
Functional Coverage Driven Test Generation for Validation of
Pipelined Processors∗

Prabhat Mishra Nikil Dutt
Dept. of Computer and Information Science and Engineering Center for Embedded Computer Systems

University of Florida, Gainesville, FL 32611, USA Donald Bren School of Information and Computer Sciences
prabhat@cise.ufl.edu University of California, Irvine, CA 92697, USA

dutt@uci.edu

Abstract

Functional verification of microprocessors is one of the most
complex and expensive tasks in the current system-on-chip de-
sign process. A significant bottleneck in the validation of such
systems is the lack of a suitable functional coverage metric. This
paper presents a functional coverage based test generation tech-
nique for pipelined architectures. The proposed methodology
makes three important contributions. First, a general graph-
theoretic model is developed that can capture the structure and
behavior (instruction-set) of a wide variety of pipelined proces-
sors. Second, we propose a functional fault model that is used
to define the functional coverage for pipelined architectures. Fi-
nally, test generation procedures are presented that accept the
graph model of the architecture as input and generate test pro-
grams to detect all the faults in the functional fault model. Our
experimental results on two pipelined processor models demon-
strate that the number of test programs generated by our ap-
proach to obtain a fault coverage is an order of magnitude
less than those generated by traditional random or constrained-
random test generation techniques.

1 Introduction

As embedded systems continue to face increasingly higher
performance requirements, deeply pipelined processor architec-
tures are being employed to meet desired system performance.
Functional validation of such programmable processors is one of
the most complex and expensive tasks in the current Systems-
on-Chip (SOC) design methodology. Simulation is the most
widely used form of microprocessor verification: millions of cy-
cles are spent during simulation using a combination of random
and directed test cases in traditional validation flow. Several
coverage measures are commonly used, such as code coverage,
toggle coverage and fault coverage. Unfortunately, these mea-
sures do not have any direct relationship to the functionality of
the device. For example, none of these determine if all possible
interactions of hazards, stalls and exceptions are tested in a pro-
cessor pipeline. Thus there is a need for a coverage metric based
on the functionality of the design.

To define a useful functional coverage metric, we need to de-
fine a fault model of the design that is described at the func-
tional level and independent of the implementation details. In
this paper, we present a functional fault model for pipelined

∗This work was partially supported by NSF grants: CCR-0203813 and CCR-
0205712.

processors. The fault model should be applicable to the wide
varieties of today’s microprocessors from various architectural
domains (such as RISC, DSP, VLIW and Superscalar) that dif-
fer widely in terms of their structure (organization) and behav-
ior (instruction-set). We have developed a graph-theoretic model
that can capture a wide spectrum of pipelined processors, copro-
cessors, and memory subsystems. We have defined functional
coverage based on the effects of faults in the fault model applied
at the level of the graph-theoretic model. This allows us to com-
pute functional coverage of a pipelined processor for a given set
of random or constrained-random test sequences.

We have developed test generation procedures that accept the
graph model of the pipelined processor as input and generate test
programs to detect all the faults in the functional fault model.
We applied our methodology on two pipelined processors: a
VLIW implementation of the DLX architecture [5], and a RISC
implementation of the SPARC V8 architecture [19]. Our exper-
imental results demonstrate two important aspects of our tech-
nique. First, it shows how our functional coverage can be used in
an existing validation flow that uses random or directed-random
test programs. Second, it demonstrates that the required number
of test sequences generated by our algorithms to obtain a given
fault (functional) coverage is an order of magnitude less than the
random or constrained-random test programs.

The rest of the paper is organized as follows. Section 2
presents related work addressing validation of pipelined proces-
sors. Section 3 presents a graph-based modeling of pipelined
architectures. The functional fault models are described in Sec-
tion 4. Section 5 defines the functional coverage based on the
fault model. Section 6 presents the test generation procedures
followed by a case study in Section 7. Finally, Section 8 con-
cludes the paper.

