
A Faster Counterexample Minimization Algorithm Based on Refutation Analysis

ShengYu Shen
School of Computer Science

National University of
Defence Technology
syshen@nudt.edu.cn

Ying Qin
School of Computer Science

National University of
Defence Technology
qy123@nudt.edu.cn

SiKun Li
School of Computer Science

National University of
Defence Technology

skli@nudt.edu.cn

Abstract

It is a hot research topic to eliminate irrelevant vari-
ables from counterexample, to make it easier to be under-
stood. The BFL algorithm is the most effective counterex-
ample minimization algorithm compared to all other ap-
proaches. But its time overhead is very large due to one
call to SAT solver for each candidate variable to be elimi-
nated. The key to reduce time overhead is to eliminate multi-
ple variables simultaneously. Therefore, we propose a faster
counterexample minimization algorithm based on refutation
analysis in this paper. We perform refutation analysis on
those UNSAT instances of BFL, to extract the set of vari-
ables that lead to UNSAT. All variables not belong to this set
can be eliminated simultaneously as irrelevant variables.
Thus we can eliminate multiple variables with only one call
to SAT solver. Theoretical analysis and experiment result
shows that, our algorithm can be 2 to 3 orders of magni-
tude faster than existing BFL algorithm, and with only mi-
nor lost in counterexample minimization ability.

1. Introduction

Model checking technology is widely employed to ver-
ify software and hardware system. One of its major advan-
tages in comparison to such method as theorem proving is
the production of a counterexample, which explains how the
system violates some assertion.

However, it is a tedious task to understand the complex
counterexamples generated by model checker. Therefore,
how to automatically extract useful information to aid the
understanding of counterexample, is an area of active re-
search [12, 8, 5, 7].

At the same time, many important verification algo-
rithms need to analyze counterexample (or witness). Some
of them are: abstraction-refinement model checking [4, 6]
and SAT based image computation [2, 10, 9]. In these algo-
rithms, if we can extract a subset of variables that are suf-

ficient to lead to counterexample, then these variables can
express a large number of counterexamples, not just the in-
dividual one generated by model checker. In the remainder
of this paper, we call this variable subset asminimization
set, and call the algorithm that extract minimization set as
counterexample minimization.

Now we demonstrate the concept of counterexample
minimization with following example:

For AND gatez = a&b, let the assertion be ”z al-
ways equal to 1”, then there are three counterex-
amples:{a ⇐ 0, b ⇐ 0, z ⇐ 0}, {a ⇐ 1, b ⇐
0, z ⇐ 0}, and{a ⇐ 0, b ⇐ 1, z ⇐ 0}. We need
nine bits to store these counterexamples.

However, from an intuitive viewpoint,a ⇐ 0
is sufficient to lead to counterexample. Sob is an
irrelevant variable in this case. At the same time,
b ⇐ 0 is also a sufficient condition of counterex-
ample. Soa is also an irrelevant variable when
b equal to 0. Then we can minimize above three
counterexamples, and obtain 2 minimization sets:
{a ⇐ 0, z ⇐ 0} and{b ⇐ 0, z ⇐ 0}. We only
need four bits to store them.

McMillan [10] and Chauhan et al.[2] point out that , di-
rectly storing and processing the minimization set, can be
exponent efficient than storing and processing the corre-
sponding set of counterexamples.

Thus, a minimized counterexample is easier to be under-
stood, and will significant boost the performance of many
verification algorithms.

Ravi and Somenzi [12] propose a counterexample min-
imization algorithm called Brute Force Lifting algorithm.
We will refer to it as BFL in the remainder of this pa-
per. For every free variablev, BFL construct a SAT in-
stance SAT(v), to determine ifv can prevent the counterex-
ample. If result of SAT(v) is UNSAT, thenv is irrelevant
to counterexample, and can be eliminated. Ravi compares
BFL with other counterexample minimization approaches,
and concludes that BFL is the most efficient one, it can of-
ten eliminate up to 70% free variables.

1530-1591/05 $20.00 © 2005 IEEE

However, the time complexity of BFL is much larger
than all other existing approaches due to one call to SAT
solver per candidate variable to be eliminated.

So the key to reduce time overhead of BFL is to elimi-
nate multiple variables after every call to SAT solver

Therefore, we propose a faster counterexample mini-
mization algorithm based on refutation analysis in this pa-
per, which employ refutation analysis for UNSAT instances
of BFL, to extract all relevant variables and eliminate all ir-
relevant variables simultaneously.

