Efficient Conflict-Based Learning in an RTL Circuit Constraint Solver

M.K. lyer G. Parthasarathy K.-T. Cheng
Dept of Electrical and Computer Engineering
University of California — Santa Barbara
Santa Barbara, CA

Abstract ory of uninterpreted functions with equali)e UF). There is
no mechanism for learning across theories in DPL}),(and
We present new techniques for improving search in a hyit can handle only comparisons with equality, which makes it
brid Davis-Putnam-Logemann-Loveland based constraingyrrently unsuitable for RTL satisfiability.
solver for RTL circuits (HDPLL). In earlier work on HD- In this paper, we address an important problem in any
PLL [7], the authors combined solvers for integer and ppLL-based combination of decision theories — conflict-
Boolean domains using finite-domain constraint propagahased learning. In general, it is desirable to find explanations
tion with heuristic conflict-based learning. In this work, we for conflicts across theories. It is also desirable to represent
describe a new algorithm that extends the conflict-baseghese explanations in a form that can be efficiently used for
unique-implication point learning in Boolean SAT solversconstraint propagation. We present an efficient method of an-
to hybrid Boolean-Integer domains in HDPLL. We de-3lyzing the combined implication graph of both sub-theories
scribe data-structures for efficient constraint propagation ontg find unique implication point§UIPs) [9]. We also present
the hybrid learned relations, similar to two-literal watch- 3 |azy implicationdata-structure for efficient constraint prop-
ing in Boolean SAT. We demonstrate that these new techgation on these UIPs across theories.
niques provide considerable performance benefits when The rest of this paper is organized as follows: First, we de-
compared with other combinations of decision theories. scribe some basic concepts of modern DPLL and the HDPLL
algorithm proposed by [7] in Section 2. We describe a sys-
1. Introduction tematic approach to conflict-based learning on the combined
implication graphand resolution graphof HDPLL in Sec-
tion 3. We then describe data-structures that allow us to learn
hybrid learned clausesn both the integer and Boolean do-

Checking thesatisfiability (SAT) of complex, quantifier-
free first-order logic formulas, is an important problem

in verifying register-transfer level(RTL) hardware de- o . . .
fying reg (RTL) grains in Section 4. Finally, we compare our approach with

signs. Though Boolean SAT solvers have demonstrate tth CDPs — CVC-Lite. 1CS. and UCLID f
impressive advances in the last decade, quantifier-free aritfi>™'¢ state-of-the-art S— -Lite, .andU or

metic is still expensive to solve in the Boolean domain [2]. >/ N RTL circuits in Section 5.
There have been severa! attempts to integrate dec_ision pre- Background

cedures for Boolean and integer domains intooanbined

decision procedui€DP) e.g.the stanford validity checker In this section, we briefly introduce some of the main con-

(SVC) [3], theintegrated canonizer and solv@iCS) [5], and cepts, relevant to this work. We begin with some definitions.

UCLID [13]. There has been some work on an orthogonal A finite-domain dv), is a complete mapping from a vari-

approach where the Boolean and integer domains are consi@blev to a finite set of integers. A Boolean variable has a do-

ered to be domains of different sizes and values. The resultingain of {0,1}, and a word variable of bit-widtv, has a in-

problem is solved by a specialized soleeg.CAMA [10], or teger valued domain of0,...,2% — 1}. A literal, is the ap-

by a general finite-domain solverg.|. PSAT [15]. All these pearance of a variable incdause A clauseis a disjunction of

methods have performance problems on RTL circuits. Boolean literals. Ahybrid clauseis a disjunction of Boolean
Recently, HDPLL [7], and DPLLY) [6] independently and word literals. Afinite-domain(FD) constraint is an in-

proposed a new approach by combining decision theories ugquality over constant coefficients of arbitrary sign, word

der a branch-and-bound DPLL-style [11] framework. Both(Boolean) variables; with a fixed domaird(x) ({0,1}) of

approaches cited the importance of constraint propagatioiie form:

and conflict-based learning to maintain efficiency. HDPLL Za. X =T a,nx el

usedfinite-domain constraint propagatio(FDCP) to inte- '

grate Boolean SAT and integer fourier-motzkin elimination A literal I;/—l; of a Boolean variablg denotes its value as

