
An Efficient Transparent Test Scheme for Embedded
Word-Oriented Memories

Jin-Fu Li, Tsu-Wei Tseng, and Chin-Long Wey
Advanced Reliable Systems (ARES) Laboratory

Department of Electrical Engineering
National Central University
Jungli, Taiwan 320, R.O.C.

Abstract

Memory cores are usually the densest portion with the
smallest feature size in system-on-chip (SOC) designs. The
reliability of memory cores thus has heavy impact on the
reliability of SOCs. Transparent test is one of useful tech-
nique for improving the reliability of memories during life
time. This paper presents a systematic algorithm used
for transforming a bit-oriented march test into a transpar-
ent word-oriented march test. The transformed transpar-
ent march test has shorter test complexity compared with
that proposed in the previous works [12, 13]. For exam-
ple, if a memory with 32-bit words is tested with March
C�, time complexity of the transparent word-oriented test
transformed by the proposed scheme is only about 56% or
19% time complexity of the transparent word-oriented test
converted by the scheme reported in [12] or [13], respec-
tively.

1 Introduction

Shrinking transistor size makes the reliability issue be-
come a major challenge of system-on-chip (SOC) designs.
Nowadays SOCs usually consists of many memory cores,
which are usually the densest portion with the smallest fea-
ture size. Thus the reliability of memory cores has heavy
impact on the reliability of SOCs. Reliability enhancement
techniques for memory cores during life time thus is im-
perative. Conventional memory BIST (off-line BIST) is a
promising approach for embedded memory testing and di-
agnosis [1, 7, 10, 16], which is helpful for improving the
yield of memories during manufacturing phase. However,
off-line BISTs cannot be used for testing memories during
life time. Thus efficient reliability enhancement techniques
for memories should be developed. Online and transparent
(periodic) testing are two widely used methodologies for
ensuring correct operation of memories during life time.

Concept of transparent testing, which leaves the original
contents of the circuit under test unchanged after the test-
ing is completed, has been used for the application of mem-
ory testing [3, 6, 8, 9, 11–13, 17–19]. One major advantage
of transparent testing is that it can ensure the reliability of

storage data during a life-time operation. On the other hand,
transparent testing provides better fault coverage than non-
transparent testing for unmodeled faults. Thus, unmodeled
faults not detected by the manufacturing testing will be dis-
covered at an early stage of the product life [12].

Several transparent test schemes have been reported in
[3, 6, 8, 9, 11–13, 17–19]. These schemes transform the
march tests, which have been widely used to test random
access memories, into transparent march tests. In [11, 12],
a systematic approach for transforming a march test into
a transparent march test is presented. The transforma-
tion rules consist of two phases—generation of transpar-
ent march test and generation of signature prediction test.
In [3, 8, 17], the method from [11] is applied to the tests
for detecting pattern-sensitive faults and single V-coupling
faults described in [2]. Later a symmetric transparent test
methodology is proposed in [18]. In this methodology, if
the transformed transparent test is not symmetric, then an
additional state is added to make it be symmetric. This
causes that the final content of the signature analyzer (e.g.,
MISR) is zero if no faults exist in the memory under test.
Thus this methodology can reduce the test time by remov-
ing the signature prediction test. Automatic generation of
symmetric transparent march tests is also proposed in [19].
However, the transparent tests described above all have the
problem of aliasing.

Recently, transparent test schemes without the aliasing
problem have been reported in [9, 13]. In [9], a transparent
test approach using dynamic power supply current (DPSC)
is presented. Instead of generating a signature, the DPSC
transparent testing detects the RAM faults by using a cur-
rent sensor. A transparent online memory test (TOMT)
reported in [13] has been developed for online testing of
word-oriented memories with parity or Hamming protec-
tion. TOMT introduces the concept of concurrent error
detection and correction to eliminate the requirement of
signature generation and to avoid the interference of nor-
mal system operation. So far, however, all the transparent
tests for word-oriented memory are not time efficiency. For
example, the transparent test scheme reported in [11, 12]
performs the bit-oriented operations to all the bits of each
word. Another example, TOMT also executes bit-wise ma-

1530-1591/05 $20.00 © 2005 IEEE

nipulations in word-oriented memory testing. Therefore,
short transparent tests for word-oriented memories need
to be developed. Moreover, shorter test time can reduce
the probability of interference of normal system operation,
since transparent tests usually are executed in idle state of
systems.

