
Verifying Safety-Critical Timing and Memory-Usage Properties of Embedded
Software by Abstract Interpretation

Reinhold Heckmann, Christian Ferdinand
AbsInt Angewandte Informatik GmbH

Stuhlsatzenhausweg 69; 66123 Saarbrücken, Germany
info@absint.com

Abstract

Static program analysis by abstract interpretation is an
efficient method to determine properties of embedded soft-
ware. One example is value analysis, which determines the
values stored in the processor registers. Its results are used
as input to more advanced analyses, which ultimately yield
information about the stack usage and the timing behavior
of embedded software.

1. Abstract Interpretation

Failure of a safety-critical application on an embedded
processor can lead to severe damage or even loss of life.
Therefore, utmost carefulness and state-of-the-art machin-
ery have to be applied to make sure that an application meets
all requirements. To do so lies in the responsibility of the
system designer(s).

Classical software validation methods like code review
and testing with debugging are very expensive. Further-
more, they cannot really guarantee the absence of errors.
In contrast,abstract interpretation[1] is a formal verifica-
tion method that yields statements valid for all program runs
with all inputs, e.g., absence of violations of timing or space
constraints, or absence of runtime errors.

Nowadays tools based on abstract interpretation are com-
mercially available and have proved their usability in indus-
trial practice. For example, stack overflow can be detected
by AbsInt ’s StackAnalyzer, and violations of timing con-
straints are found byAbsInt ’s aiT tool [2] that determines
upper bounds for the worst-case execution times of the tasks
of an application. Among other things, these tools perform
a value analysisthat tries to determine the values stored in
the processor’s memory for every program point.

Value analysis is a static analysis method based on ab-
stract interpretation. It produces results valid for every pro-
gram run and all inputs to the program. Therefore, it cannot

always predict an exact value for a memory location, but de-
terminesabstract valuesinstead that stand for sets of con-
crete values. There are several variants of value analysis de-
pending on what kinds of abstract values are used. Incon-
stant propagation, an abstract value is either a single con-
crete value or the statement that no information about the
value is known. Ininterval analysis, abstract values are in-
tervals that are guaranteed to contain the exact values. Fur-
ther extensions of value analysis record known equalities
between otherwise unknown values, or more generally, up-
per and lower bounds for their differences, or even more
generally, arbitrary linear constraints between values.

Value analysis, even in its simple form as interval anal-
ysis, has various applications as an auxiliary method pro-
viding input for other analysis tasks. Some of these applica-
tions are listed in the next few sections.

2. Stack usage analysis

A possible cause of catastrophic failure is stack overflow
that usually leads to run-time errors that are difficult to diag-
nose. The problem is that the memory area for the stack usu-
ally must be reserved by the programmer. Underestimation
of the maximum stack usage leads to stack overflow, while
overestimation means wasting memory resources. Measur-
ing the maximum stack usage with a debugger is no solution
since one only obtains results for single program runs with
fixed inputs. Even repeated measurements cannot guaran-
tee that the maximum stack usage is ever observed.

AbsInt ’s StackAnalyzer provides a solution to this
problem: By concentrating on the value of the stack
pointer during value analysis, the tool can figure out
how the stack increases and decreases along the vari-
ous control-flow paths. The predicted worst-case stack
usages of individual tasks in a system can be used in an au-
tomated overall stack usage analysis for all tasks running
on one Electronic Control Unit, as described in [3] for sys-
tems managed by an OSEK/VDX real-time operating
system.

1530-1591/05 $20.00 © 2005 IEEE

3. Worst-case execution time prediction

Many tasks in safety-critical embedded systems have
hard real-time characteristics. Failure to meet deadlines
may be as harmful as producing wrong output or failure to
work at all. Yet the determination of the Worst-Case Execu-
tion Time (WCET) of a task is a difficult problem because
of the characteristics of modern software and hardware.

Embedded control software (e.g., in the automotive in-
dustries) tends to be large and complex. The software in a
single electronic control unit is usually developed by several
people, several groups or even several different providers. It
is typically combined with third-party software such as real-
time operating systems and/or communication libraries.

Caches and branch target buffers are used in virtually all
performance-oriented processors to reduce the number of
accesses to slow memory. Pipelines enable acceleration by
overlapping the executions of different instructions. Conse-
quently the timing of the instructions depends on the execu-
tion history.