(FME) into a hybrid DPLL procedure. Heuristics for conflict- 1 or 0. A word-literal of a word-variable; is associated with

based learning were used to prune the combined search spaagangeb; as a pair); <bj > /- <bj > A positive literal in the

DPLL(7) combined the theory of Boolean logic with the the- pair, denotes thatj has rangd;, and a negative literal in the

1530-1591/05 $20.00 © 2005 IEEE

pair denotes that; has values im(v;)\bj, i.e., v; should not A set of nodesdut) in IG, covering all paths to the conflict

have any value in rangg. node gives a conjunct of value assignmefis(, that will
o o cause the conflict. The negation of this is a disjungtl;)
2.1. Efficient Implications thatmustbe true for the conflict to be avoided. This is added

to the problem as aonflict-avoidingor learned clauseThe

The DPLL algorithm [11] for Boolean SAT problems i L . :
© algorithm [11] for Boolean SAT problems is process of finding and using these learned clauses is called

based on case-splitting on variables @mblean constraint ; . . AT .
propagation(BCPr;. Givgen a set of assignments, BCP finds,Conﬂ'Ct'based learningA unique implication poin{UIP) [9]

implicationsor additional assignments, that must hold for the!> "’; CUt('jn!G that”'s igomlnatoig]or all pabr};l@ Eo;\he con- |
problem to be consistent. BCP is also used to determine wheﬂﬁl ,ban hls sma Fe_r ansany other non- cut. An example
the search has moved outside the solution spagaconflict wiil be shown in Figure .

BCP is the most frequently used procedure in any DPL? . . L
style algorithm. Therefore, a clause should be evaluated f 3. Fourier-Motzkin Elimination

an implied value, only when it is guaranteed that an implica- Fourier-motzkin elimination (FME) [4] is an efficient

tion will occur. This is the basic idea ¢dzy implicationslt method to check satisfiability of a set of integer inequal-
uses the data-structure called the-literal watching scheme jties. FME iteratively eliminates a variable from a set

and shown in Figure 1. On average, it yields significant im-f constraints withn variables, to find am — 1 dimen-
provement in performance [12, 16], on hard problems withsjonal projection of the constraint set. Tmega tesby

large clauses. Maslow et al., [14] uses fourier-motzkin with normaliza-
tion and rounding for testing the satisfiability of a set of in-
=3 v~ , teger constraints. This corresponds exactly with the Boolean
@E 0] 2 [Warch ppinters notion of resolution [8]Omegais used in HDPLL as the de-
S 1 cision procedure for the theory of integer arithmetic.
[r]7] jvs v, | v [Similar to the implication graph, we can construct a di-
Vag::i‘; ul:;"“] rected graph calledmsolutiongraphRG(C, E). It represents
- ﬁfv, . the causal relationship between resolution steps in FME. Each
Co M ‘ e nodec; € C represents a constraint. An edges E, exists be-
Watched Literal / tween two nodes;, andc, if ¢, was used to form the resol-
WT| Watch Pointers v [v, [vent constraint;. An example will be shown in Figure 4. We
)]) can analyze the resolution graph to find the set of constraints
Figure 1. Data-structures for Literal Watching that resolve to a conflict. This yields a powerful conflict-based

Each clause initially has two pointers pointing to two dis-learning technique, which is described in Section 3.2.
tinct unassigned literals. These pointers are kept on the vari-
able corresponding to these literals, and are callatthed 2.4. Hybrid DPLL Algorithm
pointers. The two watched pointers on a clause move in op-

posite directions and schedules implications using the follow-. We now describe the main elements of the HDPLL algo-
ing rules [12]: rithm proposed in [7], which is reproduced in Figure 2.

1. A watched pointermovesto the next unassigned procedure hdpll()
(unknown) literal when its literal evaluates false while (true) do

2. The pointer does not move when the literal evaluates to while (Decide() # Done) do
true, since the clause is satisfied., no further implica- while (FDdeduce() ==conflict)do
tions can be derived from it. blevel = analyze_fdcp() ;

if (blevel == 0)

3. When both pointers point to the same literal on a clause,
return UNSATISFIABLE;

then an implication is scheduled, since all other literals

. else
except the current literal afalse backtrack(blevel) :
. . . . end while
2.2. Conflict-based Learning from Implications end while
Given a sequence of value assignments in DPLL, we can if (FME() = conflict) then

blevel = analyze fme()
else

return SATISFIABLE
if (blevel == 0) then

construct a graph that represents the causal relationship be-
tween value assignments, called thelication graph The
implication graph is a directed grapls(N, E), whereN is

the set of nodes artélis the set of edges. A noaes N repre- return UNSATISFIABLE:
sents a value assignment to a variable. A directed edgE else

exists from nodesg, to ng, if ny is (part of) the value assign- backtrack(blevel) :
ment(s) thatimplies the value assignmentA conflictis rep- end while

resented by a unique node in t@. Figure 2. Hybrid DPLL algorithm.