2 Related Work

Traditionally, validation of a microprocessor has been per-
formed by applying a combination of random and directed
test programs using simulation techniques. Many techniques
have been proposed for generation of directed test programs
[1, 4, 9, 11, 12]. These techniques do not consider pipeline be-
havior for generating test programs.

Ur and Yadin [16] have presented a method for generation
of assembler test programs that systematically probe the micro-
architecture of a PowerPC processor. Iwashita et al. [7] use an
FSM based processor modeling to automatically generate test
programs. Campenhout et al. [3] have proposed a test genera-

1530-1591/05 $20.00 © 2005 IEEE

MEMORY SUBSYSTEM

CO-PROCESSOR

PROCESSOR

Unit

CoProc

EMIF_1

Pipeline edge

Storage Data-transfer edge

L1

DMALocal
Memory

Memory
Main

Inst.

Unified

L1

ALU

Back
Write

MemCntrl

AddrCalc

Register
File

Decode

PC Fetch

L2
Data

EMIF_2

Figure 1. A Structure Graph of a Simple Architecture

tion algorithm that integrates high-level treatment of the datap-
ath with low-level treatment of the controller. Kohno et al. [8]
have presented a tool that generates test programs for verifying
pipeline behavior in the presence of hazards and exceptions. Ho
et al. [6] have presented a technique for generating test vectors
for verifying the corner cases of the design. Mishra et al. [10]
have proposed a graph-based functional test program generation
technique for pipelined processors using model checking. None
of these techniques provides a comprehensive metric to mea-
sure the coverage of the pipeline interactions. An extensive sur-
vey on coverage metrics in simulation-based verification is pre-
sented by Tasiran et al. [13]. Andrew Piziali [2] has presented
a comprehensive study on functional verification coverage mea-
surement and analysis.

Many researchers have proposed techniques for generation of
functional test programs for manufacturing testing of micropro-
cessors ([14], [15]). These techniques use stuck-at fault cov-
erage to demonstrate the quality of the generated tests. To the
best of our knowledge, there are no previous approaches that
describe functional fault models for pipelined architectures, use
it to define functional coverage, and generate test programs to
detect all the functional faults in the fault model.

3 Architecture Model of a Pipelined Processor

Modeling plays a central role in the generation of test pro-
grams for validation of pipelined processors. In this section, we
briefly describe how the graph model captures the structure and
behavior of the processor using the information available in the
architecture manual.

3.1 Structure

The structure of an architecture pipeline is modeled as a graph
with the components as nodes and the connectivity as the edges.
We consider two types of components:units (e.g., ALUs) and
storages(e.g., register files). There are two types of edges:
pipeline edgesanddata transfer edges. A pipeline edge trans-
fers instruction (operation) between two units. A data-transfer
edge transfers data between units and storages.

For illustration, we use a simple multi-issue architecture con-
sisting of a processor, a co-processor and a memory subsystem.

Figure 1 shows the graph-based model of this architecture that
can issue up to three operations (an ALU operation, a mem-
ory access operation, and a coprocessor operation) per cycle.
In the figure, oval boxes denote units, dotted ovals are storages,
bold edges are pipeline edges, and dotted edges are data-transfer
edges. A path from a root node (e.g., Fetch) to a leaf node (e.g,
WriteBack) consisting of units and pipeline edges is called a
pipeline path. For example, one of the pipeline path is{Fetch,
Decode, ALU, WriteBack}. A path from a unit to main memory
or register file consisting of storages and data-transfer edges is
called adata-transfer path. For example,{MemCntrl, L1, L2,
MainMemory} is a data-transfer path.

3.2 Behavior

The behavior of the architecture is typically captured by the
instruction-set (ISA) description in the processor manual. It
consists of a set of operations1 that can be executed on the ar-
chitecture. Each operation in turn consists of a set of fields (e.g.
opcode, arguments) that specify, at an abstract level, the exe-
cution semantics of the operation. We model the behavior as
a graph, where the nodes represent the fields of each operation
and the edges represent orderings between the fields. Figure 2
describes a portion of the behavior (consisting of two operation
graphs) for the example processor shown in Figure 1.

