
Influence of Memory Hierarchies on Predictability
for Time Constrained Embedded Software∗

Lars Wehmeyer, Peter Marwedel
Embedded Systems Group, CS Dept., University of Dortmund, Germany

{Lars.Wehmeyer, Peter.Marwedel}@udo.edu

Abstract
Safety-critical embedded systems having to meet real-time con-
straints are expected to be highly predictable in order to guar-
antee at design time that certain timing deadlines will always
be met. This requirement usually prevents designers from utiliz-
ing caches due to their highly dynamic, thus hardly predictable
behavior. The integration of scratchpad memories represents
an alternative approach which allows the system to benefit from
a performance gain comparable to that of caches while at the
same time maintaining predictability. In this work, we com-
pare the impact of scratchpad memories and caches on worst
case execution time (WCET) analysis results. We show that
caches, despite requiring complex techniques, can have a neg-
ative impact on the predicted WCET, while the estimated WCET
for scratchpad memories scales with the achieved performance
gain at no extra analysis cost.

1 Introduction
The growing gap between increasing processor speeds and the
slower main memory, also known as the “memory wall” [1],
has become a bottleneck for computer designers. In traditional
computer systems like desktop PCs, caches are usually intro-
duced in order to hide the high latencies of main memory ac-
cesses. Especially for real-time embedded systems, predictabil-
ity is an important issue: even during the design phase of such
a system it must be guaranteed that certain deadlines will al-
ways be met. The use of caches, however, tends to improve
only the average-case performance, not necessarily the worst-
case execution time (WCET). Estimating a cache’s contribu-
tion to WCET requires complex analysis techniques to model
its dynamic behavior which is hard to predict in a safe, yet not
over-pessimistic way.

An alternative approach that has been investigated with re-
spect to performance and energy consumption is the use of so-
called scratchpad memories, also known as “tightly coupled
memories” (TCM). They are small onchip memories mapped
into the processor’s address space. Due to their small size,
scratchpad memories are extremely fast and require very little
energy per access. They are more efficient than caches since the
hardware logic required to control a cache is not required for
a scratchpad. The organization and utilization of the scratch-

∗This work has been sponsored in part by EU-project ARTIST2

pad is rather left to the programmer or to the compiler. How-
ever, a comprehensive methodology for the efficient utilization
of scratchpad memories is surprisingly still missing in industry.

Previous work proposed mapping the hot-spots of an appli-
cation to the scratchpad memory in order to gain performance
and to save energy. Apart from improvements concerning these
optimization goals, the mentioned methods also have a benefi-
cial effect on worst case execution time. In contrast to a cache,
all decisions concerning the layout of memory objects during
execution of the application are fixed at compile time, mak-
ing all memory accesses inherently predictable. In this paper,
we assume different sizes of scratchpad memories and unified
caches. For each configuration, we determine the performance
of several benchmarks by simulation using a typical input data
set. Additionally, we perform WCET analysis on the applica-
tions, once for scratchpads and once for caches. The results ob-
tained for scratchpad memories and caches are then compared.

The rest of this paper is structured as follows: the next sec-
tion considers some of the previous work on scratchpad alloca-
tion algorithms as well as WCET analysis, which form the ba-
sis of this work. In section 3, we describe the workflow used to
generate application executables for use with scratchpad mem-
ories and caches and show how the WCET analysis was per-
formed. Results are presented in section 4. A summary and
possible future work conclude the paper.

2 Related Work

Today’s markets expect computer systems to show a steady in-
crease in computing power. Since the limitations concerning
miniaturization and ever faster gigahertz processors are start-
ing to show, computer architects are forced to include perfor-
mance enhancing features so as to meet the customers’ de-
mand for high performance. Examples for such features are
the use of pipelines or speculative execution using branch pre-
diction units. The growing speed gap between processors and
the slower memory is the main reason for the widespread inte-
gration of caches.