Conflict

/

W.
5
Add ﬁﬂ; /® . <5, 6> %<0, 1>
' | Objective —-O—0O0—0—0—0—+0
GEQ ' ¥%<5,14> w<s5,10> "5<5,8> %<0,3> W<5,6> %<3, 4>
(hE(we>=w,) ! \
o] L0 ANE
® Add , , \ o
G " ! ’ Decision @ level
R 3 4 /" Control-Data)
1/0 pin ut T) .
(a) Heuristic cut (b) O Implication

Figure 3. Example for UIP Learning. (a) Circuit with Proposition b3 =1. (b) Implications for bz =1.

The procedur®ecide () makes decisions only on Boolean conflict-based learning. The graph is implicitly represented
variables. The procedueDdeduce () performs hybrid con- by the stack of assignments made so far, similar to modern
sistency checking using FDCP similar to BCP in DPLL. TheSAT solvers. The proceduemalyze_fdcp () in the HDPLL
set of assignments teDdeduce () can be literals appearing algorithm (Figure 2), performs conflict analysis by implicitly
purely in Boolean clauses, or in integer constraints, or domaitracing the implication graph to find the UIP as in standard
changes on word-level variablesnalyze_fdcp (), which Boolean conflict-based learnimgg.,[9].
is the conflict analysis procedure, does heuristic conflict- However, there are some complications introduced by
based learning based on incomplete analysis of the implic&DCP. Finite-domain constraints with word-level vari-
tion graph. If the Boolean decision procedure does not find ables can have multiple, monotonically decreasing range
conflict, the procedureMK) is called for a final consistency changes. Therefore, a varialgwith a range(l, m), can ap-
check on the data-path. FME) returns UNSAT, an analy- pear with a different rangéj, k), where, eitherj < | or
sis procedure callednalyze_fme () is called to find a set k < m, in the current implication graph. We refer to multi-
of conflict causes. This corresponds to a subset of assigpie appearances of word-variables in the implication graph as
ments on a fixed cut in the implication graph [7]. This sub-variable incarnationsThe procedure keeps track of these in-
set is found by iteratively solving the data-path relation uscarnations efficiently by keeping a stack of evolviragiable
ing FME. If the learned clause conflicts with the unique im-statesof the variable. The variable state contains the imply-
plications, the problem is UNSAT. If not, HDPLL backtracks ing constraint for each incarnation, the index of the decision
non-chronologically and continues search. at which it was implied (odecision level and the incarna-

As we have noted, the conflict analysis in earlier worktions of the variables in the implying constraint.
was based on heuristics that did incomplete analysis of the | et us take the example shown in Figure 3(a) with the
implication graph. They used conflict-avoiding clauses withproposition, {3 = 1}. The proposition is UNSAT. The im-
only Boolean literals, by setting a fixed cut in the implica- plication graph for the example is shown in the Figure 3(b).
tion graph, since they did not have a method for efficient UIRne find by implication of the proposition, thé = 1 and
clause learning across domains. b, = 1, which produces conflicting ranges = (5,6) and

In this work, we concentrate on improving the proce-ws = (3,4). We can see that a value assignment in the Boolean
duresanalyze_fdcp () andanalyze_fme () to enable learn- |ogic resulted in a conflict on a data-path variable. Now, if we
ing true UIP clauses [9] by a complete analysis of the impli-trace through the implication graph from the conflict site, we
cation and resolution graphs. We shall show that this is morind that the UIP ig—bg). Since this conflicts with the propo-
efficient than incomplete analysis. Next, we describe conflictsition, we deduce that it is UNSAT. The method in [7] would

based learning across theories in HDPLL. find the clauseb; vV —by), and then find the clauses), be-
) .) fore deducing that the proposition is UNSAT.
3. Hybrid Conflict-Based Learning If no conflict is detected during regular Boolean decision

