
Efficient Conflict-Based Learning in an RTL Circuit Constraint Solver

M.K. Iyer G. Parthasarathy K.-T. Cheng
Dept of Electrical and Computer Engineering

University of California – Santa Barbara
Santa Barbara, CA

Abstract

We present new techniques for improving search in a hy-
brid Davis-Putnam-Logemann-Loveland based constraint
solver for RTL circuits (HDPLL). In earlier work on HD-
PLL [7], the authors combined solvers for integer and
Boolean domains using finite-domain constraint propaga-
tion with heuristic conflict-based learning. In this work, we
describe a new algorithm that extends the conflict-based
unique-implication point learning in Boolean SAT solvers
to hybrid Boolean-Integer domains in HDPLL. We de-
scribe data-structures for efficient constraint propagation on
the hybrid learned relations, similar to two-literal watch-
ing in Boolean SAT. We demonstrate that these new tech-
niques provide considerable performance benefits when
compared with other combinations of decision theories.

1. Introduction
Checking thesatisfiability (SAT) of complex, quantifier-

free first-order logic formulas, is an important problem
in verifying register-transfer level(RTL) hardware de-
signs. Though Boolean SAT solvers have demonstrated
impressive advances in the last decade, quantifier-free arith-
metic is still expensive to solve in the Boolean domain [2].

There have been several attempts to integrate decision pro-
cedures for Boolean and integer domains into acombined
decision procedure(CDP) e.g.,the stanford validity checker
(SVC) [3], theintegrated canonizer and solver(ICS) [5], and
UCLID [13]. There has been some work on an orthogonal
approach where the Boolean and integer domains are consid-
ered to be domains of different sizes and values. The resulting
problem is solved by a specialized solvere.g.,CAMA [10], or
by a general finite-domain solvere.g.,LPSAT [15]. All these
methods have performance problems on RTL circuits.

Recently, HDPLL [7], and DPLL(T) [6] independently
proposed a new approach by combining decision theories un-
der a branch-and-bound DPLL-style [11] framework. Both
approaches cited the importance of constraint propagation
and conflict-based learning to maintain efficiency. HDPLL
usedfinite-domain constraint propagation(FDCP) to inte-
grate Boolean SAT and integer fourier-motzkin elimination
(FME) into a hybrid DPLL procedure. Heuristics for conflict-
based learning were used to prune the combined search space.
DPLL(T) combined the theory of Boolean logic with the the-

ory of uninterpreted functions with equality(EUF). There is
no mechanism for learning across theories in DPLL(T), and
it can handle only comparisons with equality, which makes it
currently unsuitable for RTL satisfiability.

In this paper, we address an important problem in any
DPLL-based combination of decision theories – conflict-
based learning. In general, it is desirable to find explanations
for conflicts across theories. It is also desirable to represent
these explanations in a form that can be efficiently used for
constraint propagation. We present an efficient method of an-
alyzing the combined implication graph of both sub-theories
to find unique implication points(UIPs) [9]. We also present
a lazy implicationdata-structure for efficient constraint prop-
agation on these UIPs across theories.

The rest of this paper is organized as follows: First, we de-
scribe some basic concepts of modern DPLL and the HDPLL
algorithm proposed by [7] in Section 2. We describe a sys-
tematic approach to conflict-based learning on the combined
implication graphand resolution graphof HDPLL in Sec-
tion 3. We then describe data-structures that allow us to learn
hybrid learned clauseson both the integer and Boolean do-
mains in Section 4. Finally, we compare our approach with
some state-of-the-art CDPs – CVC-Lite, ICS, and UCLID for
SAT on RTL circuits in Section 5.