Nodes are of two types: opcode and argument. The opcode
nodes represent the opcode (i.e. mnemonic), and the argument
nodes represent argument fields (i.e., source and destination ar-
guments). In Figure 2, the ADD and STORE nodes are opcode
nodes, while the others are argument nodes. Edges are also of
two types: operation and execution. The operation edges link
the fields of the operation and also specify the syntactical or-
dering between them. On the other hand, the execution edges
specify the execution ordering between the fields. In Figure 2,
the solid edges represent operation edges while the dotted edges
represent execution edges. For the ADD operation, the oper-
ation edges specify that the syntactical ordering is opcode fol-
lowed by DEST, SRC1 and SRC2 arguments (in that order), and
the execution edges specify that the SRC1 and SRC2 arguments
are executed (i.e., read) before the ADD operation is performed.
Finally, the DEST argument is written.

Operation Edge

Execution Edge

Argument Node

Opcode Node

SRC1STORE SRC OFFSET

SRC2ADD DEST SRC1

Figure 2. A Fragment of the Behavior Graph

The architecture manual also provides information regard-
ing the mapping between the structure and behavior. We de-
fine a set of mapping functions that map nodes in the structure
to nodes in the behavior (and vice-versa). Theunit-to-opcode
(opcode-to-unit)mapping is a bi-directional function that maps
unit nodes in the structure to opcode nodes in the behavior.
The unit-to-opcodemappings for the architecture in Figure 1

1In this paper we use the terms operation and instruction interchangeably.

include mappings fromFetchunit to opcodes{ADD, STORE},
ALU unit to opcodeADD, AddrCalc unit to opcodeSTORE
etc. Theargument-to-storage (storage-to-argument)mapping is
a bi-directional function that maps argument nodes in the behav-
ior to storage nodes in the structure. For example, theargument-
to-storagemappings for theADD operation are mappings from
{DEST, SRC1, SRC2} to RegisterFile.

4 Functional Fault Models

In this section, we present fault models for various functions
in a pipelined processor. We categorize various computations
in a pipelined processor intoregister read/write, operation ex-
ecution, execution pathandpipeline execution. We outline the
underlying fault mechanisms for each fault model, and describe
the effects of these faults at the level of the architecture model
presented in Section 3.

4.1 Fault Model for Register Read/Write

To ensure fault-free execution, all registers should be written
and read correctly. In the presence of a fault, reading of a register
will not return the previously written value. The fault could be
due to an error in reading, register decoding, register storage,
or prior writing. The outcome is an unexpected value. IfVRi is
written in registerRi and read back, the output should beVRi in
fault-free case. In the presence of a fault, output6= VRi .

4.2 Fault Model for Operation Execution

All operations must execute correctly if there are no faults. In
the presence of a fault, the output of the computation is differ-
ent from the expected output. The fault could be due to an error
in operation decoding, control generation or final computation.
Erroneous operation decoding might return an incorrect opcode.
This can happen if incorrect bits are decoded for the opcode.
Selection of incorrect bits will also lead to erroneous decoding
of source and destination operands. Even if the decoding is cor-
rect, due to an error in control generation an incorrect compu-
tation unit can be enabled. Finally, the computation unit can be
faulty. The outcome is an unexpected result. Letvali , where
vali = fopcodei (src1,src2, ...), denote the result of computing the
operation “opcodei dest, src1, src2, ...”. In the fault-free case,
the destination will contain the valuevali . Under a fault, the
destination is not equal tovali .