In this section, we describe the details of the new conflictMaking and FDCP, we must do a final consistency check us-

based learning in the combined Boolean and integer domaff9 FME as shown in Figure 2. If FME returns a conflict, we
with FDCP and FME. We describe this as modifications tg/S€ an algorithm that extracts information from FME to find
the proceduresnalyze fdcp () andanalyze_fme ()inFig- & conflict-avoiding learned clause. This is described next.

ure 2. The fundamental idea behind the new learning proce- i L
dure is that the implication graph from FDCP and the resos-2- Conflict Based learning in FME
lution graph from FME are combined into a single graph for

! - In this section, we describe a method for tracing the res-
conflict analysis.

olution graph from FME for conflict-based learning in HD-
. N PLL. Recall that FME is called when the Boolean theory and
3.1. Conflict Learning in HDPLL EDCP are consistent.

We use FDCP to imply values both in the data-path and We can unite the implication graph from FDCP and the
the control from any decision in the Boolean control. This en+esolution graph of FME (see Section 2.3) by adding edges
ables us to construct an implication graph that can be used ftwetween the shared variables of the integer and Boolean theo-

ries (e.g.Boolean outputs of comparatce). This results in Therefore, some form of lazy implications becomes impera-
a combinedmplication-resolution graph HG= (IGURGU tive. The authors of HDPLL [7] proposed an efficient method
{GLUE}). {GLUE} is a set of edges added to conniéeiand for determining when an implication is guaranteed to occur
RG. A directed edgeyl € GLUE exists between a Boolean on an arithmetic inequality. However, determining the actual
variable assignmery in IG and constraing; in RG, if by en- implied value involves applying complex rules on each vari-
forcesc; to betrue, and vice-versa. Intuitively, the set of con- able in the inequality. This can be very expensive on large in-
straints and assignments on an arbitrary cuti@® that cov- equalities.
ers all paths to the conflict, are the causes for the conflict. To our knowledge, there has been no published work on
This motivates the idea that we can extract learned informaefficient two-literal watching for word-level arithmetic con-
tion from UNSAT calls to FME in HDPLL, by analysis of the straints, with the exception of CAMA [10]. CAMAs ap-
unified implication-resolution graph. proach relies on enumeration of all values in a word-variable’s
Consider the example in Figure 3(a). Assume that we ddomain. For example, an add operatianb+c, wherea, b,
not do any constraint propagation in the data-path, whiclandc aren bits each, leads t®(3.(2" — 1)?) multi-valued
gives us a partial implication graph with assignmebis=1, clauses Other arithmetic operators require in the order of
and b, = 1, shown in the top half of Figure 4. The data- O(2"—1) clauses. Our method uses an implicit representa-
path problem is passed to FME, which performs a series dfon of value sets, which makes it very efficient in practice.
variable elimination steps. This is represented as a resolution))
graph as shown in the lower half of Figure 4. The problenft-1. Literal Watching
given to the FME procedure is the set of constraints marked A conflict-avoiding constraint on word-level variables

1,2,3,4 in the figure. The edges from andb; to constraints s a disjunct of word-literals with associated ran§g®(V;).

2 and 1 respectively are the additional edd€.UE}, added Thjs can be represented either as an FD constraint or as a
to unite the two graphs. In the example, FME eliminates varihyprid clause (defined in Section 2). A word-literal in a hy-
ablew; from the constraints 3 and 4 to get constraint 5. Wheryid clause can evaluate taue, false or unknown. Thecon-
variablew, is eliminated by substitutings =Wws +2,in con- tainmentfunction, containgb, b,), of a rangeb; on another
straint 1, we get a conflict since the resolvent is the emptyangeh, is a three-valued function defined as:

constraint—2 > 0.

e false biNby =0
= .
S~ — O _/,,’ First UIP Cut Implication Contaln-‘.fgbl, bz) = true bl g b2
- Graph unknown (b Nby # 0) A (by Z by)