This paper presents an efficient transparent test scheme
for word-oriented memories. A systematic algorithm is
used for transforming a bit-oriented march test into a trans-
parent word-oriented march test. Consider an ���-bit
memory and a bit-oriented march test with � Read/Write
operations in which there are Q Read operations. Time
complexity of the transparent word-oriented march test
converted by the proposed algorithm is (��5log

�
�)� .

Also, time complexity of the corresponding signature pre-
diction test is (��2log��)� . The transformed transparent
march test has shorter test time compared with that pro-
posed in previous works. For example, if a memory with
32-bit words is tested with March C�, the time complexity
of the transparent test transformed by the proposed scheme
is only about 56% or 19% time complexity of the transpar-
ent test converted by the scheme reported in [12] or [13].

The rest of this paper is organized as follows. Sec-
tion 2 reviews typical functional RAM faults and defines the
notation for representing algorithms. Section 3 describes
the transformation rules for conventional transparent march
tests. Section 4 introduces the proposed transformation al-
gorithm for transparent word-oriented march tests. Sec-
tion 5 shows the fault coverage analysis of the transpar-
ent word-oriented march tests transformed by the proposed
transformation algorithm. Section 6 concludes this paper.

2 Fault Model and Notation

In this section we present the widely used fault models
of RAMs, which consist of stuck-at faults, transition faults,
and coupling faults [4,5,14]. More detail behaviors of these
faults are described as follows.

1. Stuck-at fault (SAF)—the defective cell permanently
contains a 0, i.e., SAF(0), or a 1, i.e., SAF(1), and
cannot be changed.

2. Transition fault (TF)—the defective cell fails to un-
dergo a 0 to 1 transition or a 1 to 0 transition.

3. Coupling fault (CF)—the status of a cell (called cou-
pling cell) affects the content of the other cell (called
coupled cell). CFs can be divided into three types:
state CF (CFst)—the coupled cell is forced to 0 or 1
only if the coupling cell contains 0 or 1; idempotent
CF (CFid)—the content of victim is forced to 0 or 1 if
the aggressor undergoes a 0 to 1 transition or a 1 to 0
transition; inversion CF (CFin)—the content of victim
is inverted if the aggressor undergoes a 0 to 1 transition
or a 1 to 0 transition. In word-oriented memories, CFs
can further be divided into intra-word and inter-word

CFs. Intra-word CFs are defined as that the coupled
and coupling cells of the CFs are within a word; inter-
word CFs are defined as that the coupled and coupling
cells of the CFs are located at different words.

Subsequently, notation for algorithm representation is
described. In an algorithm description,� denotes the initial
content of a cell or a word for bit-oriented or word-oriented
memories, respectively; �� is the data ���, where � de-
notes bit-wise XOR operation, where � and � have the
same data width; � (�) represents the ascending (descend-
ing) address sequence; � denotes either ascending or de-
scending address sequence. �� denotes write � operation
to an addressed memory cell (word). 	� denotes read op-
eration from an addressed memory cell (word) and � is ex-
pected. In an nontransparent march test, the � is a specific
data for Write operation. On the other hand, the ���� for
Write operation in a transparent march test.

3 Conventional Transparent March Tests

March tests (algorithms) are widely used for memory
fault detection and diagnosis due to their linear time com-
plexity with respect to the memory size. A march test con-
sists of a finite sequence of march elements. Each march
element contains a finite number of Read/Write operations
to all cells (words) according to a prespecified address se-
quence of bit-oriented (word-oriented) memories.

