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Université Paul Sabatier, CNRS
Toulouse, France

{burguier,rochange}@irit.fr

Abstract

The wider and wider use of high-performance proces-
sors as part of real-time systems makes it more and more
difficult to guarantee that programs will respect their strict
deadlines. While the computation of Worst-Case Execution
Times relies on static analysis of the code, the challenge is
to model with enough safety and accuracy the behaviour
of intrisically dynamic components. In this paper, we fo-
cus on the dynamic branch predictor. Several models to
bound the number of branch mispredictions have been pre-
viously published. Some of them exhibit a high complexity
while other ones have shown that taking into account se-
mantic information from the source code makes things more
tractable. We extend this work to more general nested loop
structures. We also give some simulation results that show
that the way branch mispredictions are usually taken into
account cannot be both safe and accurate in the case of
high-performance pipelines. We propose a more realistic
approach to be used as part of WCET computation.

1. Introduction

In real-time systems, the knowledge of the Worst-Case
Execution Time (or WCET) of programs is required to be
able to define a scheduling of the different tasks that guar-
antees the fulfilment of strict deadlines. Dynamic methods
based on measurement do not allow a safe evaluation of the
WCET because it generally cannot be ensured that all the
possible execution paths have been explored. Static analy-
sis methods are then used to compute an upper bound of the
WCET [4].

Some components of the processor architecture exhibit
a very dynamic behaviour that depends on the past history
of the processor state, which makes the evaluation of the
WCET by static analysis complex. Among these dynamic
components, we focus here on the branch predictor.

The time predictability of a processor architecture relies
on the availability of techniques that can model this archi-
tecture to calculate an upper bound of the execution time.
The complexity of these techniques should be taken into
account and a processor might be declared unpredictable if
computation and/or memory requirements for analysing the
WCET are prohibitive. The precision of the WCET bound
can also moderate this notion of time predictability: if the
analysis relies on very pessimistic assumptions about the
hardware, the system cannot be considered as predictable.
So we say that a processor is predictable if it can be anal-
ysed with reasonable cost and if the estimated WCET is not
too far from the real WCET. By extension, we say that a
branch predictor is predictable if it does not alter the pre-
dictability of the processor.

Taking into account the branch predictor within the
WCET analysis involves: (a) estimating the number of
branch mispredictions, and (b) integrating the mispredic-
tion penalties in the computation of the WCET. As it will
be exposed in section 2, several previous works have ad-
dressed the question of bounding the number of mispredic-
tions, even for advanced predictors. However, the proposed
models are extremely complex and thus it is question-
able whether these predictors can be considered as pre-
dictable. We will propose some modifications to the
branch predictor to improve its predictability. In addi-
tion, we feel that the modeling of misprediction penalties
in the case of a high-performance pipeline has not cor-
rectly been addressed up to now. One contribution of this
paper, described in section 3, is the suggestion of a way
to integrate the misprediction penalties in the set of con-
straints used to compute the WCET by the IPET method
[5]. In section 4, we extend previous results [2] to fit our re-
quirements to model safely and tightly branch mispredic-
tions, and also to make them applicable to more general al-
gorithmic structures. Finally, we conclude and we present
our further work.
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2. Modeling branch prediction

2.1. Overview of branch prediction schemes

We focus here on dynamic branch prediction schemes
since, by nature, static prediction algorithms are fully pre-
dictable. Dynamic schemes make use of the control flow
history to predict the outcome of any branch encountered
in the fetched instruction flow. The outcome of a branch
includes its direction (taken, not taken) and, if the branch
is predicted as taken, its target address. The control flow
history is kept in prediction tables: directions are stored in
the Branch History Table (BHT) while target addresses are
stored in the Branch Target Buffer (BTB).
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Figure 1. Saturating two-bit predictor counter

Information about the direction history is often repre-
sented by a 2-bit saturating counter as illustrated in Figure 1.
The BHT is indexed either by the branch PC (local scheme),
or by a global history vector that keeps the directions of
the last predicted branches (GAg), or by some function (e.g.
XOR) of the PC and the global history (gshare) [7]. For eco-
nomic reasons, the BHT is generally not tagged and one en-
try might be shared by several branches (which is not de-
tected by the hardware). This phenomemon is referred to as
aliasing. It has been shown that, on the average case, alias-
ing is not too much damaging for the overall performance.
Nevertheless, when considering the worst case, its possible
destructive effects have to be taken into account.

Since it is very unlikely that two branches share the same
target address (while the 2-bit counter only has 4 possi-
ble values), it is commonly admitted that the BTB has to
be tagged. Then conflicts between branches still might oc-
cur but they can be detected by the hardware. Whenever the
BHT indicates that a branch should be predicted as taken
but the tag in the BTB does not match the branch PC, the
branch is predicted by default, i.e. not taken.