4.3 Fault Model for Execution Path

During execution of an operation in the pipeline, one pipeline
path and one or more data-transfer paths get activated. We de-
fine all these activated paths as theexecution pathfor that oper-
ation. An execution pathepopi is faulty if it produces incorrect
result during execution of operationopi in the pipeline. The
fault could be due to an error in one of the paths (pipeline or
data-transfer) in the execution path. A path is faulty if any one
of its nodes or edges are faulty. A node is faulty if it accepts
valid inputs and produces incorrect outputs. An edge is faulty if
it does not transfer the data/instruction correctly.

Without loss of generality, let us assume that the processor
hasp pipeline paths (PP = ∪p

i=1ppi) andq data-transfer paths

(DP = ∪q
j=1dpj). Furthermore, each pipeline pathppi is con-

nected to a set of data-transfer pathsDPgrpi (DPgrpi ⊆ DP).
During execution of an operationopi in the pipeline pathppi,
a set of data-transfer pathsDPopi (DPopi ⊆ DPgrpi) are used
(activated). Therefore, the execution pathepopi for operation
opi is, epopi = ppi ∪DPopi . Let us assume, operationopi has
one opcode (opcodei), m sources (∪m

j=1srcj) andn destinations
(∪n

k=1destk). Each data-transfer pathdpi (dpi ∈ DPopi) is ac-
tivated to read one of the sources or write one of the desti-
nations ofopi in execution pathepopi . Let vali , wherevali
= fopcodei (∪m

j=1srcj), denote the result of computing the oper-
ation opi in execution pathepi . The vali hasn components
(∪n

k=1valki). In the fault-free case, the destinations will contain
correct values, i.e.,∀k destk = valki . Under a fault, at least one of
the destinations will have incorrect value, i.e.,∃k destk 6= valki .

4.4 Fault Model for Pipeline Execution

The previous fault models consider only one operation at a
time. An implementation of a pipeline is faulty if it produces
incorrect results due to execution of multiple operations in the
pipeline. The fault could be due to incorrect implementation of
the pipeline controller. The faulty controller might have erro-
neous hazard detection, incorrect stalling, erroneous flushing, or
wrong exception handling schemes.

Let us define stall set for a unitu (SSu) as all possible ways
to stall that unit. Therefore, the stall set for the architecture
StallSet= ∪∀uSSu. Let us also define the exception set for
a unit u (ESu) as all possible ways to create an exception in
that unit. We define the set of all possible multiple excep-
tion scenarios asMESS. Hence, the exception set for the ar-
chitectureExceptionSet= ∪∀uESu∪MESS. We consider two
types of pipeline interactions: stalls and exceptions. There-
fore, all possible pipeline interactions (PIs) can be defined as:
PIs= StallSet∪ExceptionSet. Let us assume a sequence of op-
erationsopspi causes a pipeline interactionpi (i.e., pi ∈ PIs),
and updatesn storage locations. Letvalpi denote the result
of computing the operation sequenceopspi. The valpi hasn
components (∪n

k=1valkpi). In the fault-free case, the destinations

will contain correct values, i.e.,∀k destk = valki . Under a fault,
at least one of the destinations will have incorrect value, i.e.,
∃k destk 6= valki .

5 Functional Coverage Estimation

We define functional coverage based on the fault models de-
scribed in Section 4. Consider the following cases:

• a fault in register read/writeis covered if the register is
written first and read later.

• a fault inoperation executionis covered if the operation is
performed, and the result of the computation is read.

• a fault inexecution pathis covered if the execution path is
activated, and the result of the computation is read.

• a fault in pipeline executionis covered if the fault is
activated due to execution of multiple operations in the
pipeline, and the result of the computation is read.

We compute functional coverage of a pipelined processor for
a given set of test programs as the ratio between the number
of faults detected by the test programs and the total number of
detectable faults in the fault model.

6 Test Generation Techniques

In this section, we present test generation procedures for de-
tecting faults covered by the fault models presented in Section 4.
Different architectures have specific instructions to observe the
contents of registers and memories. In this paper, we use load
and store instructions to make the register and memory contents
observable at the output data bus.