** Now it is quite straight-forward to see that we can use con-

wy=3 tainment checks on the ranges of word-literals for lazy impli-
. 21 [W=+ 3]’\. | Conflict cations. Note that the basic idea |s.S|'m|.Iar to thgt in Boolean
Rei‘;"r‘;"‘l’l" ! ! SAT [12]. However, we use a pessimistic containment check
' Bl 1 s on word-literals as compared to an exact check in CAMA.
W 5] FD constraints are more expressive than hybrid clauses,
‘2 ! ! but evaluating FD constraints for new implications is very
I Bliminate w, 31~ 141 Eliminate w, u; expensive as compared to hybrid clauses. For example, as-
sume that a new value change has occurredy,on the con-
Figure 4. FME Resolution Graph on Figure 3(a). straint 5" ya; - vi > rhs. We have to evaluate the relation,

aj-vj >rhs— (3 pa-vi|i # j) for all variablesv;, excluding
_ The above method replaces the proceduegyze fme () v, This means that the number of evaluations of the FD con-
in Figure 2. We trace through the resolution graph from th&traint per implication can depend both on the current ranges
conflict resolvent, to find the smallest set of assignments thafng number of variables. On the other hand, any implication
are responsible for the generation of that conflict resolvengs hyprid-clauses can be done with, at worst; 1 contain-
i.e.,a cutinHG. There may be other constraints on this cUtment checks. This motivates learningorid clauses
(constraints with no incoming edges) that contribute to the An example of two-literal watching on hybrid clauses
conflict. These constraints enforce the functionality of datajs shown in Figure 5. Assume that is a 3-bit word-
path primitives. We do not need to add these constraints t@ve| variable with initial domain(0,7), and vi,V2,v3
the set of conflict causes, since these constraints always hajg: Boolean variables. Also, assume that the set of
to betrue for the proposition to bérue. If we trace through yariaple assignments, {va,v1,vo,vs} — {(3,4),1,0,0}
the resolution graph and continue the trace in the partial imeayses a conflict. The conflict-avoiding hybrid-clause is
plication graph, we find the same UIPts). (V1 V V2V V3V —v4(3,4)). It is simpler to check inclusion
. than exclusion of ranges for the containment check. There-
4. Hybrid Learned Clauses fore negative literals are split into a disjunct of word-literals
A conflict-based learning procedure can learn clauses afe., -4 (3,4) = v4(0,2) V4 (5,7). The final learned clause,
arbitrary length from an analysis of the implication graph.shown in Figure 5, i§—v1 VvV vo V' v3Vv4(0,2) Vva(5,7)).

yh p wi pointer move _ —
| il N i Fail -=--===-=--mmmmmmm oo 1=A=1
I, -0-0--@--—--@------L1_]
Tout 5 *-0-0--0 - 1
[=-1|[=-1{[--1][0,2] | [5,7] [=-1|[--1{[-,-1{[0,2] | [5,7] bl
s, =1@: B 102 - Do
1 k=] 1 L d i i
Implication @ v,=[041@1 %c—.: 10" ® o P
. 1 1
2 10° H b
! ' W } o .
[==1|[=-1{[-~1][0,2] | [5,7] <‘;| [=-1|[==1{[=~1][0,2] | [5,7] 107 ° i i
v |V, ||y |Vv vl v, [v, | v, ¥ - b
s s sy -0e2 il 2| Ve Y 1072 5 i i
v,=0@2 3 Pt
Yi | False Literal 10 8 L, o oot
. 10 10 10 10 10 10 ToutFail
Vi | True Literal hdpll
v,=[02]@2 Plinaw
=19 V. o . . . L.
! |+ | Unknown Literal Figure 6. Hybrid UIP learning v/s Heuristic [7]

Figure 5. Hybrid clause two-literal watt?hlng _ 1. CVC-Lite [1] does not have a complete integer deci-
Figure 5 also shows an example of two-literal watching on sjon procedure. We used a real relaxation of the inte-

a hybrid learned clause. Assume that the value changes, ger benchmarks only for CVC-Lite. Therefore, the re-
1 andvs = (0,4) occurred at decision level 1. The litera¥; sults on SAT cases are reported as failures for CVC-Lite.
becomedalse The word-literalv4 (5,7) becomesalsesince We used CVC-Lite with the options+sat fast

containg(0,4), (5,7)) is false The pointer on each watched 2. Integrated Canonizer and SoléES) [5] combined lin-
literal moves to the right and left respectively. Next, assume ear real arithmetic, bit-vectors, uninterpreted functions,
that the value changes = 0 andvs = 0 occurred at decision and other theories. We used the default options for ICS.
level 2. The pointer on the watched litera, moves to the 3. UCLID [13] cannot handle general arithmetic. However,
right twice, sincevs is also false. The two pointers meet at the we ran it on a limited set of benchmarks with counter
literal v4 (0,2), implying the assignmenty = (0,2). arithmetic. We used the optionssat 0 chaff