2.2. Related work

In a recent paper [2], Bate and Reutemann study
branches involved in the implementation of simple al-

gorithmic structures (loops and conditional statements).
They show how the number of mispredictions for these
branches can be bounded while ignoring the aliasing prob-
lem. We extend their work to more general loop nests
and we show how to compute data that fit our require-
ments to model the effects of branch prediction on
high-performance pipelines.

Colin and Puaut [3] use static simulation, previously pro-
posed to analyse cache memories [9], to compute the ab-
stract state of the BHT at the time a branch has to be pre-
dicted (they consider a local scheme where the BHT is in-
dexed by the branch PC). From this state and from an analy-
sis of the program structure (loop nests), they determine for
each branch whether it will be correctly predicted. Li, Mi-
tra and Roychoudhury [8] integrate the modeling of branch
prediction into the computation of the WCET by the IPET
method by adding a number of constraints. Their model al-
lows taking into account several schemes to index the BHT.
Both works model the effects of aliasing in the BHT but
they ignore the possible conflicts in the BTB. Li et al.’s
model is appropriate to analyse advanced branch predic-
tors but, due to its complexity, it might not fit the tractabil-
ity requirements for predictability. We retain that most of
this complexity comes from the need of modeling destruc-
tive aliasing in the BHT. In the next part, we propose to pre-
vent aliasing to gain in predictability.

2.3. Preventing aliasing to improve predictability

The mixed branch predictor [10] has been proposed to
reduce the branch misprediction rate. It allocates each en-
try of the branch prediction table to a particular branch
instruction, and the other branches that would index the
same entry are statically predicted. In the context of a high-
performance processor, it was proposed to keep in the ta-
ble for dynamic prediction those branches that are the most
frequenlty executed (they can be selected by execution pro-
filing). Here, the purpose is to make the branch predictor
more predictable. We suggest that it would be more appro-
priate to allocate the table entries to the most predictable
branches, i.e. the branches with the easiest to estimate mis-
prediction rates. This includes branches with a regular be-
haviour, like loop control branches, as we will see in sec-
tion 4. These branches can be automatically identified from
a Control Flow Graph representation of the code [1]. A care-
ful selection of the branches to be included in the dynamic
predictor should also ensure that no destructive conflict can
occur in the Branch Target Buffer.

3. Branch prediction penalty

Previous works consider a simplified view of the im-
pact of a branch misprediction: it is assumed to be constant,



at worst for all of the conditional control flow instructions
(CI) in the program [3] and at best for every CI [8] (i.e. the
penalty differs from one CI to another one but, for a given
CI, the misprediction penalty is the same on both possible
paths).

We have made some measurements to estimate the valid-
ity of this assumption. We have used a cycle-level simulator
of a generic 4-way superscalar dynamically-scheduled pro-
cessor. The benchmarks (fibcall, jfdctint, matmul, crc, lud-
cmp, lms, fft1) were taken from the SNU benchmark suite
(http://www.archi.snu.ac.kr/realtime/benchmark/) and were
compiled without optimization for the PowerPC 603 tar-
get. For each benchmark, we have extracted the control flow
graph from the binary code. Conditional branch instructions
were identified as the ending instructions of basic blocks
(nodes) that have two outgoing edges. For each possible
outcome of each CI, we have simulated the two-block se-
quence (i.e. the block ended by the CI and the target block),
first with the branch well predicted and second with the
branch mispredicted. The difference between the two simu-
lated times is the misprediction penalty. Figure 2 shows the
cumulative distribution of the misprediction penalty over all
the benchmarks. It can be observed that the penalty is far
from being constant and ranges from 0 to 11 cycles.
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Figure 2. Distribution of branch prediction
penalties

Then we compared, for every CI, the difference between
the penalties observed on the two possible paths. Figure 3
shows the cumulative distribution of these differences over
all the benchmarks.

We can remark that the difference can be large (up to 7
cycles, which is significant compared to the execution time
of short basic blocks). Thus, we will obtain a more reli-
able and tighter WCET if we distinguish the two branch
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Figure 3. Difference on the branch prediction
penalty between both possible paths

directions and if we bound the number of mispredictions
for both of them. Figure 4 shows how to modify the con-
trol flow graph to model the effects of branch prediction:
block I ends with a conditional branch instruction and is fol-
lowed by block J if the branch is taken and by block K oth-
erwise. Each possible outcome is represented by two edges
to model that the branch can be well-predicted (wp) or mis-
predicted (mp).
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Figure 4. Representing branch prediction in
the control flow graph