2. Background
In this section, we briefly introduce some of the main con-

cepts, relevant to this work. We begin with some definitions.
A finite-domain d(v), is a complete mapping from a vari-

ablev to a finite set of integers. A Boolean variable has a do-
main of{0,1}, and a word variable of bit-widthw, has a in-
teger valued domain of{0, . . . ,2w− 1}. A literal, is the ap-
pearance of a variable in aclause. A clauseis a disjunction of
Boolean literals. Ahybrid clauseis a disjunction of Boolean
and word literals. Afinite-domain(FD) constraint is an in-
equality over constant coefficientsai of arbitrary sign, word
(Boolean) variablesxi with a fixed domaind(xi) ({0,1}) of
the form:

∑
i

ai ·xi ≥ r, ai , r,xi ∈ I

A literal l i/¬l i of a Boolean variablevi denotes its value as
1 or 0. A word-literal of a word-variablev j is associated with
a rangeb j as a pair,l j

〈
b j

〉
/¬l j

〈
b j

〉
. A positive literal in the

pair, denotes thatv j has rangeb j , and a negative literal in the

1530-1591/05 $20.00 © 2005 IEEE

pair denotes thatv j has values ind(v j)\b j , i.e., vj should not
have any value in rangeb j .

2.1. Efficient Implications

The DPLL algorithm [11] for Boolean SAT problems is
based on case-splitting on variables andBoolean constraint
propagation(BCP). Given a set of assignments, BCP finds
implicationsor additional assignments, that must hold for the
problem to be consistent. BCP is also used to determine when
the search has moved outside the solution spacei.e.,aconflict.

BCP is the most frequently used procedure in any DPLL
style algorithm. Therefore, a clause should be evaluated for
an implied value, only when it is guaranteed that an implica-
tion will occur. This is the basic idea oflazy implications. It
uses the data-structure called thetwo-literal watching scheme
and shown in Figure 1. On average, it yields significant im-
provement in performance [12, 16], on hard problems with
large clauses.

Variable Data
Structure

Watch Pointers
Watched Literal

Watch pointers

Clauses

T T

5v
H H

T T

1v
H H

3v 5v1v

5v 2v 4v 1v

6v 5v1v

7v1v 5v
iv

H/T

Figure 1. Data-structures for Literal Watching

Each clause initially has two pointers pointing to two dis-
tinct unassigned literals. These pointers are kept on the vari-
able corresponding to these literals, and are calledwatched
pointers. The two watched pointers on a clause move in op-
posite directions and schedules implications using the follow-
ing rules [12]:

1. A watched pointer moves to the next unassigned
(unknown) literal when its literal evaluates tofalse.

2. The pointer does not move when the literal evaluates to
true, since the clause is satisfiedi.e.,no further implica-
tions can be derived from it.

3. When both pointers point to the same literal on a clause,
then an implication is scheduled, since all other literals
except the current literal arefalse.

2.2. Conflict-based Learning from Implications

Given a sequence of value assignments in DPLL, we can
construct a graph that represents the causal relationship be-
tween value assignments, called theimplication graph. The
implication graph is a directed graphIG(N,E), whereN is
the set of nodes andE is the set of edges. A noden∈N repre-
sents a value assignment to a variable. A directed edgee∈ E
exists from nodesna to nc, if na is (part of) the value assign-
ment(s) that implies the value assignmentnc. A conflictis rep-
resented by a unique node in theIG.

A set of nodes (cut) in IG, covering all paths to the conflict
node gives a conjunct of value assignments(

V
i l i), that will

cause the conflict. The negation of this is a disjunct (
W

i ¬l i)
thatmustbe true for the conflict to be avoided. This is added
to the problem as aconflict-avoidingor learned clause. The
process of finding and using these learned clauses is called
conflict-based learning. A unique implication point(UIP) [9]
is a cut inIG that is a dominator for all paths inIG to the con-
flict, and is smaller than any other non-UIP cut. An example
will be shown in Figure 3.

2.3. Fourier-Motzkin Elimination

Fourier-motzkin elimination (FME) [4] is an efficient
method to check satisfiability of a set of integer inequal-
ities. FME iteratively eliminates a variable from a set
of constraints withn variables, to find ann− 1 dimen-
sional projection of the constraint set. TheOmega testby
Maslow et al., [14] uses fourier-motzkin with normaliza-
tion and rounding for testing the satisfiability of a set of in-
teger constraints. This corresponds exactly with the Boolean
notion of resolution [8].Omegais used in HDPLL as the de-
cision procedure for the theory of integer arithmetic.

