
Abstract
In this work we consider battery powered portable systems
which either have Field Programmable Gate Arrays (FPGA)
or voltage and frequency scalable processors as their main
processing element. An application is modeled in the form of
a precedence task graph at a coarse level of granularity. We
assume that for each task in the task graph several unique
design-points are available which correspond to different
hardware implementations for FPGAs and different voltage-
frequency combinations for processors. It is assumed that
performance and total power consumption estimates for each
design-point are available for any given portable platfrom,
including the peripheral components such as memory and
display power usage. We present an iterative heuristic
algorithm which finds a sequence of tasks along with an
appropriate design-point for each task, such that a deadline
is met and the amount of battery energy used is as small as
possible. A detailed illustrative example along with a case
study of a real-world application of a robotic arm controller
which demonstrates the usefulness of our algorithm is also
presented.

1. Introduction

Battery powered portable systems have finite amount of
battery energy available and therefore battery lifetime maxi-
mization is one of the most important design goals for such sys-
tems.  In this paper we present an iterative heuristic algorithm
based on the battery discharge characteristics. Our goal is to
meet a desired deadline and save as much battery energy as
possible.

Target Hardware Architecture: The algorithm described
in this work is applicable to any embedded platform, although
the methods for changing the energy consumption of a task
vary depending upon which processing element is used. In a
processor based embedded system power-performance trade-
offs can be achieved by voltage and clock scaling. It is assumed
that several discrete voltage and frequency combinations are
available. If the embedded platform has an FPGA as the main
processing element then it is assumed that several different
hardware implementations are available which can be down-
loaded in the form of bitstreams. It is assumed that for each
design-point, performance and total power cosumption esti-
mates are available for any given portable platform, including

the peripheral components such as memory and display power
usage. Further, it is also assumed that intertask communication
occurs via shared memory and the energy cost and latency of
the memory transfers are a part of the execution time and
energy costs of the task under consideration. 

Application Specification: The application is described as
a directed acyclic task graph (DAG) G(V,E). The vertices
(nodes) of the graph are tasks which are to be executed on the
portable platform and each task  has several different
implementation options available called design-points. Asso-
ciated with each task i and its design-point j is its execution
time  and current consumption . The current consump-
tion of a task is assumed to be measured as the average total
current consumption of the portable platform which is the
cumulative current consumption of all subsystems being used
in the portable platform. The edges E describe data and control
dependence between different tasks of the task graph. In the
rest of the paper we will use ,  and  there are
m design points available for each task. There is a deadline d
associated with the task graph before which all the tasks must
be completed.

Problem Description: Given a DAG G(V,E), a set of
design-points for each task, execution time, current usage esti-
mate for each design-point and a desired deadline for the com-
pletion of the task graph, determine a valid schedule which
does not violate the control and data dependencies of the tasks
in the task graph and also find a mapping of each task to a suit-
able design-point such that the deadline for the entire task-
graph is met and the battery energy used is as small as possible.
Our algorithm finds an initial sequence and then assigns
design-points to the tasks. The suitability of the task sequence
and the design-point selection is judged by using a battery
model due to [2] which will be discussed in Section 3. The cho-
sen task sequence is modified using a heuristic approach and
design-point selection is performed again to improve the qual-
ity of the solution. The algorithm is described in detail in Sec-
tion 4. We tested the algorithm using different task-graphs and
design-points and the results are discussed in Section 5. 