Performing march tests changes initial contents of the
memory under test. Thus march tests cannot be used to test
the memories in power-up status, i.e., march tests cannot
directly be used for online test. Online tests can be divided
into concurrent and nonconcurrent online tests. Concur-
rent online memory testing usually introduces error detec-
tion and correction techniques to preserve the data integrity
of the memory under test. Nonconcurrent online memory
testing usually uses transparent tests to detect the faults and
to preserve the data integrity by writing back the read data
when the memory under test is in idle state. Thus transpar-
ent march tests could be used for periodic online memory
testing. This allows restoring memory content after trans-
parent march test procedure.

A conventional bit-oriented march test can be converted
into a bit-oriented transparent march test by the following
transformation rules [11, 12]:
Step 1: If the first test operation of a march element is a
Write one, add a Read operation at the beginning of the
march element. Subsequently, if a march test consists of
an initialization march element and if the march element is
useless for fault activation, then remove the march element
from the march test.
Step 2: Replace all 	� or 	� operations with 	�� or 	���,
respectively. Also, replace all �� or �� operations with
��� or ���� operations, respectively, where ��0.
Step 3: If the content in memory cells are the inverse of
their initial data after the last Write operation, then insert

two additional Read and Write operations in the end of the
march test. The additional two operations perform Read op-
eration on each memory cell followed by a Write operation
with the data which is the inverse of the read data.
Step 4: Remove all the Write operations from the transpar-
ent march test, which is converted according to Step 1 to
Step 3, to obtain the signature prediction algorithm.

For example, consider the classical March C� test [14]:
�� ����; � �	�
 ���; � �	�
 ���; � �	�
 ���; � �	�
 ���;
� �	���. The March C� test can be transformed into
a transparent test (TMarch C�) with the transformation
rules shown above. Thus TMarch C� is �� �	��
 �����;
� �	���
 ����; � �	��
 �����; � �	���
 ����; � �	����
with ��0. The fault coverage of TMarch C� is the same
as that of March C�, which is shown in [11, 12]. Also, the
signature prediction algorithm of TMarch C� is �� �	���;
� �	����; � �	���; � �	����; � �	����.

Similarly, a conventional word-oriented march test can
be transformed into a transparent word-oriented march test
with applying the transformation rules to all the bits of each
word. A conventional word-oriented march test can be ob-
tained by running the corresponding bit-oriented march test
with different data backgrounds (a Read or Write operation
for a word-oriented memory involves reading or writing an
entire word of data, called data background [4]). For ex-
ample, if March C� is used to test a memory with 4-bit
words, the word-oriented March C� test will be: �� ����;
� �	�
���; � �	�
���; � �	�
���; � �	�
���;
� �	��� for ���0000,0101,0011�. Thus the test consists
of the following three parts:

T1:�� �������; � �	����
 ������; � �	����
 ������;
� �	����
 ������; � �	����
 ������; � �	������;

T2:�� �����; � �	����
 ������; � �	����
 ������; �
�	����
 ������; � �	����
 ������; � �	������;

T3:�� �����; � �	����
 ������; � �	����
 ������; �
�	����
 ������; � �	����
 ������; � �	������;

This test can be transformed into a transparent test with ex-
ecuting the transformation rules shown above on each bit
of a word [12], and the transparent test can be otained as
follows:

T1’:��(���,�����); �(���� ,����); �(��� ,�����);
�(���� ,����); �(���)�;

T2’:�� ������; � �	���
 ������; � �	����
 �����; �
�	��� , ������; � �	����
 �����; � �	�����;

T2’:�� ������;� �	���
 ������; � �	����
 �����; �
�	��� , ������; � �	����
 �����; � �	�����;

T4’:�� �������;

where ����0000�, ����0101�, and ����0011�. Note that
the additional T4’ test is used for restoring the initial data
of the memory under test.