Similar to the implication graph, we can construct a di-
rected graph called aresolutiongraphRG(C,E). It represents
the causal relationship between resolution steps in FME. Each
nodeci ∈C represents a constraint. An edgeej ∈E, exists be-
tween two nodes,ck andcl , if ck was used to form the resol-
vent constraintcl . An example will be shown in Figure 4. We
can analyze the resolution graph to find the set of constraints
that resolve to a conflict. This yields a powerful conflict-based
learning technique, which is described in Section 3.2.

2.4. Hybrid DPLL Algorithm

We now describe the main elements of the HDPLL algo-
rithm proposed in [7], which is reproduced in Figure 2.

procedure hdpll()

while (true) do
while (Decide() 6= Done) do

while (FDdeduce() == conflict) do
blevel = analyze_fdcp() ;
if (blevel == 0)

return UNSATISFIABLE;
else

backtrack(blevel) ;
end while

end while
if (FME() = conflict) then

blevel = analyze_fme()

else
return SATISFIABLE

if (blevel == 0) then
return UNSATISFIABLE;

else
backtrack(blevel) ;

end while
Figure 2. Hybrid DPLL algorithm.

I/O pin

Objective3
Add

Add

GEQ

Control−Data
Cut

5 w
4

w
3 w5

w =[0,7]1

b1

w =[0,7]2

b3

1

(w >= w)b2 45

0

1

(a)
3

3

3

3

3
4

4

Decision @ level
Implication

Conflict
UIP cut

Heuristic cut

w
3<3>

b
3

= 1@0

w
5<5,14> w

4<5,10>

w
2<0,5>

w
5<5,8>

w
4<5,8>

w
2<0,3>

w
5<5,6>

w
4<5,6> w

5<3,4>

w
2<0,1>

b
2

= 1

b
1

= 1

w
4<5,14>

w
5<5,10>

(b)

Figure 3. Example for UIP Learning. (a) Circuit with Proposition b3 = 1. (b) Implications for b3 = 1.

The procedureDecide () makes decisions only on Boolean
variables. The procedureFDdeduce () performs hybrid con-
sistency checking using FDCP similar to BCP in DPLL. The
set of assignments toFDdeduce () can be literals appearing
purely in Boolean clauses, or in integer constraints, or domain
changes on word-level variables.analyze_fdcp (), which
is the conflict analysis procedure, does heuristic conflict-
based learning based on incomplete analysis of the implica-
tion graph. If the Boolean decision procedure does not find a
conflict, the procedureFME() is called for a final consistency
check on the data-path. IfFME() returns UNSAT, an analy-
sis procedure calledanalyze_fme () is called to find a set
of conflict causes. This corresponds to a subset of assign-
ments on a fixed cut in the implication graph [7]. This sub-
set is found by iteratively solving the data-path relation us-
ing FME. If the learned clause conflicts with the unique im-
plications, the problem is UNSAT. If not, HDPLL backtracks
non-chronologically and continues search.

As we have noted, the conflict analysis in earlier work
was based on heuristics that did incomplete analysis of the
implication graph. They used conflict-avoiding clauses with
only Boolean literals, by setting a fixed cut in the implica-
tion graph, since they did not have a method for efficient UIP
clause learning across domains.

In this work, we concentrate on improving the proce-
duresanalyze_fdcp () andanalyze_fme () to enable learn-
ing true UIP clauses [9] by a complete analysis of the impli-
cation and resolution graphs. We shall show that this is more
efficient than incomplete analysis. Next, we describe conflict-
based learning across theories in HDPLL.

3. Hybrid Conflict-Based Learning

In this section, we describe the details of the new conflict-
based learning in the combined Boolean and integer domain
with FDCP and FME. We describe this as modifications to
the proceduresanalyze_fdcp () andanalyze_fme () in Fig-
ure 2. The fundamental idea behind the new learning proce-
dure is that the implication graph from FDCP and the reso-
lution graph from FME are combined into a single graph for
conflict analysis.

3.1. Conflict Learning in HDPLL

We use FDCP to imply values both in the data-path and
the control from any decision in the Boolean control. This en-
ables us to construct an implication graph that can be used for

conflict-based learning. The graph is implicitly represented
by the stack of assignments made so far, similar to modern
SAT solvers. The procedureanalyze_fdcp () in the HDPLL
algorithm (Figure 2), performs conflict analysis by implicitly
tracing the implication graph to find the UIP as in standard
Boolean conflict-based learninge.g.,[9].