All the above techniques help increase the average case per-
formance of a system. In embedded systems, however, it is
often necessary to be able to guarantee that timing deadlines
will never be violated. The required worst case execution time
analysis techniques become increasingly difficult when many
of the above-mentioned architectural features are present in the

1

1530-1591/05 $20.00 © 2005 IEEE

processor. Their highly dynamic behavior makes it hard or even
impossible to effectively predict the worst case timing at design
time [2]. A general overview over available analysis techniques
for the architectural features mentioned above can be found in
[3]. Of particuar interest is the work by Li et al. [4], who con-
sider the presence of a direct mapped instruction cache in the
WCET analysis of embedded systems. A cache conflict graph
is used to approximate the behavior of the cache and to deter-
mine the total number of hits and misses. A follow-up paper
[5] extends the work to also cover set associative instruction
caches as well as data and unified caches. One solution to the
problem of data caches presented in [6] is the introduction of
predictable data structures, which should be used by the pro-
grammer for timing critical code. Tan et al. [7] extended the
consideration of caches to also cover the case of multi tasking
systems. In this case, the preemption of tasks can lead to ad-
ditional cache miss overhead which has to be considered and
evaluated, further complicating cache analysis.

A concept for separating program path analysis and microar-
chitectural analysis into two steps in order to reduce the com-
plexity of WCET analysis is presented in [8]. Results are re-
ported to be comparable to combined analysis techniques. This
approach is also used in aiT [9], a commercial WCET analysis
tool that is available for several processor and cache architec-
tures. aiT is actively used in industry, e.g. by Airbus France
in order to determine upper bounds for the execution times of
critical avionics software. As input, the tool takes an executable
for a specific platform along with user supplied annotation data
concerning e.g. loop bounds and access addresses as well as ar-
chitectural information concerning the memory layout. It then
generates a safe upper bound for the expected WCET. Using
aiT, the elaborate (if at all feasible) task of finding input sets
for which a simulation run yields the maximum execution time
is no longer required. The commercially available version of
aiT for ARM7 is currently not equipped with a cache analysis.
AbsInt GmbH provided us with a simple experimental cache
analysis for the ARM7 cache that uses only a subset of the
analysis techniques [10] available with commercial versions of
aiT. One of the difficulties with caches integrated into ARM
processor cores is the fact that they use a random replacement
policy, making precise estimates for cache behavior difficult.
For caches that use an LRU replacement, WCET analysis can
yield tighter bounds.

In contrast to a cache, no extra analysis module is required
in order to investigate the effect of a scratchpad memory on
WCET, since it is simply introduced as a new, distinct memory
region.

In general, scratchpad memories are an effective replacement
for caches since they can help bring down energy consumption
and at the same time offer performance benefits comparable to
those of caches [11]. For this reason, scratchpad memories are
becoming more popular and are widely available e.g. in the
ARM9 processor series under the name Tightly Coupled Mem-
ory (TCM). The one drawback of scratchpad memories is the
fact that they need to be actively exploited by the programmer
or the compiler. Since the scratchpad does not have any logic
to dynamically control its contents at runtime, memory objects

have to be allocated to the scratchpad by the compiler. The han-
dling of memory allocation during the compilation process is
advantageous since the compiler has detailed knowledge about
execution and access frequencies. This information is used to
distribute memory objects among the available different mem-
ories in an optimal way instead of using dynamic ad-hoc deci-
sions as in a cache.

Memory allocation can be performed either in a static or
in a dynamic way. In the former approach, the scratchpad
is preloaded with a set of memory objects which stay on the
scratchpad throughout the application’s execution time. This
static approach was first used in [12] to allocate data objects
like arrays to a scratchpad memory. In [13], both instructions
and data are allocated to the scratchpad in order to save energy
by exploiting the scratchpad memory’s low power dissipation.

The dynamic approach allows memory objects to be copied
to the scratchpad at runtime. Dynamic allocation techniques
presented in [14, 15] consider data and instructions, respec-
tively. These approaches are of particular benefit when large
programs with several hotspots and changing working sets are
used. A new paper [16] uses a technique based on register
allocation for CISC architectures to allocate both instructions
and data to the scratchpad in a dynamic way. Considerable
savings of up to 38% concerning energy consumption com-
pared to a static approach are reported. Note that the objects
and the points in time at which they are copied to the scratch-
pad are all fixed at compile time. Thus, both static and dy-
namic scratchpad usage are under full control of the compiler
or the programmer, making the methods inherently predictable.
Concerning WCET, this means that using a scratchpad and a
compiler-based algorithm to utilize it, no additional analysis is
required for WCET analysis. Despite the additional overhead
at compile time for application analysis and object allocation
to the different memories, using a scratchpad offers an advan-
tage over caches which generally show a dynamic behavior that
is hard to predict at compile time and require complex analysis
techniques in order to determine a tight upper bound for WCET.