We implement our algorithm based on zchaff [11] and
NuSMV [3], and perform experiment on ISCAS89 bench-
mark suite. Theoretical analysis and experiment result
shows that, our algorithm can be 2 to 3 orders of magni-
tude faster than BFL algorithm, and with only minor lost in
counterexample minimization ability.

The remainder of this paper is organized as follows. Sec-
tion 2 presents background material. Section 3 presents the
counterexample minimization algorithm based on refutation
analysis. Section 4 presents experiment result of our algo-
rithm and compare it to that of BFL. Section 5 reviews re-
lated works. Section 6 concludes with a note on future work.

2. Preliminaries

2.1. Bounded Model Checking

We first define the Kripke structure:

Definition 1 Kripke structure is a 6-tuple
M = (S, I, W, T, A,L), with a finite set of statesS, the
set of initial statesI ⊆ S, the input variable setW , transi-
tion relation between statesT : S ×W × S → {0, 1}, and
the labeling of the statesL : S → 2AP with atomic propo-
sitions setAP .

Bounded Model Checking (BMC) [1] is a model check-
ing technology that considers only limited length path. We
call this length as the bound of path. We denote the state of
the i-th and i+1-th cycle asSi andSi+1, and transition rela-
tion between them asTi(Si,Wi, Si+1), with input variable
set of i-th cycle denoted byWi.

Then we can unfold the transition relationk times, and
obtain the following equation:

[[M]]k = I ∧
∧

0≤i<k

Ti(Si, Wi, Si+1) (1)

Let the safety assertion under verification beASSERT ,
the goal of BMC is to find a stateS that violateASSERT ,
that is to say,¬ASSERT ∈ L(S). In remainder of this
paper, we denote¬ASSERT asP , and will not refer to
ASSERT any more.

Let P at i-th cycle asPi ,then BMC problem can be ex-
press as:

F = [[M]]k ∧
∧

0≤i<k

¬Pi ∧ Pk

Because BMC always searches for shortest counterex-
ample, so

∧
0≤i<k ¬Pi always holds true. Therefore we can

reduce above equation into following equation (2):

F = [[M]]k ∧ Pk (2)

Reduce equation (2) into SAT instance, and solve it with
SAT solver, then a counterexample can be found if it exists.

2.2. BFL Algorithm

BFL algorithm proposed by Ravi and Somenzi [12] can
eliminate much more free variables than all existing algo-
rithm, often up to 70% free variables can be eliminated.

We give some terminology below:

Definition 2: Assume the bound of counterexample is
k, and denote the set of free variables asFree = I ∪⋃

0≤i≤k Wi . The assignment to variablev in counterex-
ample is denoted byAssign(v), the assignment to vari-
able setV in counterexample is denoted byAssign(V) =
{Assign(v)|v ∈ V }.

Obviously, the setFree includes input variables at all
cycle and initial state variables.

For a free variablev ∈ Free, v is an irrelevant vari-
able if and only if the following statement hold true: ”no
matter what value doesv take on, it can’t prevent the coun-
terexample from happen. That is to say, it can’t preventPk

of equation (2) from equal to 1”. Formal definition of irrel-
evant variable is given below:

Definition 3 Irrelevant Variable : for v ∈ Free, v is an
irrelevant variable iff:

∀c ∈ {0, 1}.[[M]]k ∧ (v ⇐ c) ∧A → Pk

which is equal to

¬∃c ∈ {0, 1}.[[M]]k ∧ (v ⇐ c) ∧A ∧ ¬Pk (3)

where

A = Free− {v} ⇐ Assign(Free− {v}) (4)

From equation (3) and (4) we can conclude that:v is ir-
relevant variable iff SAT instance[[M]]k ∧A ∧ ¬Pk is Un-
satisfiable.

Thus, the BFL algorithm [12] that extracts minimization
set from counterexample is show below:

Algorithm 1:BFL Algorithm
1 F” = [[M]]k ∧ ¬Pk

2 foreachv ∈ Free
a) F ′ = F”∧ (Free−{v} ⇐ Assign(Free−{v}))
b) if(SAT Solve(F ′)==UNSAT)

i Free = Free− {v}
3 Free is the minimization set

To make it more distinct, we give the following two def-
initions:

Definition 4 Model Clause Set: all clauses generated
from F” in step 2a) of algorithm 1.