However, there are some complications introduced by
FDCP. Finite-domain constraints with word-level vari-
ables can have multiple, monotonically decreasing range
changes. Therefore, a variablevi , with a range〈l ,m〉, can ap-
pear with a different range〈 j,k〉, where, either j < l or
k < m, in the current implication graph. We refer to multi-
ple appearances of word-variables in the implication graph as
variable incarnations. The procedure keeps track of these in-
carnations efficiently by keeping a stack of evolvingvariable
statesof the variable. The variable state contains the imply-
ing constraint for each incarnation, the index of the decision
at which it was implied (ordecision level), and the incarna-
tions of the variables in the implying constraint.

Let us take the example shown in Figure 3(a) with the
proposition, {b3 = 1}. The proposition is UNSAT. The im-
plication graph for the example is shown in the Figure 3(b).
We find by implication of the proposition, thatb1 = 1 and
b2 = 1, which produces conflicting rangesw5 = 〈5,6〉 and
w5 = 〈3,4〉. We can see that a value assignment in the Boolean
logic resulted in a conflict on a data-path variable. Now, if we
trace through the implication graph from the conflict site, we
find that the UIP is(¬b3). Since this conflicts with the propo-
sition, we deduce that it is UNSAT. The method in [7] would
find the clause (¬b1∨¬b2), and then find the clause (¬b3), be-
fore deducing that the proposition is UNSAT.

If no conflict is detected during regular Boolean decision
making and FDCP, we must do a final consistency check us-
ing FME as shown in Figure 2. If FME returns a conflict, we
use an algorithm that extracts information from FME to find
a conflict-avoiding learned clause. This is described next.

3.2. Conflict Based learning in FME

In this section, we describe a method for tracing the res-
olution graph from FME for conflict-based learning in HD-
PLL. Recall that FME is called when the Boolean theory and
FDCP are consistent.

We can unite the implication graph from FDCP and the
resolution graph of FME (see Section 2.3) by adding edges
between the shared variables of the integer and Boolean theo-

ries (e.g.,Boolean outputs of comparatorsetc). This results in
a combinedimplication-resolution graph HG= (IG∪RG∪
{GLUE}). {GLUE} is a set of edges added to connectIG and
RG. A directed edgegl ∈ GLUE exists between a Boolean
variable assignmentbi in IG and constraintc j in RG, if bi en-
forcesc j to betrue, and vice-versa. Intuitively, the set of con-
straints and assignments on an arbitrary cut inHG that cov-
ers all paths to the conflict, are the causes for the conflict.
This motivates the idea that we can extract learned informa-
tion from UNSAT calls to FME in HDPLL, by analysis of the
unified implication-resolution graph.

Consider the example in Figure 3(a). Assume that we do
not do any constraint propagation in the data-path, which
gives us a partial implication graph with assignments,b1 = 1,
and b2 = 1, shown in the top half of Figure 4. The data-
path problem is passed to FME, which performs a series of
variable elimination steps. This is represented as a resolution
graph as shown in the lower half of Figure 4. The problem
given to the FME procedure is the set of constraints marked
1,2,3,4 in the figure. The edges fromb1 andb2 to constraints
2 and 1 respectively are the additional edges,{GLUE}, added
to unite the two graphs. In the example, FME eliminates vari-
ablew2 from the constraints 3 and 4 to get constraint 5. When
variablew4 is eliminated by substitutingw4 = w5 +2, in con-
straint 1, we get a conflict since the resolvent is the empty
constraint−2≥ 0.

Resolution
Graph

First UIP Cut Implication
Graph

[3]

[2]

[5]

[1]

[4] [3] − [4]

w = 33

b = 11
b = 12

b = 1 @ 03

w = w + 325

w − w >= 05 4

−2 >= 0

Conflict

w = w + 524

w − w = −25 4

4Eliminate w ,w52Eliminate w

Figure 4. FME Resolution Graph on Figure 3(a).