In this paper, we will use the static allocation technique
presented in [13] to allocate functions and global data to the
scratchpad in an energy-optimal way using the energy model
for the ARM7TDMI processor described in [17]. The energy
consumption of caches and scratchpad memories is modelled
according to [11]. The problem of finding an optimal map-
ping of memory objects to the scratchpad and main memory
is solved by formulating it as a variant of the knapsack prob-
lem and using a commercial ILP solver [18]. This is repeated
for different scratchpad memory capacities. The resulting ex-
ecutables are simulated with ARM’s instruction set simulator
ARMulator [19] using a typical input data set leading to an av-
erage case runtime.

To determine the effect of using scratchpad memories on
WCET, the executables using different sizes of scratchpads are
also analyzed using aiT. Information about the used memory
architecture, including main memory and scratchpad memory
timing and address information, has to be provided to the tool.
Apart from this annotation, no further information or analysis
is required compared to a system that only uses main memory.

2

To compare scratchpads with caches, an executable gener-
ated without using the scratchpad optimization in the com-
piler is simulated using unified, direct mapped caches of dif-
ferent sizes. These parameters are configurable in ARMulator.
WCET analysis is performed using the available cache analy-
sis tool for the ARM7 processor integrated into aiT. The deter-
mined WCET using a cache is then compared to the scratchpad
case.

3 Workflow

The workflow used to compare the impact of scratchpads and
caches on WCET analysis results is shown in Figure 1. The
benchmark programs, written in the C programming language,
were compiled into executables assuming either a cache or a
scratchpad in the target system. Our encc compiler generates
instructions in the 16 bit THUMB mode of the ARM7 proces-
sor. Because of the higher code density, this instruction set is
recommended for energy- and size-constrained systems [20].

C−Program

encc

executable

aiTARMulator

params
Cache

encc

executable

aiTARMulator

SP
params

Figure 1: Workflow

The left branch of Figure 1 shows the scratchpad setup. To
generate simulation results for a scratchpad based system, the
compiler takes as input the size and the access costs of the
scratchpad to be used. This information is used to solve the
corresponding knapsack problem. It is formulated in ILP no-
tation using a benefit function which associates each memory
object (function or global data element) with a certain energy
gain if this object is statically allocated to the scratchpad mem-
ory instead of main memory. This benefit is maximized in the
objective function under the constraint that the capacity of the
scratchpad is not exceeded. For details of the used algorithm,
please refer to [13], which also describes how to treat basic
blocks and multi basic blocks, an extension not used for the
results in this work.

The generated executable then contains address information
for all memory objects, which means their static location in
main memory or scratchpad is known. The executable is sim-
ulated using ARMulator, which in turn receives information
about the size and the address range of the used scratchpad
memory. ARMulator can thus determine the number of cycles
required to execute the benchmark using a typical example in-
put data set, taking into account the reduced access latencies of
the scratchpad memory compared to main memory. The result
of this step is a simulated average case execution time. This

code generation and simulation was repeated in our workflow
for scratchpad sizes from 64 bytes to 8k.

The influence of using a scratchpad on WCET was deter-
mined using aiT. Even though no additional software module is
required in order to investigate this effect, the use of a scratch-
pad requires an annotation in the aiT configuration files. aiT
supports the specification of memory regions with different at-
tributes. As shown in table 1, the scratchpad region always
requires one cycle per access. Annotating the timing of the
scratchpad region is actually the only additional effort required
in order to support scratchpad memories in the WCET analysis.