The widely used classical methods of predicting execu-
tion times are not generally applicable. Software monitoring
and dual-loop benchmark change the code, which in turn
changes the cache behavior. Hardware simulation, emula-
tion, or direct measurement with logic analyzers can only
determine the execution time for some fixed inputs.

In contrast, abstract interpretation can be used to effi-
ciently compute a safe approximation for all possible cache
and pipeline states that can occur at a program point in any
program run with any input. These results can be combined
with ILP (Integer Linear Programming) techniques to safely
predict the worst-case execution time and a corresponding
worst-case execution path.

AbsInt ’s WCET tool aiT determines the WCET of a
program task in several phases [2]: CFG building decodes,
i.e. identifies instructions, and reconstructs the control-flow
graph (CFG) from a binary program;value analysiscom-
putes value ranges for registers and address ranges for in-
structions accessing memory;loop bound analysisdeter-
mines upper bounds for the number of iterations of sim-
ple loops;cache analysisclassifies memory references as
cache misses or hits;pipeline analysispredicts the behav-
ior of the program on the processor pipeline;path analysis
determines a worst-case execution path of the program.

The results of value analysis are used to determine pos-
sible addresses of indirect memory accesses—important for
cache analysis—and in loop bound analysis. They are usu-
ally so good that only a few indirect accesses cannot be
determined exactly. Value analysis can also determine that
certain conditions always evaluate to true or always evalu-
ate to false. As a consequence, certain paths controlled by
such conditions are never executed. Therefore, their execu-
tion time does not contribute to the overall WCET of the

program, and need not be determined in the first place.
Cache Analysis uses the results of value analysis to pre-

dict the behavior of the (data) cache. The results of cache
analysis are used within pipeline analysis allowing the pre-
diction of pipeline stalls due to cache misses. The combined
results of the cache and pipeline analyses are the basis for
computing the execution times of program paths. Separat-
ing WCET determination into several phases makes it pos-
sible to use different methods tailored to the subtasks. Value
analysis, cache analysis, and pipeline analysis are done by
abstract interpretation [1]. Integer linear programming is
used for path analysis.

aiT allows to inspect the timing behavior of (time-
critical parts of) program tasks. The analysis results are de-
termined without the need to change the code and hold
for all executions.aiT takes into account the combina-
tion of all the different hardware characteristics while still
obtaining tight upper bounds for the WCET of a given pro-
gram in reasonable time. Its results are documented in a re-
port file and as annotations in the control-flow graph that
can be visualized usingAbsInt ’s graph vieweraiSee.

4. Conclusion

Tools based on abstract interpretation can perform static
program analysis of embedded applications. Their results
hold for all program runs with arbitrary inputs. Employ-
ing static analyzers is thus orthogonal to classical testing,
which yields very precise results, but only for selected pro-
gram runs with specific inputs. The usage of static analyz-
ers enables one to develop complex systems on state-of-the-
art hardware, increases safety, and saves development time.
Precise stack usage and timing predictions enable the most
cost-efficient hardware to be chosen. As recent trends, e.g.,
in automotive industries (X-by-wire, time-triggered proto-
cols) require knowledge on the WCETs of tasks, a tool like
aiT is of high importance.

References

[1] P. Cousot and R. Cousot. Abstract Interpretation: A Unified
Lattice Model for Static Analysis of Programs by Construc-
tion or Approximation of Fixpoints. InProceedings of the 4th
ACM Symposium on Principles of Programming Languages,
Los Angeles, California, 1977.

[2] C. Ferdinand, R. Heckmann, M. Langenbach, F. Martin,
M. Schmidt, H. Theiling, S. Thesing, and R. Wilhelm. Re-
liable and precise WCET determination for a real-life proces-
sor. InProceedings of EMSOFT 2001, First Workshop on Em-
bedded Software, volume 2211 ofLecture Notes in Computer
Science, pages 469–485. Springer-Verlag, 2001.

[3] W. Janz. Das OSEK Echtzeitbetriebssystem, Stackverwal-
tung und statische Stackbedarfsanalyse. InEmbedded World,
Nuremberg, Germany, Feb. 2003.

	Main Page
	DATE'05
	Front Matter
	Table of Contents
	Author Index