2. Related Work

In processor based embedded computing platforms
dynamic voltage and frequency scaling has been proven to be
extremely effective for low power execution of tasks
[4][5][6][8]. In battery-powered embedded systems the
energy source is non-linear therefore, the existing voltage scal-
ing techniques are not directly applicable to these systems. Luo
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and Jha studied static task scheduling for battery powered mul-
tiprocessor environments [5]. They used a battery model
which was based on Peukert’s law and an empirical model due
to Pedram [6]. Rakhmatov et al developed an algorithm for bat-
tery-aware task scheduling using dynamic programming [1]
along with its other variants. Chowdhury et al [7] proposed a
simplified heuristic which reduced the voltage level of the
tasks as much as possible starting from the last task in the
schedule. In contrast to these works, our work provides a way
to simultaneously solve the task sequencing and design-point
assignment in an iterative fashion. In any given iteration a valid
schedule and assignment is available which can be used. If the
user wishes then the solution quality is improved over subse-
quent iterations. Further, compared to our algorithm, it is not
easy to implement a Simulated Annealing or Linear Program
Forumulation based algorithms on an embedded computing
platform which has inherent limitations on memory and bat-
tery capacity. 

3. Battery Characteristics and Motivation

Rated Capacity of a battery is defined as the capacity of the
battery (in mAh) under a nominal constant current discharge
and is reported by the manufacturer. It is observed that higher
rates of discharge tend to reduce the rated capacity signifi-
cantly (rate capacity effect) and reducing discharge rates
between heavy discharge periods allows the battery to regain
some of its lost capacity (recovery effect) [3]. Rakhmatov et
al. [2] developed a variable load analytical model based on the
laws of chemical kinetics, which takes into account both the
rate capacity effect and the recovery effect. Equation 1
describes the battery model.

(1)

The value of  gives the amount of charge lost by time T,
which is the length of a current discharge profile having n dis-
tinct discharge intervals. Ik is the current drawn from the bat-
tery in the kth discharge interval, where tk is the start time of
the kth discharge interval and  is the duration of this interval.
The battery lifetime is estimated by evaluating Equation 1 for
increasing values of T and stopping where : At this point
the value to T is taken as the battery lifetime. Equation 1 is used
as the battery-aware cost function to be minimized. We have
chosen to use this battery model because of its high accuracy
and low computational complexity. It was shown in [1] that for
a set of n tasks if dependencies are ignored and the value of 
is assumed to be sufficiently large then sequencing tasks in the
non increasing order of their currents is the best and sequenc-
ing the tasks in the non decreasing order of their currents is the
worst. This property is also important for task-graphs where
dependencies are present because it provides the lower and
upper bounds on the value of cost function given in Equation 1.
The authors in [7] also proved that given a pair of two identical
tasks in the profile and a delay slack to be utilized by down scal-
ing, it is always better to use the slack on the later task than on
earlier task. We use the above two properties along with the
observation that tasks which have lower overall average
energy consumption should be given priority for voltage down
scaling.

4. Battery-Aware Task Sequencing and 
Design-Point Assignment

Some important definitions are presented below first:

Execution Time matrix (D) is an (n x m) matrix where 
gives the execution time of task i using design-point j; for each
task i the execution times of the design-points are stored in
ascending order of magnitude. 

Current matrix (I) is an (n x m) matrix where  gives
current of task i using design-point j; for each task i the currents
of the design-points are stored in descending order of magni-
tude. 

Design-Point Selection matrix (S) is an (n x m) matrix
where  is 1 if task i is assigned to design-point j. S is ini-
tialized such that ={1 if j = m, 0 otherwise}.

Energy Vector E: is a row vector where each element spec-
ifies a task and the tasks are stored in increasing order of their
average energies.

Slack Ratio (SR) of a design-point is defined as the ratio
of the amount of slack left to the deadline, if that design-point
is chosen for execution. If t is the execution time of a design-
point and d the deadline of the task graph then formally SR is
defined as: . Similarly, if SR is to be calcu-
lated for several design-points chosen, then t would be defined
as the sum of the execution times of all the design-points cho-
sen. SR gives an indication of how much slack is left which
needs to be utilized. It is beneficial to use as much slack as pos-
sible. Therefore, a smaller value of SR is better.

Current Ratio (CR) of a design-point is defined as
, where I is the average current

used by the design-point and  and  are the maximum
and minimum currents among all the design-points of all tasks.
CR is normalized to be between 0 and 1. CR gives an indication
of relative current of a particular design-point when compared
to all the other design-points. A smaller value of CR is better.