Access Width Main Memory Scratchpad
Byte (8 Bit) 2 1
Halfword (16 Bit) 2 1
Word (32 Bit) 4 1

Table 1: Cycles per memory access (access + waitstates)

In our model, which is based on the AT91EB01 evaluation
board by ATMEL Corp., the access times to main memory
depend on the width of the access. Since aiT does not cur-
rently allow the definition of access times depending on the bit
width, the waitstates for the different regions in main memory
have to be annotated in order to obtain valid results concern-
ing WCET. Since our compiler generates 16 bit THUMB mode
instructions, but integer data elements occupy 32 bit, the differ-
ent access times for instruction and data fetches shown in ta-
ble 1 have to be accounted for. An instruction fetch from main
memory causes one cycle for the actual access and one addi-
tional waitstate. Accessing a 32 bit data element from main
memory requires four cycles, since three additional waitstates
occur. This is reflected in the annotation file shown in Figure 2
for one benchmark and one particular scratchpad configuration:
The first memory area represents the scratchpad memory: Each
access takes 1 cycle with no additional waitstates, independent
of the bitwidth of the access. The “1:1” indicates that the
memory runs at the same clock speed as the processor. For
main memory, we need to differentiate between 16 and 32 bit
accesses. The second region contains 16 bit instructions, re-
quiring two cycles per access. The next region represents a so-
called literal pool, 32 bit data elements within the instruction
region used to load large constants into a register. Accessing a
32 bit value from a literal pool requires four cycles.

Scratchpad
MEMORY_AREA: 0x400eb0 0x400fbb 1:1 1 READ&ONLY CODE&DATA
Main memory regions
Instructions
MEMORY_AREA: 0x400fbc 0x401063 1:1 2 READ-ONLY CODE-ONLY
Literal Pool
MEMORY_AREA: 0x401064 0x40106f 1:1 4 READ-ONLY DATA-ONLY
integer data
MEMORY_AREA: 0x401070 0x402083 1:1 4 READ&WRITE DATA-ONLY
array of short
MEMORY_AREA: 0x402084 0x402092 1:1 2 READ&WRITE DATA-ONLY

Figure 2: Example annotation for aiT using scratchpad and
main memory

The remaining memory regions represent the data region of
the executable. Arrays of 32 bit values require 4 cycles per

3

access, whereas an array of variables of type short (16 bit) only
takes 2 cycles. The regions are annotated accordingly.

The specification of the memory areas requires some anno-
tation overhead, but it should be noted that this is always nec-
essary if memories with different access times are used. The
scratchpad memory with its uniform access times actually sim-
plifies the annotation process since scratchpad regions are not
divided depending on the bit width of the memory objects.
Most of the regions and addresses can be determined automat-
ically from address information provided by the linker.

One more requirement for a scratchpad memory is the an-
notation of function calls that jump from main memory to the
scratchpad or vice versa, since the relative branch offsets within
the executable do not reflect the actual execution time addresses
after the program has been loaded into memory.

We will now consider the workflow employed when a cache
is used in the memory hierarchy (right branch of Figure 1).
Since a cache is in general transparent to software, it does not
need to be considered during code generation. Therefore, gen-
erating one executable for use with all cache sizes is sufficient.
Of course, there are cache-based optimizations that can help
prevent cache conflicts through techniques like array partition-
ing or loop tiling [21], but these are not considered in our ap-
proach since it is doubtful that the benefits will also reflect in
improved WCET estimates.

The executables generated by the compiler are simulated us-
ing ARMulator. The instruction set simulator requires infor-
mation about the cache size and organization in order to be
able to determine the number of cycles required for execut-
ing the benchmarks for the different cache capacities from 64
bytes to 8k. For our experiments, we assumed a simple direct
mapped unified cache architecture found in ARM processors.
Each cache line holds four 32 bit words.

To determine the WCET using caches, the executables are
also analyzed using the WCET analysis tool aiT. The cache
analysis feature for the ARM7 is used to estimate the WCET
of the benchmarks using different cache sizes. Despite the fact
that the used cache analysis only includes a MUST-analysis and
no persistence considerations, we would like to stress that for a
scratchpad, no additional analysis technique is required at all.