We first describe a procedurecreateTestProgramthat is used
by the test generation algorithms. The procedure accepts a list of
operations as input and returns a modified list. It assigns appro-
priate values to the unspecified locations (opcodes or operands).
Next, it creates initialization instructions for the uninitialized
source operands. It also creates instructions to read the destina-
tion operands. Finally, it returns the modified list that contains
the initialization operations, modified input operations, and the
read operations (in that order).

6.1 Test Generation for Register Read/Write

Algorithm 1 presents the procedure for generating test pro-
grams for detecting faults in register read/write functions. The
fault model for the register read/write function is described in
Section 4.1. For each register in the architecture, the algorithm
generates an instruction sequence consisting of a write followed
by a read for that register. The functionGenerateUniqueValue
returns unique value for each register based on register name.
A test program for registerRi will consist of two assembly in-
structions: “MOVI Ri, #vali” and “STORERi , Rj , #0”. The
move-immediate (MOVI) instruction writesvali in registerRi .
The STORE instruction reads the content ofRi and writes it in
memory addressed byRj (offset 0).

Algorithm 1 : Test Generation for Register Read/Write
Input : Graph model of the architectureG.
Output : Test programs for detecting faults in register read/write.
begin /*** TestProgramList= {} ***/

for each registerreg in architectureG
valuereg = GenerateUniqueValue(reg);
writeInst= an instruction that writesvaluereg in registerreg.
test progreg = createTestProgram(writeInst)
TestProgramList= TestProgramList∪ test progreg;

endfor
return TestProgramList.

end

6.2 Test Generation for Operation Execution

Algorithm 2 presents the procedure for generating test pro-
grams for detecting faults in operation execution. The fault
model for the operation execution is described in Section 4.2.
The algorithm traverses the behavior graph of the architecture,
and generates one test program for each operation graph using
createTestProgram. For example, a test program for the op-
eration graph with opcodeADD in Figure 2 has three opera-
tions: two initialization operations (“MOV R3 #333”, “MOV

R5 #212”) followed by the ADD operation (“ADD R2 R3 R5”),
followed by the reading of the result (“STORE R2, Rx, #0”).

Algorithm 2 : Test Generation for Operation Execution
Input : Graph model of the architectureG.
Output : Test programs for detecting faults in operation execution.
begin /*** TestProgramList= {} ***/

for each operationoper in architectureG
test progoper = createTestProgram(oper);
TestProgramList= TestProgramList∪ test progoper;

endfor
return TestProgramList.

end

6.3 Test Generation for Execution Path

Algorithm 3 presents the procedure for generating test pro-
grams for detecting faults in execution path. The fault model
for the execution path is described in Section 4.3. The algo-
rithm traverses the structure graph of the architecture, and for
each pipeline path it generates a group of operations supported
by that path. It randomly selects one operation from each op-
eration group. There are two possibilities. If all the edges in
the execution path (containing the pipeline path) are activated
by the selected operation, the algorithm generates all possible
source/destination assignments for that operation. However,
if different operations in the operation group activates differ-
ent set of edges in the execution path, it generates all possible
source/destination assignments for each operation in the opera-
tion group.

Algorithm 3 : Test Generation for Execution Path
Input : Graph model of the architectureG.
Output : Test programs for detecting faults in execution path.
begin /*** TestProgramList= {} ***/

for each pipeline pathpath in architectureG
opgrouppath = operations supported inpath.
execpath = pathand all data-transfer paths connected to it
operpath = randomly select an operation fromopgrouppath
if (operpath activates all edges inexecpath) opspath = operpath
else opspath = opgrouppath endif
for all operationsoper in opspath

for all source/destination operandsopndof oper
for all possible register valuesval of opnd

newOper= assignval to opndof oper.
test progoper = createTestProgram(newOper).
TestProgramList= TestProgramList∪ test progoper;

endfor
endfor

endfor
endfor
return TestProgramList.