Energy Ratio (ENR) of a task sequence is defined as
, where En is the total aver-

age energy used by the chosen design-points for all the tasks.
Energy ratio is low if a set of design-points uses lower overall
average energy. Its value is between 0 and 1.

 and  are the current and the voltage of the design-
point c chosen for task i, respectively. and  is its corre-
sponding execution time. and  are the energies of
tasks sequences if all the lowest and highest power design-
points are used for all tasks, respectively.

Current Increase Fraction (CIF) of a task sequence is a
measure of non-decreasing trends in the current discharge pro-
file. The lower its value, the less number of increasing current
transitions are there in the discharge profile. We define CIF as
follows where c denotes the chosen design point for any task k: 

σ Ik ∆k 2 e
β–

2
m

2
T tk ∆k– )–(

e
β–

2
m

2
T tk )–(

–

β2
m

2
----------------------------------------------------------------------------

m 1=

10

∑+










k 0=

n 1–

∑=

σ

∆k

σ α≅

α

Di j,

Ii j,

Si j,
Si j,

SR d t–( ) d( )⁄=

CR I Imin–( ) Imax Imin–( )⁄=
Imax Imin

ENR En Emin–( ) Emax Emin–( )⁄=

En Ii c, Vi c, Di c,××
i 1=

n 1–

∑=

Ii c, Vi c,
Di c,

Emin Emax

Emin Ii min, Di min,×
i 1=

n 1–

∑= Emax Ii max, Di max,×
i 1=

n 1–

∑=



Design-Point Fraction (DPF): If there are a total of m
design points available for each task then DPF is the fraction
of total design-points assigned to any single design-point k for
all n tasks. DPF is a measure of the number of different design-
points being used in a particular assignment. Equation 2 and
Equation 3 formally define DPF where k denotes the design
point under consideration where x is the number of free nodes: 

(2)

(3)

As can be seen from the definition, the use of higher pow-
ered design-points is penalized the most. The penalization
decreases as the lower powered design points are used and is
zero for the lowest powered design-points.

Suitability of a Design-Point (B) is a measure of how suit-
able a particular design-point is for achieving the minimum
battery capacity usage goal and the suitability of a design-point
is defined as 

4.1 Algorithm Description

During each iteration of the algorithm a valid schedule is
created and a design-point assignment is chosen. In subse-
quent iterations the solution is improved such that the amount
of battery capacity used is less than the previous iteration. The
algorithm terminates once the solution is not improved during
two consecutive iterations. We start choosing design-points
from the last task and work our way up to the first task. During
the selection of the design-point for any particular task the suit-
ability of the each design-point (B) is calculated. The design-
point which has the lowest value of B is chosen and the task is
fixed to that design-point. Each task can be in three different
states of design-point allocation: free, tagged and fixed. A task
is tagged when we are evaluating the suitability of one of its
design-points. When all of its design-points are evaluated and
the best one is selected we set the state of the task to be fixed.
Tasks which are neither tagged nor fixed are called free tasks.
We use an heuristic approach for searching the design-space
which involves the use of a window function (Explained later)
until all design-points are considered. Once all tasks are
assigned to design-points the battery capacity used is calcu-
lated and we sequence the tasks according to a weight assign-
ment which is based on the current consumption of the design-
points assigned to different tasks in this iteration (Explained
in Section 4.). This new sequence is then used for the next iter-
ation. 