Like for the scratchpad case, information about the timing of
cache hits and misses has to be annotated in the aiT configu-
ration files. The differentiation between 16 an 32 bit accesses
required above for main memory accesses is not necessary in
this case, since the cache always performs 32 bit accesses to fill
an entire cache line on a miss. Assuming a cache line length
of four, the loading of an entire cache line requires four 32 bit
accesses to the main memory. According to table 1, this means
12 additional waitstates, assuming the used memory does not
support burst transfers. A cache hit only requires one cycle to
retrieve the accessed word from the cache. This timing infor-
mation is annotated in aiT’s configuration file.

In addition to the memory region annotations mentioned
above, the user also needs to specify the bounds of loops that
aiT did not detect automatically, as well as the range of possible
addresses for those array accesses that could not be determined
by aiT. This can happen within our framework because starting

addresses of arrays may be allocated to a different memory re-
gion (e.g. to scratchpad), which is not directly reflected in the
executable analyzed by aiT. Array access annotation is of par-
ticular interest for the cache analysis, since it is in general not
decidable which element of the array is actually being accessed
at what time during execution of a benchmark. The generation
of all of the annotations mentioned above is automated using
information from the simulator and from the linker.

Once all annotations have been performed, aiT can analyse
the WCET of the application. The results of simulation and
WCET analysis for scratchpad memories and caches are pre-
sented in the following section.

4 Results
The benchmarks used to explore the impact of scratchpads and
caches on WCET are given in table 2. They comprise two
speech encoding and decoding algorithms from the mediabench
benchmark suite [22] and a mix of sorting algorithms com-
monly found in many algorithms.

Name Description
G.721 Speech encoding and decoding, reference

implementation of the CCITT
Multi Sort Combination of sorting algorithms
adpcm Speech encoding and decoding using

Adaptive Diff. Pulse Code Modulation

Table 2: Benchmarks

For all results presented in this section, there is always a cer-
tain difference between the WCET estimated by aiT and the
number of cycles determined using simulation. Please note that
this overestimation is due to the comparison of an average case
simulation using typical input data to the longest possible ex-
ecution time. This approach was chosen since it is generally
infeasible to determine a worst case input data set for an ar-
bitrary application. Using a simple sorting algorithm with a
known worst case input data set, the results obtained by simu-
lation on one hand and by WCET on the other only differed by
0.2%, highlighting the high precision of the used WCET anal-
ysis tool.

First of all, the benchmark programs were compiled and sim-
ulated using ARMulator with a setup of varying scratchpad
sizes. As expected, the simulated execution time decreases
when the scratchpad capacity is increased. So does the esti-
mated WCET determined by aiT: as can be seen for the G.721
benchmark in Figure 3a), WCET decreases at the same rate as
the actual cycles determined by simulation do. The step func-
tion appearance of the scratchpad simulation cycle count is due
to the consideration of only functions and global variables, as
described above.

The next step comprises simulation and WCET analysis of a
system employing a cache in the memory hierarchy – cf. Fig-
ure 3b). Simulation times using a cache are quite similar to
the scratchpad values for the G.721 benchmark. For a very
small cache, the execution times go up due to the high num-

4

ber of conflict misses. After that, times decrease at roughly the
same rate as they do for a scratchpad. The estimated WCET,
however, shows a very different behavior: it stays at a very
high level for all cache sizes instead of scaling with the aver-
age case performance improvements. Despite the fact that aiT
for ARM7 has only been equipped with a subset of the cache
analysis techniques available with commercial versions of aiT
for other processors, it should be clear that the much better re-
sults concerning WCET analysis when using a scratchpad were
achieved with an even simpler analysis technique not requiring
any additional cache analyses.