Definition 5 Assignment Clause Set: all clauses gener-
ated from(Free − {v} ⇐ Assign(Free − {v})) in step
2a) of algorithm 1

We call the former as model clause set, becauseF” rep-
resents inverted model checking problem of equation (2).
We call the latter as assignment clause set because they are
used for assigning to all variables their value in counterex-
ample, exceptv. For everyv′ ∈ Free−{v}, its assignment
clause contain only one literal. IfAssign(v′) == 1, then
assignment clause ofv′ is {v′}, otherwise it is{¬v′}. SAT
solver will assign these values to them by BCP when solv-
ing this instance.

3. Counterexample Minimization with Refu-
tation Analysis

As stated before, the key to reduce time overhead of BFL
is to eliminate multiple variables after every call to SAT
solver.

In algorithm 1, when SAT instanceF ′ is Unsatisfiable, a
variable subsetR ⊆ Free can be extract from it by refuta-
tion analysis, which is the sufficient condition of counterex-
ample. Then all variables inFree−R can be eliminated im-
mediately. Thus we can eliminate multiple variables in this
way.

In this section, we first describe the overall algorithm
flow in subsection 3.1, and then describe the most important
part - refutation analysis in subsection 3.2. We will prove its
correctness in subsection 3.3. At last, we will analyze the
complexity of this algorithm in subsection 3.4.

3.1. Overall algorithm flow

Overall flow of our algorithm is shown by algorithm 2.

Algorithm 2 BFL algorithm with refutation analysis
1 F” = [[M]]k ∧ ¬Pk

2 foreachv ∈ Free
a) F ′ = F”∧ (Free−{v} ⇐ Assign(Free−{v}))
b) if(SAT Solve(F ′)==UNSAT)

i R = Refutation Analysis()
ii Free = Free ∩R
iii goto step 3

3 Free is the minimization set

all literals of conflict clause c

S

Figure 1. implication graph root at unit
clauses and target at all literals of conflict
clause c

Compare it to algorithm 1, steps in 2b) of algorithm 2 are
newly inserted steps, which are highlighted with bold font.
In step 2b)i, we perform refutation analysis to extract the
variables setR that leads to UNSAT. And then in step 2b)ii,
we eliminate all variables not belong toR. After that we ter-
minate the whole algorithm by going to step 3 directly.

3.2. Refutation Analysis

As stated by last subsection, we perform refutation anal-
ysis to extract the variable setR that leads to UNSAT.

For SAT instanceF ′ of algorithm 2, we denote its model
clause set byF”, and its assignment clause set byA. After
SAT solver finished running, denote its conflict clause set as
C.

Refer to last paragraph of section 2.2 of L.Zhang’s fa-
mous paper about unsatisfiable core extraction [13], we
have the following theorem 1.

Theorem 1 : If F ′ is unsatisfiable, then there must be
a conflict clause at decision level 0, we denote it byc. Be-
cause the decision level is 0, so there are no decided vari-
ables, any variables can only take on their value by implica-
tion.

With this theorem, it is obvious that there must be an im-
plication graph root at unit clauses and target at all literals
of conflict clausec. We show this implication graph in fig-
ure 1.Every rectangle denote a unit clause, andS is the set
of unit clauses that makes all literals of conflict clausec to
be 0.

Staring from clausec, we can traverse the implicate
graph in reverse direction, to obtain the set of unit clauses
S that lead to conflict. We denote the assignment clauses
in S by S ∩ A, then the set of variables that lead to con-

flict is R = {v|{v} ∈ S ∩A} ∪ {v|{¬v} ∈ S ∩A}. This is
the key idea of our refutation analysis algorithm.

Now we present the refutation analysis algorithm below.

Algorithm 3 Refutation Analysis
1 setS = ∅
2 queueQ = ∅
3 foreach literall ∈ c

a) push antecedent clause ofl into Q
b) mark antecedent clause ofl as visited

4 while(Q is not empty)
a) cls=pop first clause fromQ
b) if(cls is a unit clause)

i S = S + {cls}
ii If(cls is a learned unit clause)

returnR = Free− {v}
c) else

i foreach literall ∈ cls
1 assumeante(l) is antecedent clause ofl
2 if(ante(l) has not being visited)

a) pushante(l) into Q
b) markante(l) as visited

5 R = {v|{v} ∈ S ∩A} ∪ {v|{¬v} ∈ S ∩A} are vari-
ables that lead to UNSAT

There is a special case in step 4b)ii, whencls is a learned
unit clause, we can’t backtrack further because the SAT
solver has not record the clauses involved in resolution to
constructcls. In this case, we abandon the effort to extract
R, and simply returnR = Free−{v}. This means that we
can eliminate only one variablev in this case.