BatteryAwareSQNDPAllocation is the top level algorithm
for task sequencing and design-point assignment  and is given
in Figure 1. MinBCost contains the minimum battery cost for

any given iteration and is initialized to infinity. PrevIterCost
contains the cost of the previous iteration for comparison pur-CIF Jk
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{MinBCost,S}=EvaluateWindows(L,E,I,D)
Wflag = TRUE
WindowStart = m-1
while (Wflag)
      if (d < CT(WindowStart)) then
            WindowStart = WindowStart - 1
            Wflag = TRUE
             if (WindowStart == 1) AND (d < CT(WindowStart)) then

Exit with error // The deadline cannot be met
             end if
      else  Wflag = FALSE   end if
end while
while ( windowstart >= 1 )
      //Use WindowStart .... m columns of S, I, D for this iteration
      Stemp = ChooseDesignPoints(L,E,I,D,WindowStart,d)
      TempCost = CalculateBatteryCost(L,Stemp,I,D)
      if TempCost < MinBCost then
           MinBCost = TempCost;
           S = Stemp
      end if
      WindowStart = WindowStart - 1
end while
return{MinBCost,S}

{S} = ChooseDesignPoints(L,E,I,D,WindowStart,d)
Initialize S, Free all tasks in E
Tsum = D(n,m)
Ttemp = 0
Mark the task n in E to be fixed
S(n,m) = 1  //Assign nth task to the lowest power design-point
for i = n-1 downto 1 do
    for j = m downto WindowStart do
        S(i,j) = 1 
        Ttemp = Tsum + D(i,j)
        Set task i to be tagged in S and fix it in E
        SR = (d - Ttemp)/d
        CR = (I(i,j) - Imin)/(Imax - Imin)
        {ENR,CIF,DPF} = CalculateDPF(E,S,I,D,WindowStart,i,d) 
        B(i,j) = SR + CR + ENR + CIF + DPF
        S(i,j) = 0, Ttemp = 0
    end for
    find B(i,k) the minimum value of B for task i
    S(i,k) = 1  

Set task i to be fixed in S and E
    Tsum = Tsum + D(i,k)
end for
return{S}

BatteryAwareSQNDPAllocation
Begin
MinBCost = infinity, PrevIterCost = infinity
L=SequenceDecEnergy(D,I)
success = TRUE
while (success)
     {MinBCost,S}=EvaluateWindows(L,E,I,D)
      Ltemp = FindWeightedSequence(S,I,D)
      TempCost = CalculateBatteryCost(Ltemp,S,I,D)
      if TempCost < MinBCost then

 MinBCost = TempCost
              success = TRUE;
      end if
      if MinBCost >= PrevIterCost then
             success = FALSE
      else
             PrevIterCost = MinBCost
      end if
      L = Ltemp
 end while

Figure 1. Algorithms for Battery-Aware Task Sequencing 
and Design-Point Allocation



poses and is also initialized to infinity. We use a modified list
based scheduling algorithm for generating task sequences for
a particular task graph. At the start of the algorithm each task
is assigned a weight which is equal to the average energy of all
design-points available for it. The tasks which have a larger
weight are scheduled earlier than other tasks in the ready list,
which is a list of all nodes which have all their predecessors
scheduled. The scheduled list is called L(1..n) and is generated
by the algorithm called SequenceDecEnergy(D,I). Each task
is assigned a unique time-step and all the n tasks in this list are
scheduled to be executed sequentially. The actual algorithm is
omitted due relatively straight-forward nature. success is a flag
which is set whenever there is a better solution found in the
present iteration. If the solution does not improve over two
consecutive iterations the algorithm terminates with the best
solution found. 

 Window Function: In each iteration a window dictates
how many design-points for each task are to be considered for
allocation. For example, consider five tasks and four design

points as shown in Figure 3. The three different windows basi-
cally mask out all the columns which are beyond the width of
the window and only the design-points within the window are
evaluated. EvaluateWindows(L,E,I,D) initially tries to find a
valid start width (WindowStart) for the window. CT(k) is the
execution time if all design-points belonging to column k are
chosen. The algorithm checks whether it would be possible to
meet the deadline by executing even the highest power design-
points or not: if d < CT(1) then the deadline cannot be met and
the algorithm exits with an error. Otherwise the window width
is incrementally increased until all m design-points are eval-
uated. The design-point allocation (S) which results in the least
amount of battery cost (MinBCost) is then returned. .