The above method replaces the procedureanalyze_fme ()
in Figure 2. We trace through the resolution graph from the
conflict resolvent, to find the smallest set of assignments that
are responsible for the generation of that conflict resolvent
i.e., a cut inHG. There may be other constraints on this cut
(constraints with no incoming edges) that contribute to the
conflict. These constraints enforce the functionality of data-
path primitives. We do not need to add these constraints to
the set of conflict causes, since these constraints always have
to betrue for the proposition to betrue. If we trace through
the resolution graph and continue the trace in the partial im-
plication graph, we find the same UIP, (¬b3).

4. Hybrid Learned Clauses
A conflict-based learning procedure can learn clauses of

arbitrary length from an analysis of the implication graph.

Therefore, some form of lazy implications becomes impera-
tive. The authors of HDPLL [7] proposed an efficient method
for determining when an implication is guaranteed to occur
on an arithmetic inequality. However, determining the actual
implied value involves applying complex rules on each vari-
able in the inequality. This can be very expensive on large in-
equalities.

To our knowledge, there has been no published work on
efficient two-literal watching for word-level arithmetic con-
straints, with the exception of CAMA [10]. CAMA’s ap-
proach relies on enumeration of all values in a word-variable’s
domain. For example, an add operation,a=b+c , wherea, b,
and c aren bits each, leads toO(3.(2n− 1)2) multi-valued
clauses Other arithmetic operators require in the order of
O(2n−1) clauses. Our method uses an implicit representa-
tion of value sets, which makes it very efficient in practice.

4.1. Literal Watching

A conflict-avoiding constraint on word-level variablesvi ,
is a disjunct of word-literals with associated ranges

W
i b(vi).

This can be represented either as an FD constraint or as a
hybrid clause (defined in Section 2). A word-literal in a hy-
brid clause can evaluate totrue, falseor unknown. Thecon-
tainmentfunction,contains(b1,b2), of a rangeb1 on another
rangeb2 is a three-valued function defined as:

contains(b1,b2) =


false b1∩b2 = /0
true b1 ⊆ b2

unknown (b1∩b2 6= /0)∧ (b1 6⊆ b2)

Now it is quite straight-forward to see that we can use con-
tainment checks on the ranges of word-literals for lazy impli-
cations. Note that the basic idea is similar to that in Boolean
SAT [12]. However, we use a pessimistic containment check
on word-literals as compared to an exact check in CAMA.

FD constraints are more expressive than hybrid clauses,
but evaluating FD constraints for new implications is very
expensive as compared to hybrid clauses. For example, as-
sume that a new value change has occurred onv0 in the con-
straint ∑n

i=0ai · vi ≥ rhs. We have to evaluate the relation,
a j ·v j ≥ rhs−(∑n

i=0ai ·vi |i 6= j) for all variablesv j , excluding
v0. This means that the number of evaluations of the FD con-
straint per implication can depend both on the current ranges
and number of variables. On the other hand, any implication
of hybrid-clauses can be done with, at worst,n−1 contain-
ment checks. This motivates learninghybrid clauses.

An example of two-literal watching on hybrid clauses
is shown in Figure 5. Assume thatv4 is a 3-bit word-
level variable with initial domain〈0,7〉, and v1,v2,v3
are Boolean variables. Also, assume that the set of
variable assignments,{v4,v1,v2,v3} 7→ {〈3,4〉 ,1,0,0}
causes a conflict. The conflict-avoiding hybrid-clause is
(¬v1∨ v2∨ v3∨¬v4 〈3,4〉). It is simpler to check inclusion
than exclusion of ranges for the containment check. There-
fore negative literals are split into a disjunct of word-literals
i.e.,¬v4 〈3,4〉 ≡ v4 〈0,2〉∨v4 〈5,7〉. The final learned clause,
shown in Figure 5, is(¬v1∨v2∨v3∨v4 〈0,2〉∨v4 〈5,7〉).