Fortunately, we have not met with this special case in ex-
periments. I suspect that this is because of the 1UIP con-
flict learning mechanism, which seldom generate learned
unit clause.

3.3. Correctness Proof

We prove the correctness of algorithm 2 and 3 with fol-
lowing theorems:

Theorem 2: F” ∧∧
cls∈S cls is an Unsatisfiable clause

subset ofF ′

Proof: it is obvious thatF”∧∧
cls∈S cls is a clause sub-

set ofF ′, so we only need to prove that it is Unsatisfiable.
AssumeC ′ ⊆ C is the set of learned clauses met with

by algorithm 3 while traversing implication graph. Thus,
F” ∧∧

cls∈S cls ∧∧
cls∈C′ cls is Unsatisfiable. Then if we

can remove
∧

cls∈C′ cls from it, and still retain its unsatis-
fiability?

For every learned clausecls ∈ C ′, assumeNU(cls) and
U(cls) are non-unit clauses set and unit clauses set that in-
volved in resolution to constructcls.

It is obvious thatNU(cls) ⊆ F”. And according to [13],
unit clauses never involve in resolution, soU(cls) is empty

set. So we can remove
∧

cls∈C′ cls from F”∧∧
cls∈S cls∧∧

cls∈C′ cls, and still retain its unsatisfiability
Thus this theorem is proven.

Theorem 3: F” ∧ ∧
v′∈R(v ⇐ Assign(v′)) is an Un-

satisfiable clause subset ofF ′

Proof: it is obvious thatF”∧∧
v′∈R(v ⇐ Assign(v′))

is an clause subset ofF ′. Thus we only need to prove that
F” ∧∧

v′∈R(v ⇐ Assign(v′)) is Unsatisfiable.
According to algorithm 3,

∧
v′∈R(v ⇐ Assign(v′)) is

equal to
∧

cls∈S∩A cls. So we only need to prove thatF” ∧∧
cls∈S∩A cls is Unsatisfiable.
According to theorem 2,F” ∧ ∧

cls∈S cls is Unsatis-
fiable, which can be rewritten asF” ∧ ∧

cls∈S∩A cls ∧∧
cls∈S−A−F” cls.
Lets discuss it in two aspects:

1. If S − A − F” is empty set, thenF” ∧∧
cls∈S∩A cls

is Unsatisfiable

2. Otherwise,S−A−F” isn’t empty set. In this case, al-
gorithm 3 will meet with a learned unit clause. Accord-
ing to step 4b)ii of algorithm 3, it will abandon the ef-
fort to extractR, and eliminate only one variablev. In
the case,F” ∧∧

cls∈S∩A cls is Unsatisfiable

Thus this theorem is proven.

3.4. Complexity Analysis

Because our algorithm depends heavily on SAT solver,
so we don’t analyze its complexity directly. Instead, we
compare our algorithm with SAT solver.

Lets first analyze space complexity of our algorithm.
Comparing algorithm 2 and 1, the only difference is that
algorithm 2 adds a refutation analysis step. Therefore, dif-
ference of space complexity between them resides in refu-
tation analysis algorithm. We know that the space overhead
of refutation analysis mainly resides in setS and queueQ.
Lets analyze them as below:

• We add a tag to each clause in clause database of SAT
solver, to indicate that if this clause belongs to setS.
Therefore, space overhead ofS is linear to size of
clause database.

• For queueQ, it may contain conflict clauses. Because
conflict analysis algorithm of SAT solver also need to
perform similar implicate graph traversing, so space
overhead due toQ is not larger than that of SAT solver.

Next, we will analyze the time complexity of our algo-
rithm.

In algorithm 3, the most complex part is the if statement
in step 4c)i2. for every clause that has been inQ, this state-
ment will be run once. Because the size ofQ is smaller than

clause database, so time overhead of algorithm 3 is smaller
than that of conflict analysis.

In step 2b) of algorithm 2, one call to refutation analy-
sis algorithm will eliminate many irrelevant variables, thus
prevents them from calling SAT solver. This will significant
reduce time overhead.

4. Experiment Result

Ravi and Somenzi [12] only presents the circuits that
used to generate counterexample, but has not presented the
assertion used. Therefore, we can’t compare our algorithm
with his one directly. So we implement his algorithm and
ours in zchaff [11], such that we can compare them with
same circuits and assertions.