� � � � � � � � � � � � � � � � � � � ��
� � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

	
 �
� � � �
 � ���� � �

����� ��� ��� � !
"$# �&%�'

()*
+ ,
-. /
01
112

a) Using a Scratchpad

3 4 5 6 7 8 7 9 4 9 6 7 6 : 7 : 5;: 8 :3
9 3 3
6 3 3 3
6 9 3 3
7 3 3 3
7 9 3 3
< 3 3 3
< 9 3 3
5 3 3 3
5 9 3 3
9 3 3 3
9 9 3 3

= > ?
@ A B C > D EFHG I J

KHL&M&N&O&P Q�R S�OUT VXW$Y O&Z�[

\]^
_ `
ab c
de
eef

b) Using a Cache

Figure 3: Results for G.721 benchmark

Figure 4 shows the ratio of the WCET estimation to the sim-
ulated number of cycles for different scratchpad and cache sizes
for the G.721 benchmark. The simulated number of cycles was
normalized to the value 1. The main observation in this figure is
that the difference between average case simulation and WCET
analysis results remains constant for all scratchpad memory
sizes, meaning the added performance obtained by including
a scratchpad memory in a system translates directly to an im-
proved estimated WCET. Using a cache, on the other hand, can
lead to a strong WCET overestimation in particular for large
cache sizes. Since the cache’s behavior is hard to predict, it
is difficult to provide a sufficiently tight upper bound for the
WCET.

g h i j k�l k;m�h m$j k j;n k�n i$n l�n
g;o p m
j

j o k;m
j o m
j o p m
k

k;o k;m
k�o m
k;o p m
q

q;o k;m
q�o m
q;o p m
i

r s t u vxw yr s t u vHz�{ | } ~

�x�
� � �������X��� �x� �$��� �x�X� ���
�
��
��
��
��
���
� � �
�
�¡¢
�� �
� �
 ��

Figure 4: G721: Ratio of WCET and Simulated Cycles
for cache and scratchpad based systems

A similar picture can be observed for the MultiSort bench-
mark. Using a scratchpad memory, the WCET is about 3 times
as high as the simulation time for the given input data set. Note
again that this overhead of WCET over simulation stems from
the fact that typical, not worst case input values were used to
generate simulation results. For the scratchpad approach, the
ratio of WCET to simulation cycles stays more or less constant
over the considered range from 64 bytes to 8k of scratchpad,

whereas for the cache, the difference between WCET and simu-
lation cycles increases strongly with the cache size. This is due
to the ever larger uncertainty concerning cache misses when the
cache size increases.

£ ¤ ¥ ¦ §;¨ §;©;¤ ©&¦ § ¦;ª §�ª ¥&ª ¨�ª
£
¦
§
«
¥
©
¤
¬
¨
­
¦ £
¦�¦

® ¯ ° ± ²x³ ´® ¯ ° ± ²Hµ ¶ µ · ¸

¹»º
¼ ½ ¾�¿�À�ÁXÂH¼ ¹xÃ Ä&ÂÆÅ ÇxÈXÉ Â�Ê&Ë
ÌÍ
ÎÏ
ÐÑ
ÒÓ
ÔÕÖ
× Ø Ñ
ÙÚ
ÒÛÜ
ÔØ Ö
× Ï
Ú ÒÖ

Figure 5: MultiSort: Ratio of WCET and Simulated Cycles
for cache and scratchpad based systems

Figure 6 for the ADPCM benchmark shows a clear perfor-
mance benefit of the scratchpad compared to a cache, in partic-
ular for small sizes. For a cache that is too small, a lot of cache
misses occur for this program, leading to a severe performance
degradation.

It can further be observed that the overall deviation of WCET
and simulated cycles is always very low for this benchmark.
This may either be due to the fact that the chosen input set is
close to a worst case set, or that the program is not very control
flow intensive and thus consists mainly of the critical path.

Ý Þ ß à á â á ã Þ ã à á à ä á ä ß;ä â äÝ
ã Ý
à Ý Ý
à ã Ý
á Ý Ý
á ã Ý
å Ý Ý
å ã Ý
ß Ý Ý
ß ã Ý
ã Ý Ý
ã ã Ý
Þ Ý Ý

æ ç è
é ê ë ì ç í îï�ð ñ ò

óHô�õ ó�ö ÷�øUù úXû$ü ø&ý�þ

ÿ ��
� �
�� �
��
��	

a) Using a Scratchpad

 � �
 � � � � � �
 �
 � � � ��� � �

�

 �

�

� �

�

� �

�

� �

�

� �

�

� � ��� � � � � � �� � ! "

#%$'&'(*)'+ , - ./)10 2�3*4)'5/6

7 8
9: ;
<= > ?
@@
@A

b) Using a Cache

Figure 6: Results for ADPCM benchmark

Despite the fact that the ratio of simulated average case time
and WCET is indeed better for a cache of 128 bytes than for
a scratchpad, it can be seen that both the performance and the
WCET estimate for a scratchpad are better in absolute num-
bers. For larger cache and scratchpad sizes, the behavior seen
for the other benchmarks also becomes apparent for ADPCM:
the uncertainty concerning cache behavior prevents the WCET
analysis results to be as close to the average simulation perfor-
mance as they are for a scratchpad.