Implication

Watch pointers pointer move

Unknown Literal

False Literal
True Literal

1v

1v 1v

1v2v

2v 2v

2v

3v 3v

3v3v

4v 4v 4v 4v

4v4v4v 4v

1v

4v

2v

3v

4v

iv

iv
iv

[−,−] [−,−] [−,−] [0,2] [5,7] [−,−] [−,−] [−,−] [0,2] [5,7]

[−,−] [−,−] [−,−] [0,2] [5,7][−,−] [−,−] [−,−] [0,2] [5,7]

= 1 @ 1

= [0,4] @ 1

= 0 @ 2

 = 0 @ 2

= [0,2] @ 2

Figure 5. Hybrid clause two-literal watching
Figure 5 also shows an example of two-literal watching on

a hybrid learned clause. Assume that the value changes,v1 =
1 andv4 = 〈0,4〉 occurred at decision level 1. The literal¬v1
becomesfalse. The word-literalv4 〈5,7〉 becomesfalsesince
contains(〈0,4〉 ,〈5,7〉) is false. The pointer on each watched
literal moves to the right and left respectively. Next, assume
that the value changesv2 = 0 andv3 = 0 occurred at decision
level 2. The pointer on the watched literal,v2 moves to the
right twice, sincev3 is also false. The two pointers meet at the
literal v4 〈0,2〉, implying the assignmentv4 = 〈0,2〉.

5. Experimental Analysis
In this section, we discuss some experiments on the hybrid

DPLL solver. The results of the comparison experiments are
shown in the scatter plots in Figures 6 and 7. Thex andy axis
represent log10 run-times of each tool in CPU seconds. Points
above (below) the diagonal correspond to examples where the
tool on thex (y) axis is faster than the other. Each division
above (below) the diagonal represents an order of magnitude
speed-up (slow-down) for thex tool. Points on the right (top)
grid line markedTout , indicates thex (y) system timed-out
at 1200 CPU seconds.Fail , indicates thex (y) system failed
with a system error (seg-fault , etc).

5.1. Comparison with Heuristic Learning

In this experiment, we compare the new techniques with
the heuristic conflict analysis in [7] on the same benchmarks
in that paper. The results of this experiment are shown in the
Figure 6. HDPLLold is HDPLL with the heuristic conflict-
based learning in [7]. HDPLLnew is HDPLL with the new
UIP-based learning. Figure 6 shows that hybrid UIP learn-
ing is faster than the method in [7] by an order of magni-
tude on most cases. It completes on all cases where the old
method aborts, in under 100 CPU seconds. Clearly, UIP learn-
ing in the combined implication-resolution graph is an effi-
cient technique to prune the search space in HDPLL.

5.2. Comparison with state-of-the-art CDPs

We considered several tools that combine multiple deci-
sion theories including Boolean logic and some form of inte-
ger linear arithmetic for comparison with HDPLL:

Tout
Fail

10-3

10-2

10-1

10 0

10 1

10 2

ToutFail10-3 10-2 10-1 10 0 10 1 10 2

hd
pl

l o
ld

hdpllnew

Tout
Fail

10-3

10-2

10-1

10 0

10 1

10 2

ToutFail10-3 10-2 10-1 10 0 10 1 10 2

hd
pl

l o
ld

hdpllnew

Tout
Fail

10-3

10-2

10-1

10 0

10 1

10 2

ToutFail10-3 10-2 10-1 10 0 10 1 10 2

hd
pl

l o
ld

hdpllnew

Figure 6. Hybrid UIP learning v/s Heuristic [7]

1. CVC-Lite [1] does not have a complete integer deci-
sion procedure. We used a real relaxation of the inte-
ger benchmarks only for CVC-Lite. Therefore, the re-
sults on SAT cases are reported as failures for CVC-Lite.
We used CVC-Lite with the options –+sat fast .

2. Integrated Canonizer and Solver(ICS) [5] combined lin-
ear real arithmetic, bit-vectors, uninterpreted functions,
and other theories. We used the default options for ICS.

3. UCLID [13] cannot handle general arithmetic. However,
we ran it on a limited set of benchmarks with counter
arithmetic. We used the options –sat 0 chaff .

All the comparison CDPS timed-out on most of the properties
in the old-benchmark set. Therefore, we created new bench-
marks for this experiment. Our benchmarks are 35 BMC mod-
els of safety properties on the RTL circuits, shown in Table 1.
The number of properties per circuit is shown in Column 3.
The maximum bound is shown in Column 4.