5. Experimental Analysis All the comparison CDPS timed-out on most of the properties
:))) in the old-benchmark set. Therefore, we created new bench-

In this section, we discuss some experiments on the hybrigyarks for this experiment. Our benchmarks are 35 BMC mod-

DPLL solver. The results of the comparison experiments args of safety properties on the RTL circuits, shown in Table 1.

shown in the scatter plots in Figures 6 and 7. Xla@dy axis The number of properties per circuit is shown in Column 3.
represent log, run-times of each tool in CPU seconds. PointSThe maximum bound is shown in Column 4.

above (below) the diagonal correspond to examples where the o
tool on thex (y) axis is faster than the other. Each division Table 1. Test-Case characteristics

above (below) the diagonal represents an order of magnitude |_CKt__| Description Of_cl'g’“'t # Plr‘)ps MaX'ZBOU”d
speed-up (slow-down) for thetool. Points on the right (top) ser | compares serial data 0
S oL . BCD | BCD decoder 1 20
grid line markedTout , indicates thex (y) system timed-out : .
IR . MM | min-max computation 1 20
at 1200 CPU secondkail , indicates the (y) system failed Met | digital sensor interfacé 9 30

with a system errorsgg-fault , eto.

As we can see from Figures 7(a), 7(b) and 7(c), the hy-
brid UIP learning techniques in HDPlgkL,, outperforms ICS,

In this experiment, we compare the new techniques witland UCLID on almost all cases, sometimes by several orders
the heuristic conflict analysis in [7] on the same benchmarkef magnitude. CVC-Lite performed best among the compared
in that paper. The results of this experiment are shown in th€DPS (Figure 7(a)), with an average of 70.12 CPU seconds
Figure 6. HDPLIlgq is HDPLL with the heuristic conflict- per property and timed-out on only two cases. However, this
based learning in [7]. HDPLew is HDPLL with the new is due to the real relaxation, which leads to false positives.
UIP-based learning. Figure 6 shows that hybrid UIP learn- On comparing the CDP’s with a complete integer deci-
ing is faster than the method in [7] by an order of magni-sion procedure, we see that UCLID timed-out on 3 test-cases
tude on most cases. It completes on all cases where the oiid took an average of 199.5 CPU seconds per property (Fig-
method aborts, in under 100 CPU seconds. Clearly, UIP learwe 7(b)). ICS timed-out on 16 out of 35 test-cases and took
ing in the combined implication-resolution graph is an effi-an average of 535.99 CPU seconds per property (Figure 7(c)).
cient technique to prune the search space in HDPLL. HDPLL finished all test-cases in less than 15 seconds.

5.1. Comparison with Heuristic Learning

5.2. Comparison with state-of-the-art CDPs 5.3. Asymptotic Run-time comparisons

We considered several tools that combine multiple deci- We ran a controlled experiment to compare the asymp-
sion theories including Boolean logic and some form of intetotic run-time growth of HPDLL versus the other CDPs. We
ger linear arithmetic for comparison with HDPLL: selected a safety property on the largest circuit Met, and

Fail F--—--- ——————ee— e —————] Fail F--———m——mmmmmmm o] Fail F-————m——mmmmmmm]

Tout mf——=—==——= ===~ om e Tout mf——==—————mm - ege--] TOUt mf—----—--—- - - -emssen—

° °
102 - 102 - e e 102 .
1 1 * o 1 °

610 - : 910 - ...'.go. 810 - 0:.-
=100 - 2% o {31005 ‘e s 1 =10° . ot
(@] 1 s® ® S] ° 1 8%

107" o 107 . 107" 4

102 - 102 - 102

103 T T 1073 T T 107 T T

103 102 107 109 108 102 107 10° 108 102 107 10°
hdpll,aw hdpll,qw hdpll,qw

(a) HDPLLpewV/s CVC-Lite

Figure 7. Comparison of HDPLL

(b) HDPLLpewV/s UCLID
new With CVC-Lite, ICS, and UCLID.

(c) HDPLLpewV/s ICS

compared the run-time growth as the bound is increased faonflict-based learning is used to prune the search space. In
bounded model checking. The comparisons are accurate sinftgure, we shall extend the solver to other theories to handle

the complexity of each instance increases linearly.

arbitrary RTL circuits.