end

6.4 Test Generation for Pipeline Execution

Algorithm 4 presents the procedure for generating test pro-
grams for detecting faults in pipeline execution. The fault model
for the pipeline execution is described in Section 4.4. The first
loop (L1) traverses the structure graph of the architecture in a
bottom-up manner, starting at leaf nodes. The second loop (L2)
computes test programs for generating all possible exceptions
in each unit using templates. The third loop (L3) computes test
programs for creating stall conditions due to data and control
hazards in each unit using templates. The fourth loop (L4) cre-
ates test programs to generate stall conditions using structural

hazards. Finally, the last loop (L5) computes test sequences for
multiple exceptions involving more than one units. Thecom-
poseTestProgramfunction uses ordered2 n-tuple units and com-
bines their test programs. The function also removes dependen-
cies across test programs to ensure the generation of multiple
exceptions during the execution of the combined test program.

Algorithm 4 : Test Generation for Pipeline Execution
Input : Graph model of the architectureG.
Output : Test programs for detecting faults in pipeline execution.
begin /*** TestProgramList= {} ***/

L1: for each unit nodeunit in architectureG
L2: for each exceptionexonpossible inunit

templateexon = template for exceptionexon
test progunit = createTestProgram(templateexon);
TestProgramList= TestProgramList∪ test progunit;

endfor
L3: for each hazardhazin {RAW, WAW, WAR, control}

templatehaz = template for hazardhaz
if hazis possible inunit

test progunit = createTestProgram(templatehaz);
TestProgramList= TestProgramList∪ test progunit;

endif
endfor
L4: for each parent unitparentof unit

operparent = an operation supported byparent
resultOps= createTestProgram(operparent);
test progunit = a test program to stallunit (if exists)
test progparent = resultOps∪ test progunit

TestProgramList= TestProgramList∪ test progparent;
endfor

endfor
L5: for each ordered n-tuple (unit1, unit2, ...,unitn) in graphG

prog1 = a test program for creating exception inunit1
.....
progn = a test program for creating exception inunitn
test progtuple = composeTestProgram(prog1 ∪ ... ∪ progn);
TestProgramList= TestProgramList∪ test progtuple;

endfor
return TestProgramList.

end

7 A Case Study

We applied our methodology on two pipelined architectures:
a VLIW implementation of the DLX architecture [5], and a
RISC implementation of the SPARC V8 architecture [19].

7.1 Experimental Setup

We developed our test generation and coverage analysis
framework using Verisity’s Specman Elite [18]. We captured
executable specification of the architectures using Verisity’s “e”
language. This includes description of 91 instructions for the
DLX, and 106 instructions for the SPARC V8 architecture. We
refer to these asspecifications. We implemented a VLIW ver-
sion of the DLX architecture using Verisity’s “e” language. It
contains 5 pipeline stages: fetch, decode, execute, memory and
writeback. The execute stage has four parallel execution paths:
an ALU, a four-stage floating-point adder, a seven-stage multi-
plier, and a multi-cycle divider. We used the LEON2 processor
[20] that is a VHDL model of a 32-bit processor compliant with
the SPARC V8 architecture. We refer these models (VLIW DLX
and LEON2) asimplementations.

2The unit closer to completion has higher order

Our framework generates test programs in three different
ways: random, constrained-random, and our approach. Spec-
man Elite [18] is used to generate both random and constrained-
random test programs from the specification. Several constraints
are used for constrained-random test generation. For exam-
ple, to generate test programs for register read/write, we used
the highest probability for choosing register-type operations in
DLX. Since register-type operations have 3 register operands,
the chances of reading/writing registers are higher than imme-
diate type (2 register operands) or branch type (one register
operand) operations. The test programs generated by our ap-
proach uses the algorithms described in Section 6. To ensure that
the generated test programs are executed correctly, our frame-
work applies the test programs on the implementation as well
as the specification, and compares the contents of the program
counter, registers and memory locations after execution of each
test program.