The results clearly show that using a scratchpad in a real-
time embedded system is advantageous. Without further anal-
ysis effort, the WCET estimate reflects the actual average-case
performance gain achieved by utilizing a scratchpad. The only
necessary modification in the aiT tool is to specify the memory
regions and their access latencies.

5

5 Summary and Future Work
In this work, we compare the effect of using caches or scratch-
pad memories on WCET analysis results for time constrained
embedded systems. We use a known scratchpad allocation al-
gorithm to place functions and data onto the scratchpad mem-
ory and annotate the configuration files of the used WCET anal-
ysis tool accordingly. We show that for caches, the difference
between simulated average case execution time and WCET can
grow larger for increasing cache sizes. The magnitude of this
difference depends on the cache architecture and the analysis
techniques. Using scratchpad memories leads to a decrease of
the estimated WCET for growing scratchpad sizes, with a near
constant ratio between measured average case simulation time
and the WCET analysis results throughout the range of consid-
ered scratchpad sizes. The benefit obtained by using a scratch-
pad memory directly translates to a reduced WCET estimate.
Scratchpad memories should thus be considered as a feasible
and worthwhile option during the design of time constrained
systems, since their application improves not only the average
case performance, but also helps reduce the predicted WCET.

This work is a first step of comparing scratchpad memo-
ries and caches in real time embedded systems. In the fu-
ture, we will consider other cache configurations (e.g. instruc-
tion caches instead of unified caches as well as set associative
caches) to investigate their effect on WCET, and again compare
the results to using scratchpad memories.

We expect that using the full scale of aiT’s cache analysis
techniques as described in [10] would probably lead to im-
proved cache results with respect to WCET. However, despite
the complexity of cache analysis tools available today, it is
doubtful that the results achieved by using an inherently pre-
dictable scratchpad can be reached.

We will use the full featured allocation technique [13] also
considering basic blocks for allocation onto the scratchpad
memory instead of just complete functions. This is expected
to further improve results for the scratchpad case due to the
finer allocation granularity. The dynamic memory allocation of
instructions and data presented in [16] will also be investigated
under the aspect of worst case execution time.

Finally, the allocation technique will be extended to not op-
timize the allocation of objects to the scratchpad memory using
an energy cost function, but rather to consider placing those
objects onto the faster onchip memory that lie on the critical
path of the application. This is expected to lead to even better
WCET estimates.

6 Acknowledgement
The authors would like to thank “AbsInt” Angewandte Infor-
matik GmbH for their support concerning WCET analysis us-
ing the aiT framework.

References
[1] William. A. Wulf and Sally A. McKee. Hitting the Memory Wall: Impli-

cations of the Obvious. ACM Computer Archtiecture News, 23(1):29–24,
March 1995.

[2] Reinhold Heckmann, Marc Langenbach, Stephan Thesing, and Reinhard
Wilhelm. The Influence of Processor Architecture on the Design and the
Results of WCET Tools. Proceedings of the IEEE, 91(7), July 2003.

[3] Peter Puschner and Alan Burns. A Review of Worst-Case Execution-
Time Analysis. Journal of Real-Time Systems, 18(2/3):115–128, May
2000.

[4] Yau-Tsun Steven Li, Sharad Malik, and Andrew Wolfe. Performance
Estimation of Embedded Software with Instruction Cache Modeling. In
Proceedings of the IEEE/ACM International Conference on Computer-
Aided Design, pages 380–387, November 1995.

[5] Yau-Tsun Steven Li, Sharad Malik, and Andrew Wolfe. Cache Modeling
for Real-Time Software: Beyond Direct Mapped Instruction Caches. In
Proceedings of the IEEE Real-Time Systems Symposium, December 1996.