Log10(Run-Time)

6 8 10 12 14 16 18 20 22 24 26 28 30
Bound (k)

Figure 8. Asymptotic run-time comparisons.

(6]
(7]

The results of this experiment is shown in Figure 8. The
x-axis shows the length of the bound and the y-axis shows
the run-time in CPU seconds. As we can see the asymptotiés]
run-time growth of HDPLL is significantly lower than that of
all the other tools. CVC-Lite performed next best with a con- 9]
trolled growth similar to HDPLL. It is interesting that the in-

teger decision procedures in HDPLL can compare well WiﬂhO] C. Liu. A. Kuehimann. and M. Moskewicz. CAMA: a multi-
a real relaxation of the problem. UCLID and ICS showed a ’ ' ,

sharp increase in run-time after boune21 andk =9 respec-

[11]

tively. The results clearly show that the asymptotic run-time
of HDPLL is considerably better than these tools.

6. Conclusions

We presented an efficient learning scheme for a DPLL

(12]

13]

based constraint solver for RTL circuits. We also described
compact data-structures for representing these learned refa4] w. Kelly, V. Maslow, et. al The Omega Calculator and Li-
tions that enable efficient constraint propagation. We demon-
strated experimentally that these techniques make HDPL[15] z. Zeng, P. Kalla, and M. Ciesielski. LPSAT: A Unified Ap-
more efficient than current state-of-the-art CDPs. A DPLL-

style combination of decision theories seems to out-perforrfiL6]
the other CDPs when efficient constraint propagation and

References
hdpgr\\,eg e [1] A. Stump, C. W. Barrett, and D. L. Dill. CVC: A Cooperating
ICS --%-- Validity Checker. InCAV, pp. 500-504. July 2002.
------------------ e - DGO B [2] R. Brinkmann and R. Dreschler. RTL-Datapath Verification
% Be-BeA using Integer Linear Programming . LS| Designpp. 741—
g g 746, 2001.
%' B-g-a [3] C.Barrett, D. L. Dill, and J. Levitt. Validity Checking for Com-
E_..E-y‘"ﬂ‘"'E. __x.-x--*'* binations of Theories with Equality. IRMCAD, pp. 187-201,
1 VRS 1996.
e,,x‘fx" [4] G. Dantzig and B. Eaves. Fourier-motzkin elimination and its
Lo dual. Journal of Combinatorial TheoryA(14):288-297, 1973.
11T [5] J.-C. Filliagtre, S. Owre, H. Ruel3, and N. Shankar ICS: Inte-

grated Canonization and Solving. GAV, pp. 246-249, 2001.
H. Ganzinger, G. Hagen, R. Nieuwenhuis, A. Oliveras and C.
Tinelli. DPLL(T): Fast Decision Procedures GAV, July 2004.

G. Parthasarathy, M.K. lyer, K.-T. Cheng, and Li.C. Wang. An
Efficient Finite-domain Constraint Solver for RTL Circuits. In
41st DAC CA, June 2004.

J.N. Hooker. Logical Inference and Polyhedral Projection. In
Computer Scence Logic Conferenpp. 184—200. 1992.

J.P Marques-Silva and K.A. Sakallah. GRASP - A Search Al-
gorithm for Propositional SatisfiabilityfEEE Trans. on Com-
puters 48(5):506-521, May 1999.

valued satisfiablity solver. ICCAD, pp. 326 — 333, 2003.

M. Davis, G. Logemann, and D. Loveland. A Machine Pro-
gram for Theorem ProvindComm. of the ACMb(7):394—-297,
1962.

M. Moskiewicz, C. Madiganet. al Engineering an Efficient
SAT Solver. In38th DAG 2001.

S. Seshia, S. Lahiri, and R. Bryant. Hybrid Sat-based Decision
Procedure for Separation Logic with Uninterpreted Functions.
In DAC, 425-430, 2003.

brary v1.1.0. Tech. report, Dept. of CS, UMCP, Nov. 1996.
proach to RTL Satisfiability. IDATE, pp. 398—402, 2001.

H. Zhang and M. Stickel. An Efficient Algorithm for Unit
Propagation Innt. Symp. on Artificial Intel. and Math1996.

	Main Page
	DATE'05
	Front Matter
	Table of Contents
	Author Index