The proposed CFG makes it possible to integrate the
analysis of the worst-case branch predictor behaviour in the
computation of the WCET by the IPET method [5]. Each el-
ement of the CFG has an execution time (for an edge, the
execution time represents the gain due to the pipelined exe-
cution of two successive basic blocks): in the case of a block
ending with a CI, each outgoing edge is doubled to model
two possible values of the gain, depending on whether the
CI is correctly predicted or not. In the case of a mispre-
diction, the gain will generally be lower due to the recov-
ery penalty (however, note that in some very particular sit-



uations, a misprediction could generate a shorter execution
time, due to some execution anomalies as the ones described
in [6]). Let:

• T be the overall execution time

• bi be the number of times block i is executed

• ti be the execution time of block i

• smp
i j be the number of times sequence i → j is executed

with the branch mispredicted

• swp
i j be the number of times sequence i → j is executed

with the branch well-predicted

• tmp
i j be the execution time of sequence i → j when the

branch is mispredicted

• twp
i j be the execution time of sequence i → j when the

branch is well-predicted

The expression of the overall execution time is:

T = bi × ti + b j × t j + bk × tk + smp
i j × tmp

i j +
swp

i j × twp
i j + smp

ik × tmp
ik + swp

ik × twp
ik

Computing the WCET using the IPET method comes
to maximizing T while respecting structural constraints ex-
tracted from the CFG (e.g. bi = smp

i j + swp
i j + smp

ik + swp
ik ). In

the absence of further information about the possible val-
ues of smp

i j and tmp
i j , the result of this optimization problem

would probably be that all branches are mispredicted be-
cause the execution time of a sequence is generally higher
in the case of a misprediction. To be able to obtain a more
accurate estimation of the WCET, it is desirable to derive
as-tight-as-possible upper bounds on the numbers of branch
mispredictions on both path. In the next section, we extend
recent work by Bate and Reutemann [2] for this purpose.

B    = loop branch 
T    = "taken" 
NT = "not−taken" 
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T

Figure 5. Loop structure

4. Evaluation of an upper bound on the num-
ber of mispredictions

In this section, we will show how to compute an up-
per bound on the number of mispredictions for predictable

branches. Among predictable branches, we focus on loop
branches and we consider the loop compilation scheme rep-
resented in Figure 5: path ”T” (taken) leaves the loop and
path ”NT ” enters it for a new iteration.

Bate and Reutemann [2] have already analysed the num-
ber of mispredictions for this kind of loop. We propose to
extend their study by differenciating the mispredictions on
both paths of the branch.

Considering the simple loop of Figure 5, Table 1 gives
the number of mispredictions for both possible paths as a
function of the number n of loop iterations and of the initial
counter state. Note that, in each case, the total number of
mispredictions is the same as the one computed in [2].
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Figure 6. Evolution of the 2-bit counter for a
nested loop

Bate and Reutemann also model nested loops (the loop
under analysis is nested in another one and then is executed
several times). They assume that the internal loop has a
fixed number of iterations. We consider a more general case
where the internal loop can have a variable number of iter-
ations. If the external loop is executed M times, we have to
compute the evolution of the two-bit counter for the M ex-
ecutions of the internal loop. This evolution can be repre-
sented by the automaton given in Figure 6: each state (ex-
cept for start and end) represents one possible value of the
2-bit counter, each edge represents one execution of the in-
ternal loop and the starting and ending states of an edge are
the values of the 2-bit counter before and after executing the
loop. Each edge is annotated by a triplet < wi,mNT ,mT >:
wi is the number of times the transition is executed, mNT and



Init number of iterations ( 2-bit counter evolution / number of mispredictions (NT/T))
n = 0 n = 1 n = 2 n ≥ 3

00 00� 01 0/1 00 → 00� 01 0/1 00 → 00 → 00� 01 0/1 00 · · ·� 01 0/1
01 01� 10 0/1 01 → 00� 01 0/1 01 → 00 → 00� 01 0/1 01 → 00 · · ·� 01 0/1
10 10 → 11 0/0 10� 01� 10 1/1 10� 01 → 00� 01 1/1 10� 01 → 00 · · ·� 01 1/1
11 11 → 11 0/0 11� 10 → 11 1/0 11� 10� 01� 10 2/1 11� 10� 01 · · ·� 01 2/1

Table 1. Number of mispredictions for both directions of a branch for a simple loop which iterates n
times (� represents a transition with misprediction)

mT are the numbers of mispredictions of both branch direc-
tions. The transitions and their annotations are derived from
Table 1. Each transition that starts from a given state stands
for one (or several) particular number(s) of iterations of the
loop.