4 Proposed Transparent March Tests

The transparent test approach presented in this paper is
applied in idle state of systems. Reducing the test time thus
is very important for avoiding the interrupt of testing. As
discussed in Sec. 3, however, a transparent word-oriented
march test are directly obtained by repeatly executing the
corresponding bit-oriented march test on each bit of a word.
This transformation does not generate an efficient transpar-
ent word-oriented march test. In this section we propose
a transformation algorithm for transforming a bit-oriented
march test into a time-efficiency transparent word-oriented
march test.

The proposed transparent word-oriented march trans-
formation algorithm (TWM TA) is described in Algo-
rithm 1. When a bit-oriented march test (BMarch) is given,
TWM TA first replaces �� or �� of the BMarch with ��
or ��, where 0 and 1 denote the all-0 and all-1 data back-
grounds. Also, the new march test with solid data back-
grounds is called SMarch. If the last operation of SMarch is
a Write operation, then added a Read operation in the end of
SMarch. Subsequently, TWM TA transforms the SMarch
into a transparent SMarch (TSMarch) with the transforma-
tion rules for bit-oriented march tests (described in Sec. 3)
by regarding the SMarch as a bit-oriented march test. When
the SMarch is executed, if the expected data for the last
Write operation of every word is equal to the inverse of the
initial data of the word, then added an additional transpar-
ent test ATMarch���(����, ����� , 	���� , ���� , 	����;
� ��������. On the contrary, if the expected data for
the last Write operation of every word is equal to the ini-
tial data of the word, then added an additional transpar-
ent test ATMarch� �� �����
 �����
 	���
 ����
 	����;
� �������. Note that the �� in ATMarch is a �-bit binary
data and ���

����

��� ���
� , where ���1 or ���0 if 	�
�
 is

even or odd for ��1,2,� � �
 �log
�
��, for a memory with �-

bit words.

For example, if a memory with 8-bit words is tested,
then three data patterns need to be applied to ATMarch,
i.e., ���1, 2, 3�. According to the description above,
the ATMarch must be executed with the following � �,
����01010101� since 	�
�
��7,6,5,4,3,2,1,0� for ��1;
����00110011� since 	�
�
��3,3,2,2,1,1,0,0� for ��2;
����00001111� since 	�
�
��1,1,1,1,0,0,0,0� for ��3.
Thus ATMarch=��(����, ����� , 	��� , ���� , 	���);
�(���� , ����� , 	���� , ���� , 	���); �(���� , ����� ,
	���� , ���� , 	���); �(���� or �����)�. Assume that
the content of the word is ��������	�
��������� after
the TSMarch is performed. Table 1 shows the content of
the word when the first three march elements of ATMarch
are executed.

An example is given to explain the proposed transpar-
ent march test scheme further. Consider a bit-oriented
March U [15] :�� ����; � �	�
 ��
 	�
 ���; � �	�
 ���; �
�	�
 ��
 	�
 ���; � �	�
 ����. The March U is first trans-
formed into a test with solid backgrounds, called SMarch U.

Algorithm 1 TWM TA
Require: BMarch—a given bit-oriented march test

TBMarch: the transparent BMarch converted from BMarch
0 or 1: all-0 data or all-1 data
SMarch: BMarch with solid data backgrounds (all-0 or all-1)
TSMarch: the corresponding transparent test of SMarch
ATMarch: an added transparent march test
TWMarch: transparent word-oriented march test
Word[�]: the content of the �th word
��: a �-bit binary data and �� �

����

���
���

� , where �� � �
or �� � � if ����� is even or odd for � � �� �� � � � � �log

�
��,

for a memory with �-bit words.
��: a all-0 data
if BMarch � ��� then

Abort
while BMarch �� ��� do

for all Test Operations of BMarch do
Replace 	� or 	� with 	� or 	�, respectively
Replace
� or
� with
� or
�, respectively

if The last operation of SMarch is a Write operation then
Added a Read operation in the end of SMarch
Transform SMarch into TSMarch according to the trans-
formation rules described in Sec. 3 [11, 12]

else
Transform SMarch into TSMarch according to the trans-
formation rules described in Sec. 3 [11, 12]

if Word[�] ��the initial content after executing the TSMarch
then

ATMarch= �� �	��� � 	���� �
���� � 	��� �
����; �
�	�����

else
ATMarch= �� �	��� � 	���� �
���� � 	��� �
����; �
�	������

Return TWMarch=�TSMarch; ATMarch�
Return Signature prediction test by removing the Write oper-
ations in TWMarch

Then SMarch U is �� ��; � �	�
 ��
 	�
 ���; � �	�
 ���;
� �	�
 ��
 	�
 ���; � �	�
 ����. Because the last opera-
tion of SMarch U is a Write operation, an additional Read
operation (� �	��) is added in the end of the SMarch U. As-
sume that a memory with 8-bit words is tested. According
to the transformation rules described in [11,12], TSMach U
will be �� �	���
 �����
 	����

 �����; � �	���
 ������;
� �	����
 ����
 	���
 ������; � �	����
 �����; �
�	�����, where ����00000000�. After TSMarch is ex-
cuted, the content of each word is equal to the initial
content of the word. Therefore, the added ATMarch is
��(���� , ����� , 	���� , ���� , 	���); �(���� , ����� ,
	���� ,���� , 	���); �(���� ,����� , 	���� ,���� , 	���);
�(������ where ����01010101�, ����00110011�, and
����00001111�. The complexity of the transformed trans-
parent word-oriented March U is 29� for testing a memory
with 8-bit words. Also, time complexity of the correspond-
ing signature prediction algorithm is ��� , which can be ob-
tained by removing the Write operations. Formal analysis
of time complexity of the proposed transparent test scheme
will be discussed in Sec. 5.

Table 1: The content of the word when the first three march
elements of ATMarch are executed.

Test operations �������	�
������
	��� �� ����� ��	�
 ����� ���

	���� �
����
����� ����	 ��
�� �����

	��� �
��� �� ����� ��	�
 ����� ���
	��� ���� ��� ��	�
�� ��� ���

	���� �
����
��� ������	 ��
 �������

	��� �
��� ���� ��� ��	�
�� ��� ���
	��� �������	 ��
 ��� ��� ���

	���� �
����
��� ��� ��� ��	�
������

	��� �
��� �������	 ��
 ��� ��� ���

5 Fault Coverage Analysis and Comparison

The fault coverage analysis of the transparent word-
oriented march tests transformed with the proposed
TWM TA is discussed. Fault coverage of the faults de-
scribed in Sec. 2 are considered. For a given bit-oriented
march test, we will show that the fault coverage of the
transparent word-oriented march test transformed with
TWM TA is the same as the fault coverage of the corre-
sponding word-oriented march test. Apparently, if a bit-
oriented march test can detect the SAFs and TFs, the corre-
sponding transformed transparent march test by TWM TA
also can detect the SAFs and TFs, since the TSMarch is
obtained with transforming the bit-oriented march test di-
rectly.

Subsequently, the fault coverage analysis of CFs is dis-
cussed. Figure 1(a) shows all possible fault-free states of
any two arbitrary cells in a bit-oriented memory. Assume
that the state of the two cells is (����) after the initializa-
tion march element of a march test. Also, let � be the lower
address and � be the higher one without loss of general-
ity. If a bit-oriented march test can detect 100% CFs (CFin,
CFid, and CFst), then test operations of the march test must
excite any two arbitrary cells to undergo all the states as
shown in Fig. 1(a). For example, the March C� has been
shown that it can detect 100% CFs [14]. If the March
C� is executed in (����), the two cells undergo all the
states with the sequence 1,2,3,� � �,18. The TWM TA first
transforms a BMarch into a corresponding SMarch. Ap-
parently, the SMarch also can detect 100% inter-word CFs
if the BMarch can detect 100% CFs. Thus the ������ of
Fig. 1 can be replaced with any two arbitrary words. Also,
SMarch can undergo the states with the sequence which is
the same as that of BMarch. Therefore, TSMarch also can
detect 100% inter-word CFs, since fault coverage of TS-
Mach is unchanged after the transformation rules reported
in [12] are executed.