Choosing Design Points: In ChooseDesignPoints() we
first initialize S and set the state of all nodes in E to be free.
Recall that E is the Energy Vector. We will use E as a priority
function while evaluating DPF. We start from the last task in
the sequence and fix it to the lowest power design-point and
move up towards the first task. Tsum keeps track of the sum of
the execution times of the tasks fixed so far. Ttemp is used to
keep track of the sum of execution time of the tagged tasks as
well as the sum of the execution time of the fixed tasks. We
evaluate the suitability B of each design point j of each task one
by one. For any given task i the design-point k which has the
minimum value of B is chosen and the task i is fixed to design
point k and the value of Tsum is updated to reflect the chosen
design-point for task i 

Calculation of DPF, CIF and ENR: The algorithms given
in Figure 2 are used to calculate DPF, CIF and ENR. Initially
CalculateDPF() is called from ChooseDesignPoints() Then
it calls CaculateFactors() to calculate ENR and CIF. Copies
of S and E are made as Stemp and Etemp. 

At any given point during the execution there will be some
tasks in S which have been fixed, tagged and free. Similarly,
each task in E(Etemp) has two states: fixed and free. A task is
fixed in E if it is fixed or tagged in S and also when the highest
powered design-point is chosen for it. If the deadline is not
being met by choosing the lowest power consuming design-
points of all free tasks in E(Etemp), moving the first free task
in E(Etemp) from lower to a higher power consuming design-
point decreases the execution time in the hope that the deadline
will be met with the least increase in the overall energy con-
sumption. For example, consider the tasks and their design-
points shown in Figure 4. Here tasks T5 and T4 have been fixed
to DP4 and DP1, respectively. T3 is the tagged task and we are
calculating the DPF of DP2. Figure 4-a shows the initial con-
dition at the start of calculation of DPF. Notice tasks T1 and
T2 are both initially assigned to DP4. Suppose, that it is found
that this assignment does not meet the deadline. Now we wish
to use a higher powered DP such that the deadline is met. We
look at Energy vector E and find that tasks 3,4,5 are fixed. The
first free task in E is T1. Therefore, it is assigned the next higher
powered design-point, DP3 (Figure 4-b) . Suppose, that this
assignment also, does not meet the deadline. The assignment
of T1 is moved up to DP2 (Figure 4-c). Now, let us assume that
the assignment meets the deadline. Therefore, no further

{CIF,ENR}=CaculateFactors(S,I,D)
Ttemp = S * D // where * denotes element by element
Itemp = S * I // multiplication of two matrices of same dimensions
Time = Column by Column sum of matrix Ttemp   
 // Time and Current are  column vectors
Current = Column by Column sum of matrix Itemp
CIF = 0
for x = 2,..,n do
    if Current(x-1) < Current(x) then
        CIF = CIF + 1
    end if
end for 
CIF = CIF /( total number of tasks - 1)
En = Current * Time
Energy = sum of all rows of En
ENR = (Energy - Emin)/(Emax - Emin)
return{CIF,ENR}

{ENR,CIF,DPF} = CalculateDPF(E,S,T,D,WindowStart,i,d)   
Etemp=E, Stemp=S
flag = FALSE
Te = CalculateExecutionTime(Stemp,D)
while (Te > d)    
   Choose the first free task q in Etemp
   r = the row at which task q is located in Stemp
    if no free task found then
       DPF = infinity
       {CIF,ENR} = CalculateFactors(Stemp,I,D)
       return {ENR,CIF,DPF}
    else
        for p = m downto WindowStart do
            if (p = WindowStart+1) then Fix node q in Etemp  end if
            if Stemp(r,p) == 1 then
               Stemp(r,p) = 0,  Stemp(r,p-1) = 1, break
           end if
         end for
    end if
Te = CalculateExecutionTime(Stemp,D)
end while
DPF = 0, ufac = m - WindowStart, factor = 1/ufac
for w = 1 to (m-WindowStart) do
    DPF = DPF +  
    ufac = ufac - 1
end for
if this is the last free task then
   DPF = (d - Te)/d
end if
{CIF,ENR} = CalculateFactors(Stemp,I,D)
return{ENR,CIF,DPF}

ufac factor Stempy w,( ) i 1–( )⁄
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Figure 2. Algorithms for various factor calculations 
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moves are necessary. From Equation 2 and Equation 3 f = 1/3
and the number of free nodes x is 2. F4= 1/2, F3=0, F2=1/2,
F1=0, therefore DPF = 1/3 for task T3, DP2. 