We use NuSMV [3] to generate deep counterexample in
the following way:

1. Perform reachability analysis to generate state se-
quence{S0, . . . , Sk}.

2. Use ”Sk can’t be reached” as an assertion, and put it
into bounded model checking package of NuSMV [3],
we can obtain a counterexample with length smaller
thank.

We perform counterexample minimization with BFL
[12] and ours. The timeout limit is set to 20000 sec-
onds.

Experiment result is presented in table 1. The 1st col-
umn is the circuits used to generate counterexample. The
2nd column presents the length of counterexample. The 3rd
column presents number of free variables.

The 4th column shows the numbers of irrelevant free
variables eliminated by K Ravi’s BFL [12]. Divide this col-
umn with the 3rd column, we can get the minimization rate
shown in 5th column. Run time of BFL is shown in 6th col-
umn.

The numbers of irrelevant free variables eliminated by
our algorithm are shown in the 7th column. Divide this col-
umn with the 3rd column, we can get the minimization rate
shown in 8th column. Run time of it is shown in 9th col-
umn. The speedup compared to BFL is shown in last col-
umn.

From this table, we can conclude that:

1. As shown by last column, our algorithm can be 2 to 3
orders of magnitude faster than BFL;

2. Compare the 4th and 7th column, the number of irrel-
evant variables eliminated by BFL and our algorithm
are of almost the same.

5. Related Works

Our work is somewhat similar to that of SAT-based im-
age computation [2, 10, 9].

McMillan [10] propose an SAT solution minimization
approach, to extract a partial assignment from SAT solu-
tion. His approach needs to construct an alternating implica-
tion graph root at input variables. With this graph, he elim-
inates many irrelevant variables from SAT solution.

Kang and Park [9] assign lower decision priority to next
state variables, such that when the transition relation is sat-
isfied, as many as possible next state variables are unde-
cided.

Chauhan et al. [2] employ an ATPG-like approach to an-
alyze the dependence relation between input variables and
transition relation. And try to eliminate as many as possi-
ble next state variables from final solution.

Minimization of counterexamples is useful in the con-
text of abstraction-refinement [4, 6]. Refinement is often
more effective when it is based on the simultaneous elim-
ination of a set of counterexamples rather than on elimina-
tion of one counterexample at a time.

There are also other approaches to minimize counterex-
ample.

Gastin et al [5] propose an length minimization approach
for explicate state model checker SPIN, which try to gener-
ate smaller counterexample with respect to their length.

Groce and Kroening [7] propose an value minimization
approach for CBMC tools, which target at bounded model
checking of C language. His approach tries to minimize the
absolute value of typed variables of C language.

6. Conclusions

To make the counterexample easier to be understood, ir-
relevant variables must be eliminated. At the same time,
minimized counterexamples can significant improve the
performance of many important verification algorithms.

BFL is the most effective counterexample minimization
algorithm. However, its time overhead is too large.

Therefore, we propose a faster counterexample mini-
mization algorithm based on refutation analysis in this pa-
per. Our algorithm can be 2 to 3 orders of magnitude faster
than BFL, and with only minor lost in minimization abil-
ity.

In this paper we only due with safety assertion, we would
also like to address minimization algorithm for loop like
counterexample of liveness property in future work.

7. Acknowledgements

Supported by the National Natural Science Founda-
tion of China under Grant No. 90207019; the National
High Technology Development 863 Program of China un-
der Grant No. 2002AA1Z1480

Circuits CE Free Result of K Ravi[12] Result of our approach
length Vars Eliminated Min Run Eliminated Min Run Speedup

Vars rate time Vars rate time
s1512 21 667 606 90.85% 27.469 601 90.10% 0.05 549
s1423 24 483 397 82.19% 28.381 369 76.40% 0.07 405
s3271 15 507 432 85.21% 41.239 398 78.50% 0.88 47
s3384 13 743 615 82.77% 45.676 579 77.92% 0.08 570
s3330 6 373 295 79.08% 7.931 279 74.80% 0.03 264
s5378 10 530 416 78.49% 27.68 344 64.91% 0.06 461
s9234 7 362 226 62.43% 21.771 169 46.69% 0.07 331
s13207 22 1352 1109 82.03% 619.163 1017 75.22% 0.14 4422
s38584 14 1621 1069 65.95% 1830.82 1008 62.18% 0.43 4255
s38417 14 2029 980 48.29% 2096.06 909 44.80% 0.72 2911

Table 1. Experiment Result

References

[1] A. Biere, A. Cimatti, E. Clarke, M. Fujita, and Y. Zhu. Sym-
bolic model checking using sat procedures instead of bdds.
In Proceedings of the 36th ACM/IEEE conference on De-
sign automation(DAC1999), pages 317–320, New Orleans,
LA, USA,, June 1999. ACM Press.