In a word-oriented memory, all bits of a word perform
the Read or Write operation concurrently. Figure 1(b)
shows all possible fault-free states of any two bits within
a word. A word-oriented march test which can cover
100% intra-word CFs (CFid, CFin, and CFst) makes any
two bits within a word undergo the following state con-

ditions: (��
 	��; ��), (��
 	��; 	��), (��
��; ��), and
(��
��; 	��), where (�
	�; �) denotes a Write opera-
tion writing the data �	��� into two bits within a word
and the original data of the two bits is ����, and subse-
quently a Read operation reads the expected data �	���. As
Fig. 1(a) shows, if the �� and �� is replaced with two ar-
bitrary words, then the two state conditions, (� �
 	��; 	��)
and (��
��; ��), can be checked when the SMarch is
executed. Finally, the non-transparent part of ATMarch
is AMarch��� ����
 �	��
 		��
 ���
 	���� for ����01�
is executed, where a memory with two-bit words is as-
sumed without loss of generality. Assume that the memory
state is all-0 when the SMarch is completed. That is, the
AMarch executes the following operations for each word:
�(��� 	�� ,� 	���� ,	 	���� ,��� 	�� ,	�� 	��)�. The state condition
(��
 	��;��) is checked when the 	 	���� is executed; and the
condition (��
��; 	��) is also checked when the 	�� 	�� is per-
formed. Therefore, the four state conditions for intra-word
CFs detection are checked when SMarch and AMarch are
performed if the corresponding bit-oriented march test can
detect 100% CFs. According to the test coverage theorem
in [12], we conclude that the transformed transparent word-
oriented march test (TWMarch�TSMarch+ATMarch) can
preserve the same fault coverage of inter-word and intra-
word CFs of the corresponding nontransparent word-
oriented march test (SMarch+AMarch).

Djr

Dir Dir

Djr

DjrDjr

Dir Dir

Diw

Djw

Djw

DiwDiw

Djw

Djw

Diw

djwdidjwdi

djwdi

djwdi

djwdi

djwdi

djwdi

djwdi
djwdi

djwdi

djwdi

djwdi
djdir

djdir

djdir

djdir

Di Di

DiDi

Dj Dj

DjDj

djdi

djdi

djdi

djdi

4
3

5

6

7

8

10

11

12
13

14
15

162

9, 18 1, 17

(a)

(b)

Figure 1: (a) All states of two arbitrary words when TS-
March is executed. (b) All states of two arbitrary bits within
a word.

In the sequel, we analyze time complexity of the
transparent word-oriented march tests converted by the

TWM TA and compare the time complexity with other
transparent test schemes. Consider an ���-bit memory
and a bit-oriented march (BMarch) test with � Read/Write
operations in which there are � Read operations. Without
loss of generality, we assume that BMarch has an initializa-
tion Write operation, the first operation is Read operation in
each march element, and the last operation is a Read opera-
tion. Also, we assume that� is power of 2. As Algorithm 1
shows, time complexity of the transparent word-oriented
march test (TCM) transformed with TWM TA with respect
to the bit-oriented march test can be calculated as follows:

TCM � �� �
log
�
����

Also, time complexity of the corresponding signature pre-
diction test (TCP) can be expressed as follows:

TCP � ��� �log
�
����

We compare the proposed transparent march tests with
the transparent march tests reported in [12, 13], since the
two works also discuss the word-oriented transparent tests.
As described in Sec. 3, the transparent test scheme reported
in [12] transforms the bit-oriented march tests into transpar-
ent word-oriented march tests with executing the transfor-
mation in each bit of a word. Therefore, the TCM and TCP
of the transparent word oriented march test converted with
the scheme reported in [12] can be calculated as

TCM � � �log
�
� � ����

TCP � ��log
�
� � ����

The TCM of the transparent online march test (TOMT) re-
ported in [13] is �� � ���� . TOMT is a online test which
does not need the signature prediction test, i.e., TCP=0. Ta-
ble 2 summarizes the comparison of TCM and TCP for the
three transparent test schemes discussed above.

Table 2: Comparison of different transparent test schemes.
TCM TCP

Scheme 1 [12]
 �log
�
� 	 ��� ��log

�
� 	 ���

Scheme 2 [13] �
 	 ���� No
This work �
 	 �log

�
��� ��	 �log

�
���

As Table 2 shows, the proposed transparent word-
oriented test scheme has better time complexity compared
with Scheme 1 [12]. Also, the proposed scheme has shorter
time compared with Scheme 2 [13] for most cases. For ex-
ample, if March C� is transformed into a transparent word-
oriented March C� for testing an ����-bit memory, then
test complexity (TCP�TCM) of Scheme 1 [12], Scheme
2 [13], and the proposed scheme is
�� , ���� , and
�� ,
respectively. That is, time complexity of the transparent
word-oriented test transformed by the proposed scheme is
only about 56% or 19% time complexity of the transpar-
ent word-oriented test converted by Scheme 1 or Scheme
2, respectively. Table 3 summarizes the test complexity

of the three schemes for a memory with respect to differ-
ent word sizes and test algorithms. As the table shows, the
transparent test scheme proposed in this paper has smaller
time complexity compared with the other two works. Fur-
thermore, time complexity of the proposed transparent test
scheme is only slightly related to the bit-oriented test. How-
ever, time complexity of the transparent test scheme re-
ported in [12] is heavily related to the bit-oriented test.

Table 3: Comparison of time complexity for different word
sizes.

Test Word Size [12] [13] This work
16 bits �
� ���� ���

March 32 bits
�� ����
��
C� 64 bits ��
�
���
��

128 bits ���� ����� ���
16 bits

� ���� ���

March 32 bits ���� ����
��
U 64 bits ����
��� ���

128 bits �
�� ����� ���

6 Conclusions

This paper presents a systematic algorithm for trans-
forming a bit-oriented march test into a transparent word-
oriented march test. We have also shown that fault cov-
erage of the transformed transparent word-oriented march
test is the same as that of the corresponding nontranspar-
ent word-oriented march test. Consider an ���-bit mem-
ory and a bit-oriented march test with � Read/Write opera-
tions in which there are Q Read operations. Time complex-
ity of the transparent word-oriented march test converted
by the proposed algorithm is (��5log

�
�)� . Also, time

complexity of the corresponding signature prediction test
is (��2log��)� . The transformed transparent march test
has shorter test time compared with that proposed in previ-
ous works. For example, if a memory with 32-bit words is
tested with March C�, the time complexity of the transpar-
ent test transformed by the proposed scheme is only about
56% or 19% time complexity of the transparent test con-
verted by the scheme [12] or [13]. Moreover, compared
with the scheme [12], time complexity of the proposed
transparent test scheme is slightly related to the correspond-
ing bit-oriented march tests.

Acknowledgement

This work was supported in part by the National Science
Council, R.O.C., under Contract NSC 92-2218-E-008-005.

References

[1] P. Camurati, P. Prinetto, M. S. Reorda, S. Barbagallo,
A. Burri, and D. Medina. Industrial BIST of embedded
RAMs. IEEE Design & Test of Computers, 12(3):86–95,
Fall 1995.