This process is repeated until either the deadline is met or
there are no more free tasks available in E(Etemp). If no free
tasks are found in E(Etemp), the value of DPF is set to infinity
to indicate that choosing the corresponding tagged design-
point would result in a deadline violation. Finally, if we are
considering the last task we set DPF equal to the slack ratio so
that more emphasis is given to decreasing the slack. Caculate-
Factors() is called at the end to calculate the CIF and ENR
based upon the design-point allocation decisions made in the
calculation of DPF. CIF basically tries to capture the increas-
ing current profile in any design-point assignment. ENR gives
the overall energy consumption of the design-point assign-
ment. 

Calculation of the Weighted Sequence:  The main sub-
routine called BatteryAwareSQNDPAllocation calls Find-
WeightedSequence() after different windows are evaluated.
We try to improve the sequence by assigning weights to each
task v according to Equation 4 where  is the sub-graph
rooted at the node v. A list based scheduling method similar to
SequenceDecEnergy is used for this algorithm as well but
with modified weights.

(4)

The battery cost is calculated using Equation 1 for the task
sequence generated and the design-points selected. This is
done using the function called CalculateBatteryCost(). If
there is no improvement in the battery cost in two successive
iterations, the algorithm terminates.

4.2 Illustrative Example

We demonstrate the working of the algorithm with the help
of the task graph (G3) shown in Table 1, which has 15 tasks and
five different design points. For G3 the task durations were
proportional to the worst case execution of the tasks and were
made inversely proportional to the scaling factor with respect
to voltage of DP1 (V1) and task currents for differnent design-
points were made directly proportional to the cube of the scal-
ing factor with respect to V1. The scaling factors used for the
five design points with respect to V1 were as follows: 1, 0.85,
0.68, 0.51, 0.33. This task graph corresponds to a class of task
graphs called fork-join, such task graphs have been used in
multiprocessor  scheduling research to model the structure of
commonly encountered paralel algorithms [9]. The depen-
dency constraints are listed under the column called “Parents”.
We let the deadline to be 230 minutes,  and executed
our algorithm on G3, also we assumed that the amount of bat-
tery capacity available  was sufficiently large to accom-
modate the requirements of different tasks.  

Despite the unually large values for the task durations used
in this example the algorithm is equally applicable to any cho-
sen time scale. Table 2 shows the task sequences generated for
the four iterations of the algorithm along with the design-
points (DP) assigned for each sequence. A “w” after a
sequence number indicates the weighted sequence calculated
for the corresponding iteration.   

  Table 3 gives the values of battery capacity used  given
in milli-Ampere-minutes along with the duration of the task
sequence  given in minutes, for each sequence and its
weigthed counterpart for the four iterations of the algorithm
execution. The column marked “Win 1:5” contains the results
for the battery capacity and the execution time when the algo-
rithm was allowed to consider all five design points for all
tasks. The data for each subsequent window where the number
of allowed design points for consideration were decreased by
one is also given in Table 3. The column called “Min ”  con-
tains the minimum value of battery capacity chosen from

E=[3,4,5,1,2]Fixed Tasks Tagged Tasks/DP Free Tasks Assigned DP

T1 DP1 DP2 DP3 DP4
T2 DP1 DP2 DP3 DP4
T3 DP1 DP2 DP3 DP4
T4 DP1 DP2 DP3 DP4
T5 DP1 DP2 DP3 DP4

 (c)