This automaton constitutes a support for computing up-
per bounds. Considering M iterations of the external loop,
we can write:

∑9
i=0 xi = M (1)

∀i, 0 ≤ xi ≤ M (2)

∑3
i=0 ei = 1 and ∑3

i=0 si = 1 (3)

First, we calculate the number of mispredictions for the
NT direction. It is given by:

mNT = x0 + x3 + x4 + 2x6 + x8 + 2x9

Thanks to equation (1) we can write:
mNT = M− x1 − x2 − x5 + x6 − x7 + x9 (4)

Since the ”11” state is neither final nor initial, we have:
x9 + x6 + e3 = s3 + x5

which is equivalent to:
x9 + x6 − x5 = s3 − e3 (5)

Equations (3) give:
0 ≤ s3 ≤ 1 and 0 ≤ e3 ≤ 1

Thus, we obtain:
−1 ≤ s3 − e3 ≤ 1 (6)

Equations (2) and (6) drive to:
−x1 − x2 − x5 + x6 − x7 + x9 ≤ 1 (7)

From equations (4) and (7), we can derive an upper
bound of mNT :

mNT ≤ M + 1

Note that this upper bound can be reached (e.g. sequence
s3,x8,x6,e2).

We can bound the number of mispredictions on the T
path in the same manner. From Figure 6, we write:

mT = x0 + x1 + x2 + x3 + x4 + x6 + x9

and
mT = M− x5 − x7 − x8 (8)

From equation (2), we can write:
−x5 − x7 − x8 ≤ 0

And thus :
mT ≤ M

Again this bound can be reached (e.g. sequence
s3,x6,e2).

Thus, for a nested loop executed M times with a vari-
able number of iterations, the upper bounds on the number
of mispredictions for both possible paths are :

mT ≤ M
mNT ≤ M + 1

and then:
mT + mNT ≤ 2M + 1

This bound on the total number of mispredictions can
also be reached (e.g. s3,x9,s1).

Considering a fixed number of loop iterations, Bate and
Reutemann [2] have found that the total number of mispre-
dictions was 2M. This bound is reached whenever the loop
iterates once each times is executed. For a number of iter-
ations greater than 3, the maximum number of mispredic-
tions is M + 2. Our results show that using their model by
fixing the (variable) number of iterations to a worst-case
value can lead to underestimating the number of mispredic-
tions. For example, let us consider a loop executed three
times that iterates twice, then once and finally more than
three times. Assuming that the initial counter state is ”11”,
the total number of mispredictions is 3 + 2 + 2 = 7 (these
figures are taken from Table 1). The upper bound given by
our model is 2M + 1 = 7, which is safe. Using Bate and
Reutemann’s model and fixing the number of loop itera-
tions to its maximal value (greater than three) would give an
underestimated bound of M + 2 = 5. Even fixing the num-
ber of iterations to their worst-case value (a single iteration)
would give an unsafe bound (2M = 6). This shows that the
previous model cannot directly be used to evaluate the gen-
eral case (variable iteration number) and the extension we
propose is useful to this case.

5. Conclusion

Dynamic branch predictors make the computation of the
Worst-Case Execution Time of programs based on static



analysis difficult. Several models have been proposed in the
past to bound the number of mispredictions. However, it ap-
pears that modeling the aliasing effect, that might have a de-
structive impact on the branch prediction tables, requires a
tremendous effort. Then the resolution of the model might
not be tractable. We argue in favour of allowing the use
of simpler models by eliminating possible conflicts. Previ-
ous work done for high-performance applications could be
adapted to a real-time context.

We also have made the point that previous studies use a
simplistic view of the impact of a branch misprediction on
the execution time. We have given some measurement re-
sults that show that this penalty can vary significantly from
one branch to the other one, but also, for a given branch,
from one possible path to the other one. This is due to the
use of advanced algorithms to schedule the instructions in
superscalar out-of-order pipelines. This point makes it nec-
essary to bound separately the number of mispredictions
on each possible path. We have shown how this could be
done as part of the computation of the WCET with the IPET
method.

Finally, we have extended previous work by Bate and
Reutemann [2] to differentiate the taken path from the not-
taken one. We also have considered more general loop nests,
where the internal loop can have variable iteration counts.

Future work includes developping an algorithm to select
predictable branches to allocate in the branch prediction ta-
ble. We also intend to extend the bounding of misprediction
numbers to more complex algorithmic structures.

References

[1] T. Ball and J. Larus. Branch prediction for free. In ACM SIG-
PLAN 1993 Conference on Programming Language Design
and Implementation, volume 28, pages 300–313, june 1993.

[2] I. Bate and R. Reutemann. Worst-case execution time anal-
ysis for dynamic branch predictors. In 16th Euromicro Con-
ference on Real Time Systems, pages 215–222, june 2004.

[3] A. Colin and I. Puaut. Worst case execution time analysis for
a processors with branch prediction. In Real-Time Systems,
pages 249–274, may 2000.

[4] J. Engblom, A. Ermedahl, M. Sjödin, J. Gustafsson, and
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