[2] B. F. Cockburn. Deterministic tests for detecting single V-
coupling faults in RAMs. J. Electronic Testing: Theory and
Application, 5:91–113, Feb. 1994.

[3] B. F. Cockburn and Y.-F. N. Sat. A transparent built-in self-
test scheme for detecting single V-coupling faults in RAMs.
In Proc. IEEE Int. Workshop on Memory Technology, Design
and Testing (MTDT), pages 119–124, 1994.

[4] R. Dekker, F. Beenker, and L. Thijssen. Fault modeling and
test algorithm development for static random access memo-
ries. In Proc. Int. Test Conf. (ITC), pages 343–352, 1988.

[5] R. Dekker, F. Beenker, and L. Thijssen. A realistic fault
model and test algorithm for static random access memories.
IEEE Trans. Computer-Aided Design of Integrated Circuits
and Systems, 9(6):567–572, June 1990.

[6] S. Demidenko, A. J. van de Goor, S. Henderson, and
P. Knoppers. Simulation and development of short transpar-
ent tests for RAM. In IEEE Asian Test Symp. (ATS), pages
164–169, 2001.

[7] C.-T. Huang, J.-R. Huang, C.-F. Wu, C.-W. Wu, and T.-Y.
Chang. A programmable BIST core for embedded DRAM.
IEEE Design & Test of Computers, 16(1):59–70, Jan.-Mar.
1999.

[8] M. Karpovski and V. Yarmolik. Transparent memory BIST.
In Proc. IEEE Int. Workshop on Memory Technology, Design
and Testing (MTDT), pages 106–111, 1994.

[9] H.-S. Kim and S. Kang. DPSC SRAM transparent test al-
gorithm. In IEEE Asian Test Symp. (ATS), pages 145–150,
2002.

[10] J.-F. Li, R.-S. Tzeng, and C.-W. Wu. Diagnostic data com-
pression techniques for embedded memories with built-in
self-test. J. Electronic Testing: Theory and Application,
18(4-5):515–527, Aug.-Oct. 2002.

[11] M. Nicolaidis. Transparent BIST for RAMs. In Proc. Int.
Test Conf. (ITC), pages 598–607, 1992.

[12] M. Nicolaidis. Theory of transparent BIST for RAMs. IEEE
Trans. Computers, 45(10):1141–1156, Oct. 1996.

[13] K. Thaller and A. Steininger. A transparent online memory
test for simultaneous detection of functional faults and soft
errors in memories. IEEE Trans. Reliability, 52(4):413–422,
Dec. 2003.

[14] A. J. van de Goor. Using march tests to test SRAMs. IEEE
Design & Test of Computers, 10(1):8–14, Mar. 1993.

[15] A. J. van de Goor and G. N. Gaydadjiev. March U: a test for
unlinked memory faults. IEE Proc.-Circuits Devices Syst.,
144(3):155–160, June 1997.

[16] C.-W. Wang, C.-F. Wu, J.-F. Li, C.-W. Wu, T. Teng, K. Chiu,
and H.-P. Lin. A built-in self-test and self-diagnosis scheme
for embedded SRAM. J. Electronic Testing: Theory and
Application, 18(6):637–647, Dec. 2002.

[17] V. Yarmolik and M. Karpovski. Transparent memory testing
for pattern-sensitive faults. In Proc. Int. Test Conf. (ITC),
pages 860–869, 1994.

[18] V. N. Yarmolik and S. ellebrand. Symmetric transparent
BIST for RAMs. In Proc. Design, Automation and Test in
Europe (DATE), pages 702–707, 1999.

[19] A. P. Zankovich, V. N. Yarmolik, and B. Sokol. Automatic
generation of symmetric transparent March memory tests.
In Proc. IEEE Int. CAD systems in Microelectronics, pages
226–229, 2003.

	Main Page
	DATE'05
	Front Matter
	Table of Contents
	Author Index