T1 DP1 DP2 DP3 DP4
T2 DP1 DP2 DP3 DP4
T3 DP1 DP2 DP3 DP4
T4 DP1 DP2 DP3 DP4
T5 DP1 DP2 DP3 DP4

 (b)

T1 DP1 DP2 DP3 DP4
T2 DP1 DP2 DP3 DP4
T3 DP1 DP2 DP3 DP4
T4 DP1 DP2 DP3 DP4
T5 DP1 DP2 DP3 DP4

 (a)

Figure 4. DPF Calculation
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Table 1. Data for example task graph G3

Tasks Design
Point 1

Design
Point 2

Design
Point 3

Design
Point 4

Design
Point 5 Parents

I 
mA

D
min

I 
mA

D
 min

I 
mA

D 
min

I 
mA

D 
min

I
mA

D
min

T1 917 7.3 563 11.2 288 15.0 122 18.7 33 22.0 -

T2 519 11.2 319 17.3 163 23.1 69 28.9 19 34.0 T1

T3 611 5.9 375 9.2 192 12.2 81 15.3 22 18.0 T1

T4 938 5.3 576 8.2 295 10.9 124 13.6 34 16.0 T1

T5 781 4.0 480 6.1 246 8.2 104 10.2 28 12.0 T1

T6 800 4.6 491 7.1 252 9.5 106 11.9 29 14.0 T2,T3

T7 720 7.3 442 11.2 226 15.0 96 18.7 26 22.0 T4,T5

T8 600 5.3 368 8.2 189 10.9 80 13.6 22 16.0 T6,T7

T9 650 4.6 399 7.1 204 9.5 86 11.9 23 14.0 T8

T10 710 5.9 436 9.2 223 12.2 94 15.3 26 18.0 T8

T11 500 6.6 307 10.2 157 13.6 66 17.0 18 20.0 T9

T12 510 4.6 313 7.1 160 9.5 68 11.9 18 14.0 T10

T13 700 4.0 430 6.1 220 8.2 93 10.2 25 12.0 T9

T14 400 5.3 246 8.2 126 10.9 53 13.6 14 16.0 T11,T12T13

T15 380 3.3 233 5.1 119 6.8 50 8.5 14 10.0 T14

Table 2. : Task Sequences of G3 for different iterations

Iter Seq No Task Sequences

1
S1 T1,T4,T5,T7,T3,T2,T6,T8,T10,T9,T13,T12,T11,T14,T15

DP P5,P5,P5,P4,P4,P4,P4,P4,P4,P4,P4,P4,P4,P4,P5,

S1w T1,T3,T2,T4,T5,T6,T7,T8,T10,T9,T13,T12,T11,T14,T15

2
S2 T1,T3,T2,T4,T5,T6,T7,T8,T10,T9,T13,T12,T11,T14,T15

DP P5,P1,P2,P5,P5,P5,P5,P5,P5,P5,P5,P5,P5,P5,P5

S2w T1,T3,T2,T4,T5,T6,T7,T8,T9,T10,T13,T11,T12,T14,T15

3
S3 T1,T3,T2,T4,T5,T6,T7,T8,T9,T10,T13,T11,T12,T14,T15

DP P5,P5,P1,P5,P5,P5,P4,P5,P4,,P5,P5,P5,P5,P5,P5

S3w T1,T2,T4,T5,T7,T3,T6,T8,T9,T10,T13,T11,T12,T14,T15

4
S4 T1,T2,T4,T5,T7,T3,T6,T8,T9,T10,T13,T11,T12,T14,T15

DP P5,P1,P5,P5,P4,P5,P5,P5,P4,,P5,P5,P5,P5,P5,P5

S4w T1,T2,T4,T5,T7,T3,T6,T8,T9,T10,T13,T11,T12,T14,T15

σ

∆

σ



among the four different windows evaluated during an itera-
tion. The last column gives the execution time corresponding
to the window chosen which uses the minimum battery capac-
ity.The battery capacity after the first iteration is 16353 mAmin
which decreases after each subsequent iteration until iteration
3. For iteration 4 there is no improvement in the value of the
battery capacity used and the algorithm terminates. Also
notice that for each iteration a valid schedule is generated
which satisfies the deadline.  