Table 1. Test-Case characteristics
Ckt Description of Circuit # Props Max. Bound
ser compares serial data 1 20
BCD BCD decoder 1 20
MM min-max computation 1 20
Met digital sensor interface 9 30

As we can see from Figures 7(a), 7(b) and 7(c), the hy-
brid UIP learning techniques in HDPLLnew outperforms ICS,
and UCLID on almost all cases, sometimes by several orders
of magnitude. CVC-Lite performed best among the compared
CDPS (Figure 7(a)), with an average of 70.12 CPU seconds
per property and timed-out on only two cases. However, this
is due to the real relaxation, which leads to false positives.

On comparing the CDP’s with a complete integer deci-
sion procedure, we see that UCLID timed-out on 3 test-cases
and took an average of 199.5 CPU seconds per property (Fig-
ure 7(b)). ICS timed-out on 16 out of 35 test-cases and took
an average of 535.99 CPU seconds per property (Figure 7(c)).
HDPLL finished all test-cases in less than 15 seconds.

5.3. Asymptotic Run-time comparisons

We ran a controlled experiment to compare the asymp-
totic run-time growth of HPDLL versus the other CDPs. We
selected a safety property on the largest circuit Met, and

Tout
Fail

10-3
10-2
10-1
10 0
10 1
10 2

10-3 10-2 10-1 10 0

hdpllnew

C
V

C
L

Tout
Fail

10-3
10-2
10-1
10 0
10 1
10 2

10-3 10-2 10-1 10 0

hdpllnew

C
V

C
L

Tout
Fail

10-3
10-2
10-1
10 0
10 1
10 2

10-3 10-2 10-1 10 0

hdpllnew

C
V

C
L

Tout
Fail

10-3
10-2
10-1
10 0
10 1
10 2

10-3 10-2 10-1 10 0

hdpllnew

C
V

C
L

Tout
Fail

10-3
10-2
10-1
10 0
10 1
10 2

10-3 10-2 10-1 10 0

hdpllnew

C
V

C
L

(a) HDPLLnew v/s CVC-Lite

Tout
Fail

10-3
10-2
10-1
10 0
10 1
10 2

10-3 10-2 10-1 10 0

hdpllnew

U
C

LI
D

Tout
Fail

10-3
10-2
10-1
10 0
10 1
10 2

10-3 10-2 10-1 10 0

hdpllnew

U
C

LI
D

Tout
Fail

10-3
10-2
10-1
10 0
10 1
10 2

10-3 10-2 10-1 10 0

hdpllnew

U
C

LI
D

Tout
Fail

10-3
10-2
10-1
10 0
10 1
10 2

10-3 10-2 10-1 10 0

hdpllnew

U
C

LI
D

Tout
Fail

10-3
10-2
10-1
10 0
10 1
10 2

10-3 10-2 10-1 10 0

hdpllnew

U
C

LI
D

(b) HDPLLnew v/s UCLID

Tout
Fail

10-3
10-2
10-1
10 0
10 1
10 2

10-3 10-2 10-1 10 0

hdpllnew

IC
S

Tout
Fail

10-3
10-2
10-1
10 0
10 1
10 2

10-3 10-2 10-1 10 0

hdpllnew

IC
S

Tout
Fail

10-3
10-2
10-1
10 0
10 1
10 2

10-3 10-2 10-1 10 0

hdpllnew

IC
S

Tout
Fail

10-3
10-2
10-1
10 0
10 1
10 2

10-3 10-2 10-1 10 0

hdpllnew

IC
S

Tout
Fail

10-3
10-2
10-1
10 0
10 1
10 2

10-3 10-2 10-1 10 0

hdpllnew

IC
S

(c) HDPLLnew v/s ICS

Figure 7. Comparison of HDPLL new with CVC-Lite, ICS, and UCLID.

compared the run-time growth as the bound is increased for
bounded model checking. The comparisons are accurate since
the complexity of each instance increases linearly.

Tout

10-2

10 0

10 2

10 4

 6 8 10 12 14 16 18 20 22 24 26 28 30

Lo
g1

0(
R

un
-T

im
e)

Bound (k)

hdpllnew
CVC
ICS

UCLID

Figure 8. Asymptotic run-time comparisons.