The Specman Elite framework allows definition of various
coverage measures that enables us to compute the functional
coverage described in Section 5. We defined each entry in the
instruction definition (e.g. opcode, destination and sources) as
a coverage item in Specman Elite. The coverage for the desti-
nation operand gives the measure of which registers are written.
Similarly, the coverage of source operands gives the measure of
which registers are read. We used a variable for each register
to identify a read after a write. Computation of coverage for
operation executionis done by observing the coverage of the
opcode field. The computation of coverage forexecution pathis
performed by observing if all the registers are used for compu-
tation of all/selected opcodes. This is performed by using cross
coverage of instruction fields in Specman Elite that computes
every combination of values of the fields. Finally, we compute
the coverage forpipeline executionby maintaining variables for
stalls and exceptions in each unit. The coverage for multiple
exceptions is obtained by performing cross coverage of the ex-
ception variables (events) that occur simultaneously. Currently,
we consider only two simultaneous exceptions.

7.2 Results

In this section, we compare the test programs generated by
our approach against the random and constrained-random test
programs generated by the Specman Elite. Table 1 shows the
comparative results for the DLX architecture. The rows indi-
cate the fault models, and the columns indicate test generation
techniques. An entry in the table has two numbers. The first
one represents the minimum number of test programs generated
by that test generation technique for that fault model. The sec-
ond number (in parenthesis) represents the functional coverage
obtained by the generated test programs for that fault model.

Table 1. Test Programs for Validation of DLX Architecture

Fault Models Test Generation Techniques
Random Constrained Our Approach

Register Read/Write 3900 (100%) 750 (100%) 130 (100%)
Operation Execution 437 (100%) 443 (100%) 182 (100%)

Execution Path 12627 (100%) 1126 (100%) 320 (100%)
Pipeline Execution 30000 (25%) 30000 (30%) 626 (100%)

The number 100% implies that the generated test programs

covered all the faults in that fault model. For example, theRan-
dom technique covered all the faults in “Register Read/Write”
function using 3900 tests. The number of test programs for op-
eration execution are similar for both random and constrained-
random approaches. This is because the constraint used in this
case (same probability for all opcodes) may be the default option
used in random test generation approach.

Table 2. Quality of the Proposed Functional Fault Model

Fault Models Test Programs HDL Code Coverage

Register Read/Write 130 85%
Operation Execution 182 91%

Execution Path 320 86%
Pipeline Execution 626 100%

We performed an initial study to evaluate the quality of our
functional fault model using existing coverage measures. Ta-
ble 2 compares our functional coverage against HDL code cov-
erage. The first column indicates the functional fault models.
The second column presents the minimum number of test pro-
grams generated by our test generation algorithms to cover all
the functional faults in the corresponding fault model. The last
column presents the code coverage obtained for the DLX imple-
mentation [17] using the test programs mentioned in the second
column. As expected, our fault model performed well – a small
number of test programs generated a high code coverage.

Table 3 shows the comparative results for different test gener-
ation approaches for the LEON2 processor. The trend is similar
in terms of number of operations and fault coverage for both the
DLX and LEON2 architectures. The random and constrained-
random approaches obtained 100% functional coverage for the
first three fault models using an order of magnitude more test
vectors than our approach.

Table 3. Test Programs for Validation of LEON2 Processor

Fault Models Test Generation Techniques
Random Constrained Our Approach

Register Read/Write 1746 (100%) 654 (100%) 130 (100%)
Operation Execution 416 (100%) 467 (100%) 212 (100%)

Execution Path 1500 (100%) 475 (100%) 192 (100%)
Pipeline Execution 30000 (40%) 30000 (50%) 248 (100%)

We analyzed the cause for the low fault coverage inpipeline
executionfor the random and constraint-driven test generation
approaches. These two approaches covered all the stall scenar-
ios and majority of the single exception faults. However, they
could not activate any multiple exception scenarios. Due to big-
ger pipeline structure (larger set of pipeline interactions) in the
VLIW DLX, it has lower fault coverage than the LEON2 archi-
tecture inpipeline execution. This functional coverage problem
will be even more important for today’s deeply pipelined em-
bedded processors.