5. Case Study

We present a real-world application of a robotic arm con-
troller implemented on a voltage scalable processor as
described in [10][1] to demonstrate the usefulness of this algo-
rithm. The task-graph of this application (called G2) is shown
in Figure 5 along with its various design-points. For G2 the
task durations were proportional to the worst case execution
of the tasks and were made inversely proportional to the scal-
ing factor with respect to voltage of DP4 (V4) and task currents
for differnent design-points were made directly proportional
to the cube of the scaling factor with respect to V4. The scaling
factors used for the four design points with respect to V4 were
as follows: 2.5, 1.66, 1.25, 1. The battery capacities used for
three different deadlines  (55, 75, 95 minutes) are shown in
Table 4.  

Comparison with an Approach in [1]: We compared the
results from our algorithm to a method in [1] where the design

points were chosen using a dynamic program such that the total
energy used is minimized and a given deadline is met. In the
algorithm given in [1], after the design-point allocation a
greedy sequencing of all tasks in the task graph G(V,E) was
performed where the tasks were assigned a weight according
to Equation 5, where :  is the subgraph rooted at node v and

 is the mean current of all nodes in the subgraph
rooted at node v. Whenever a node is to be scheduled the node
with the largest weight was selected among the nodes in the
ready list.

(5)

We executed the two algorithms for three different dead-
lines for the two different test task graphs G2 and G3 discussed
earlier. We present the data for this comparison in Table 4.
Notice that as the deadline increases the amount of battery
capacity used decreases. This is because the algorithm can
choose design points which have lower performance but also
consume less capacity. Also, we see that our algorithm gives
better results for the two task graphs under consideration .  
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Table 3. : Algorithm execution data for different 
iterations for G3

Seq No

Win 1:5 Win 2:5 Win 3:5 Win 4:5

Min

S1 17169 229.8 17837 228.4 17038 227.1 16353 228.3 16353 228.3

S1w - - - - - - - - 16353 228.3

S2 14725 229.2 16126 229.2 15929 229 16235 229.2 14725 229.2

S2w - - - - - - - - 14725 229.2

S3 13737 229.8 16033 229.2 16061 229.8 16677 228.9 13737 229.8

S3w - - - - - - - - 13737 229.8

S4 13737 229.8 15866 229.3 16240 229.2 - - 13737 229.8

S4w - - - - - - - - 13737 229.8

σ ∆
σ ∆ σ ∆ σ ∆ σ ∆

Node DP1 DP2 DP3 DP4

I 
mA

D
min

I 
mA

D
min

I 
mA

D
min

I 
mA

D
min

1 938 8.8 278 13.2 117 17.6 60 22

2 781 1.2 231 1.9 98 2.5 50 3.1

3 781 8.1 231 12.1 98 16.2 50 20.2

4 656 3.6 194 5.4 82 7.2 42 9.0

5 781 6.5 231 9.8 98 13.0 50 16.3

6 531 3.5 157 5.3 66 7.0 34 8.8

7 531 3.5 157 5.3 66 7.0 34 8.8

8 531 3.5 157 5.3 66 7.0 34 8.8

9 531 3.5 157 5.3 66 7.0 34 8.8

Figure 5. Task Graph G2 and Design-Point Data
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Table 4. : Comparison of our algorithm with an 
approach in [1]

G2: 9 Nodes, 4DPs G3: 15 Nodes, 5 DPs

Deadline (minutes) 55 75 95 100 150 230

Batt. Capacity by Our Algo (mAmin) 30913 13751 7961 57429 41801 13737

Batt. Capacity by Algo [1] (mAmin) 35739 13885 8517 68120 48650 22686

% Diff 15.6 0.9 7.0 18.6 16.4 65.0

Gv
MeanI Gv( )

v G∈∀ w v( ) max Iv MeanI Gv( ),{ }=
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