The results of this experiment is shown in Figure 8. The
x-axis shows the length of the bound and the y-axis shows
the run-time in CPU seconds. As we can see the asymptotic
run-time growth of HDPLL is significantly lower than that of
all the other tools. CVC-Lite performed next best with a con-
trolled growth similar to HDPLL. It is interesting that the in-
teger decision procedures in HDPLL can compare well with
a real relaxation of the problem. UCLID and ICS showed a
sharp increase in run-time after boundk=21 andk=9 respec-
tively. The results clearly show that the asymptotic run-time
of HDPLL is considerably better than these tools.

6. Conclusions

We presented an efficient learning scheme for a DPLL-
based constraint solver for RTL circuits. We also described
compact data-structures for representing these learned rela-
tions that enable efficient constraint propagation. We demon-
strated experimentally that these techniques make HDPLL
more efficient than current state-of-the-art CDPs. A DPLL-
style combination of decision theories seems to out-perform
the other CDPs when efficient constraint propagation and

conflict-based learning is used to prune the search space. In
future, we shall extend the solver to other theories to handle
arbitrary RTL circuits.

References
[1] A. Stump, C. W. Barrett, and D. L. Dill. CVC: A Cooperating

Validity Checker. InCAV, pp. 500–504. July 2002.
[2] R. Brinkmann and R. Dreschler. RTL-Datapath Verification

using Integer Linear Programming . InVLSI Design, pp. 741–
746, 2001.

[3] C. Barrett, D. L. Dill, and J. Levitt. Validity Checking for Com-
binations of Theories with Equality. InFMCAD, pp. 187–201,
1996.

[4] G. Dantzig and B. Eaves. Fourier-motzkin elimination and its
dual.Journal of Combinatorial Theory, A(14):288–297, 1973.

[5] J.-C. Filliâtre, S. Owre, H. Rueß, and N. Shankar ICS: Inte-
grated Canonization and Solving. InCAV, pp. 246–249, 2001.

[6] H. Ganzinger, G. Hagen, R. Nieuwenhuis, A. Oliveras and C.
Tinelli.DPLL(T): Fast Decision Procedures InCAV, July 2004.

[7] G. Parthasarathy, M.K. Iyer, K.-T. Cheng, and Li.C. Wang. An
Efficient Finite-domain Constraint Solver for RTL Circuits. In
41st DAC, CA, June 2004.

[8] J.N. Hooker. Logical Inference and Polyhedral Projection. In
Computer Scence Logic Conference, pp. 184–200. 1992.

[9] J.P Marques-Silva and K.A. Sakallah. GRASP - A Search Al-
gorithm for Propositional Satisfiability.IEEE Trans. on Com-
puters, 48(5):506–521, May 1999.

[10] C. Liu, A. Kuehlmann, and M. Moskewicz. CAMA: a multi-
valued satisfiablity solver. InICCAD, pp. 326 – 333, 2003.

[11] M. Davis, G. Logemann, and D. Loveland. A Machine Pro-
gram for Theorem Proving.Comm. of the ACM, 5(7):394–297,
1962.

[12] M. Moskiewicz, C. Madigan,et. al. Engineering an Efficient
SAT Solver. In38th DAC, 2001.

[13] S. Seshia, S. Lahiri, and R. Bryant. Hybrid Sat-based Decision
Procedure for Separation Logic with Uninterpreted Functions.
In DAC, 425–430, 2003.

[14] W. Kelly, V. Maslow, et. al. The Omega Calculator and Li-
brary v1.1.0. Tech. report, Dept. of CS, UMCP, Nov. 1996.

[15] Z. Zeng, P. Kalla, and M. Ciesielski. LPSAT: A Unified Ap-
proach to RTL Satisfiability. InDATE, pp. 398–402, 2001.

[16] H. Zhang and M. Stickel. An Efficient Algorithm for Unit
Propagation InInt. Symp. on Artificial Intel. and Math., 1996.

	Main Page
	DATE'05
	Front Matter
	Table of Contents
	Author Index