8 Conclusions

Functional verification is widely acknowledged as a ma-
jor bottleneck in microprocessor design due to lack of a suit-
able functional coverage estimation technique. This paper pre-
sented a functional coverage based test generation technique for
pipelined architectures. The methodology made three impor-
tant contributions. First, a general graph model was developed

that can capture the structure and behavior (instruction-set) of
a wide variety of pipelined processors. Second, we proposed
a functional fault model that is used in defining the functional
coverage. Finally, test generation procedures were presented
that accept the graph model of the microprocessor as input and
generate test programs to detect all the faults in the functional
fault model. We are able to measure the goodness of a given set
of random test sequences using our functional coverage metric.
Our experimental results demonstrate that the required number
of test sequences generated by our algorithms to obtain a given
fault (functional) coverage is an order of magnitude less than the
random or constrained-random test programs.

Our future work includes application of these test programs
for functional validation of today’s microprocessors. We also
plan to perform further comparative studies with our functional
coverage metric against existing coverage measures, such as
code coverage, FSM coverage and stuck-at coverage.

References

[1] A. Aharon et al. Test program generation for functional verifica-
tion of PowerPC processors in IBM.DAC, pages 279–285, 1995.

[2] Andrew Piziali. Functional Verification Coverage Measurement
and Analysis. Kluwer Academic Publishers, 2004.

[3] D. Campenhout et al. High-level test generation for design verifi-
cation of pipelined microprocessors.DAC, pages 185–188, 1999.

[4] S. Fine et al. Coverage directed test generation for functional
verification using bayesian networks.DAC, pages 286–291, 2003.

[5] J. Hennessy and D. Patterson.Computer Architecture: A Quanti-
tative Approach. Morgan Kaufmann, 1990.

[6] R. Ho et al. Architecture validation for processors.ISCA, 1995.

[7] H. Iwashita et al. Automatic test pattern generation for pipelined
processors.ICCAD, pages 580–583, 1994.

[8] K. Kohno and N. Matsumoto. A new verification methodology
for complex pipeline behavior.DAC, pages 816–821, 2001.

[9] M. Behm et al. Industrial experience with test generation lan-
guages for processor verification.DAC, pages 36–40, 2004.

[10] P. Mishra and N. Dutt. Graph-based functional test program gen-
eration for pipelined processors.DATE, pages 182–187, 2004.

[11] J. Miyake et al. Automatic test generation for functional verifica-
tion of microprocessors.ATS, pages 292–297, 1994.

[12] J. Shen et al. Functional verification of the equator MAP1000
microprocessor.DAC, pages 169–174, 1999.

[13] S. Tasiran and K. Keutzer. Coverage metrics for functional vali-
dation of hardware designs.IEEE Design & Test of Computers,
18(4):36–45, 2001.

[14] L. Chen et al. A scalable software-based self-test methodology
for programmable processors.DAC, pages 548–553, 2003.

[15] S. Thatte and J. Abraham. Test generation for microprocessors.
IEEE Transactions on Computers, C-29(6):429–441, June 1980.

[16] S. Ur and Y. Yadin. Micro architecture coverage directed genera-
tion of test programs.DAC, pages 175-180, 1999.

[17] http://www.rs.e-technik.tu-darmstadt.de/TUD/res/dlxdocu/Super-
scalarDLX.html.Superscalar DLX Processor.

[18] Verisity Design, Inc.http://www.verisity.com.

[19] http://www.sparc.com/resource.htm#V8.The SPARC Architec-
ture Manual, Version 8.

[20] LEON2 Processor.http://www.gaisler.com/leon.html.

	Main Page
	DATE'05
	Front Matter
	Table of Contents
	Author Index