[6] Thomas Lundqvist. A WCET Analysis Method for Pipelined Micropro-
cessors with Cache Memories. Technical report, Dept. of Computer En-
gineering, Chalmers University of Technology, June 2002.

[7] Yudong Tan and Vincent Mooney. Integrated Intra- and Inter-task Cache
Analysis for Preemptive Multi-tasking Real-Time Systems. In Proceed-
ings of the 8th International Workshop, SCOPES 2004, in: Lecture Notes
on Computer Science, LNCS3199, pages 182–199, 2004.

[8] Henrik Theiling, Christian Ferdinand, and Reinhard Wilhelm. Fast and
Precise WCET Prediction by Separated Cache and Path Analyses. Real-
Time Systems, 18(2/3):157–179, 2000.

[9] AbsInt Angewandte Informatik GmbH. aiT: Worst Case Execution Time
Analyzers. http://www.absint.com/ait, 2004.

[10] Christian Ferdinand. Cache Behavior Prediction for Real-Time Systems.
PhD thesis, Universität des Saarlandes, Saarbrücken, 1997.

[11] Rajeshwari Banakar, Stefan Steinke, Bo-Sik Lee, M. Balakrishnan, and
Peter Marwedel. Scratchpad Memory: A Design Alternative for Cache
On-chip Memory in Embedded Systems. In 10th Int. Symp. on Hard-
ware/Software Codesign (CODES), May 2002.

[12] Preeti R. Panda, Nikil D. Dutt, and Alexandru Nicolau. Memory Issues
in Embedded Systems-On-Chip. Kluwer Academic Publishers, 1999.

[13] Stefan Steinke, Lars Wehmeyer, Bo-Sik Lee, and Peter Marwedel. As-
signing Program and Data Objects to Scratchpad for Energy Reduction.
Design, Automation and Test in Europe (DATE), pages 409–417, 2002.

[14] M. Kandemir, J. Ramanujam, M.-J. Irwin, N. Vijaykrishnanand I. Ka-
dayif, and A. Parikh. Dynamic Management of Scratch-Pad Memory
Space. In Proceedings of the 2001 ACM Design Automation Conference.
DAC, June 2001.

[15] Stefan Steinke, Nils Grunwald, Lars Wehmeyer, Rajeshwari Banakar,
M. Balakrishnan, and Peter Marwedel. Reducing Energy Consumption
by Dynamic Copying of Instructions onto Onchip Memory. Int. Symp. on
System Synthesis (ISSS), pages 213–218, 2002.

[16] Manish Verma, Lars Wehmeyer, and Peter Marwedel. Dynamic Overlay
of Scratchpad Memory for Energy Minimization. In Proc. of the Second
International Conference on Hardware/Software Codesign and System
Synthesis (CODES+ISSS). IEEE/ACM/IFIP, September 2004.

[17] Stefan Steinke, Markus Knauer, Lars Wehmeyer, and Peter Marwedel.
An Accurate and Fine Grain Instruction-Level Energy Model Supporting
Optimizations. In Proceedings of the International Workshop - Power
and Timing Modeling, Optimization and Simulation, Yverdon-les-bains,
Switzerland, September 2001.

[18] ILOG. CPLEX. http://www.ilog.com/products/cplex.

[19] ARM Ltd. ARM Instruction Set Simulator ARMUlator.
http://www.arm.com/support/ARMulator.html.

[20] Simon Segars, Keith Clarke, and Liam Goudge. Embedded Control Prob-
lems, Thumb, and the ARM7TDMI. IEEE Micro, 15(5):22–30, October
1995.

[21] Wen-Tsong Shiue and Chaitali Chakrabarti. Memory Eploration for Low
Power, Embedded Systems. In Proc. of the 36th Design Automation Con-
ference (DAC), pages 140–145, New Orleans, June 1999. ACM/IEEE.

[22] Stephen Brown. MediaBench Home. available from:
http://cares.icsl.ucla.edu/MediaBench, 2004.

6

	Main Page
	DATE'05
	Front Matter
	Table of Contents
	Author Index