[2] P. Chauhan, E. M. Clarke, and D. Kroening. Using sat
based image computation for reachability analysis. technol-
ogy report CMU-CS-03-151, School of Computer Science
,Carnegie Mellon University, Pittsburgh, PA 15213, Septem-
ber 2003.

[3] A. Cimatti, E. M. Clarke, E. Giunchiglia, F. Giunchiglia,
M. Pistore, M. Roveri, R. Sebasti-ani, and A. Tacchella.
Nusmv 2: An opensource tool for symbolic model check-
ing. In E. Brinksma and K. G. Larsen, editors,Proceeding
of 14th International Conference on Computer Aided Verifi-
cation(CAV 2002),LNCS 2404, pages 359–364, Copenhagen,
Denmark, July 2002. Springer-Verlag.

[4] E. Clarke, A. Gupta, J. Kukula, and O. Strichman. Sat
based abstraction-refinement using ilp and machine learn-
ing. In E. Brinksma and K. G. Larsen, editors,Proceed-
ing of Fourteenth Conference on Computer Aided Verifica-
tion (CAV 2002),LNCS 2404, pages 265–279, Berlin, July
2002. Springer-Verlag.

[5] P. Gastin, P. Moro, and M. Zeitoun. Minimization of
counterexamples in spin. In S. Graf and L. Mounier,
editors, Proceeding of 11th International SPIN Work-
shop(SPIN2004),LNCS 2989, pages 92–108, Barcelona,
Spain, April 2004. Springer-Verlag.

[6] M. Glusman, G. Kamhi, S. Mador-Haim, R. Fraer, and M. Y.
Vardi. Multiple-counterexample guided iterative abstrac-
tion refinement: An industrial evaluation. In H. Garavel
and J. Hatcliff, editors,Proceeding of 9th International Con-
ference on Tools and Algorithms For the Construction and
Analysis of Systems(TACAS 2003),LNCS 2619, pages 92–
108, Warsaw, Poland, April 2003. Springer-Verlag.

[7] A. Groce and D. Kroening. Making the most of bmc coun-
terexamples. InProceeding of the second International
Workshop on Bounded Model Checking(BMC2004), 2004.

[8] H.Jin, K.Ravi, and F.Somenzi. Fate and free will in er-
ror traces. In J.-P. Katoen and P. Stevens, editors,Pro-
ceeding of 8th International Con-ference on Tools and Algo-
rithms For the Construction and Analysis of Systems(TACAS
2002),LNCS 2280, pages 445–458, Grenoble, France, April
2002. Springer-Verlag.

[9] H.-J. Kang and I.-C. Park. Sat-based unbounded symbolic
model checking. InProceeding of the 40th Design Automa-
tion Conference, DAC 2003, pages 840–843, Anaheim, CA,
USA, June 2003. ACM Press.

[10] K. L. McMillan. Applying sat methods in unbounded sym-
bolic model checking. In E. Brinksma and K. G. Larsen,
editors,Proceeding of Fourteenth Conference on Computer
Aided Verifica-tion (CAV 2002),LNCS 2404, pages 250–264,
Berlin, July 2002. Springer-Verlag.

[11] M. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and
S. Malik. Chaff: Engineering an efficient sat solver. In
Proceedings of the 38th conference on Design automa-
tion(DAC2001), pages 530–535, Las Vegas, NV, June 2001.
ACM Press.

[12] K. Ravi and F. Somenzi. Minimal assignments for bounded
model checking. In K. Jensen and A. Podelski, editors,
Proceeding of Tenth International Conference on Tools and
Algorithms For the Construction and Analysis of Systems
(TACAS’04),LNCS 2988, pages 31–45, Barcelona, Spain,
March 2004. Springer-Verlag.

[13] L. Zhang and S. Malik. Validating sat solvers using an inde-
pendent resolution-based checker: Practical implementations
and other applications. InProceedings of Design,Automation
and Test in Europe (DATE2003), pages 530–535, Munich,
Germany, March 2003. IEEE Computer Society.

	Main Page
	DATE'05
	Front Matter
	Table of Contents
	Author Index

