechniques. An entry in the table has two numbers. The first
executable specification of the architectures using Verisity’s “e’one represents the minimum number of test programs generated
language. This includes description of 91 instructions for theby that test generation technique for that fault model. The sec-
DLX, and 106 instructions for the SPARC V8 architecture. Weond number (in parenthesis) represents the functional coverage
refer to these aspecifications We implemented a VLIW ver- obtained by the generated test programs for that fault model.
sion of the DLX architecture using Verisity's “e” language. It
contains 5 pipeline stages: fetch, decode, execute, memory and Table 1. Test Programs for Validation of DLX Architecture
writeback. The execute stage has four parallel execution paths—Fauit Models Test Generation Techniques
an ALU, a four-stage floating-point adder, a seven-stage multi Random | Constrained| Our Approach
plier, and a multi-cycle divider. We used the LEONZ2 processol| Register Read/Write] 3900 (100%)] 750 (100%) 130 (100%)
[20] that is a VHDL model of a 32-bit processor compliant with | Operation Execution| 437 (100%) | 443 (100%) | 182 (100%)

- Execution Path | 12627 (100%)| 1126 (100%)| 320 (100%)
g‘nedSE?gﬁgg;;;?gﬁgﬁgﬁc\)/\rlz refer these models (VLIW DLX Pipeline Execution | 30000 (25%) | 30000 (30%)| 626 (100%)

2The unit closer to completion has higher order The number 100% implies that the generated test programs

covered all the faults in that fault model. For example,Ra®- that can capture the structure and behavior (instruction-set) of
domtechnique covered all the faults ilRegister Read/Write a wide variety of pipelined processors. Second, we proposed
function using 3900 tests. The number of test programs for opa functional fault model that is used in defining the functional
eration execution are similar for both random and constraineccoverage. Finally, test generation procedures were presented
random approaches. This is because the constraint used in thigat accept the graph model of the microprocessor as input and
case (same probability for all opcodes) may be the default optiogenerate test programs to detect all the faults in the functional
used in random test generation approach. fault model. We are able to measure the goodness of a given set
of random test sequences using our functional coverage metric.

Table 2. Quality of the Proposed Functional Fault Model Our experimental results demonstrate that the required number

[FaultModels [TestPrograms| HDL Code Coverage] of test sequences generated by our algorithms to obtain a given
Register Read/Write 130 85% fault (functional) coverage is an order of magnitude less than the
Operation Execution 182 1% random or constrained-random test programs.

Execution Path 320 86% our fut K includ licati fth test
Pipeline Execufion 536 100% ur future work includes application of these test programs

for functional validation of today’s microprocessors. We also
We performed an initial study to evaluate the quality of ourPlan to perform further comparative studies with our functional

functional fault model using existing coverage measures. Tacoverage metric against existing coverage measures, such as

ble 2 compares our functional coverage against HDL code cocode coverage, FSM coverage and stuck-at coverage.

erage. The first column indicates the functional fault models.

The second column presents the minimum number of test prdReferences

grams generated by our test generation algorithms to cover all

the functional faults in the corresponding fault model. The last [1] A. Aharon et al. Test program generation for functional verifica-

column presents the code coverage obtained for the DLX imple- tion of PowerPC processors in IBNDAC, pages 279-285, 1995.

mentation [17] using the test programs mentioned in the second2] Andrew Piziali. Functional Verification Coverage Measurement

column. As expected, our fault model performed well — a small and Analysis Kluwer Academic Publishers, 2004.

number of test programs generated a high code coverage. [3] D. Campenhout et al. High-level test generation for design verifi-
Table 3 shows the comparative results for different test gener- cation of pipelined microprocessoSAC, pages 185-188, 1999.

ation approaches for the LEON2 processor. The trend is similarf4] S. Fine et al. Coverage directed test generation for functional

in terms of number of operations and fault coverage for both the verification using bayesian network3AC, pages 286-291, 2003.

DLX and LEONZ2 architectures. The random and constrained-[5] J. Hennessy and D. Pattersd@omputer Architecture: A Quanti-

random approaches obtained 100% functional coverage for the tative Approach Morgan Kaufmann, 1990.

first three fault models using an order of magnitude more test[6] R. Ho et al. Architecture validation for processotfSCA 1995.

vectors than our approach. [7] H. Iwashita et al. Automatic test pattern generation for pipelined

processorsiICCAD, pages 580-583, 1994.

Table 3. Test Programs for Validation of LEON2 Processor [8] K. Kohno and N. Matsumoto. A new verification methodology

Fault Models Test Generation Techniques for complex pipeline behavioDAC, pages 816-821, 2001.
Random | Constrained| Our Approach ol M. Beh | Industrial . ith on |

Register Read/Write] 1746 (10096)| 654 (100%)| 130 (100%) [9] M. Be T etal. In “St”"’_‘f. expoi;fgce wit ;‘Zszgeggg'on an-
Operation Execution| 416 (100%)| 467 (100%) | 212 (100%) guages for processor verificatl » Pages 56-20, :

Execution Path 1500 (100%)| 475 (100%) 192 (100%) [10] P. Mishra and N. Dutt. Graph-based functional test program gen-
Pipeline Execution | 30000 (40%)| 30000 (50%) 248 (100%) eration for pipelined processor®ATE, pages 182—-187, 2004.

o [11] J. Miyake et al. Automatic test generation for functional verifica-

We analyzed the cause for the low fault coveragpipeline tion of microprocessorsATS pages 292-297, 1994.

executionfor the random and constraint-driven test generatiory, ,
approaches. These two approaches covered all the stall scenar-
ios and majority of the single exception faults. However, they[13] S. Tasiran and K. Keutzer. Coverage metrics for functional vali-

could not activate any multiple exception scenarios. Due to big- ~ gation of hardware design$EEE Design & Test of Computers
ger pipeline structure (larger set of pipeline interactions) in the 1g8(4):36-45, 2001.

VLIW D_LX_' it has lower f_aUIt cpverag(_a than the LEON2 archi- [14] L. Chen et al. A scalable software-based self-test methodology
tecture inpipeline executionThis functional coverage problem for programmable processo®AC, pages 548-553, 2003.
will be even more important for today’s deeply pipelined em—[15] S. Thatte and J. Abraham. Test generation for microprocessors.
bedded processors. IEEE Transactions on ComputeiG-29(6):429-441, June 1980.

) [16] S. Urand Y. Yadin. Micro architecture coverage directed genera-
8 Conclusions tion of test programsDAC, pages 175-180, 1999.

. e . . [17] http:/iwww.rs.e-technik.tu-darmstadt.de/TUD/res/dIxdocu/Super-
Functional verification is widely acknowledged as a ma-

.] - - ! scalarDLX.html.Superscalar DLX Processor
jor bottleneck in microprocessor design due to lack of a suit- - .] -
. . . .) 18] Verisity Design, Inc.http://www.verisity.com
able functional coverage estimation technique. This paper pr 101 htto:/WWW.SDarc.comir rce him#V8The SPARC Archit
sented a functional coverage based test generation technique or] P -Sparc.comiresource. € chitec-
S . . ture Manual, Version 8
pipelined architectures. The methodology made three impor- ol LEON2 P htto:/} - fleon.html
tant contributions. First, a general graph model was develope@ I rocessomtip-iwww.gaisier.com/ieon. ntm

1 J. Shen et al. Functional verification of the equator MAP1000
microprocessorDAC, pages 169174, 1999.

	Main Page
	DATE'05
	Front Matter
	Table of Contents
	Author Index

