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Abstract

The goal of this paper is to demonstrate a prevalent
global deadlock situation resulting from a local deadlock
in a GALS ring architecture. We present a novel design for
building systems which will be tolerant to such deadlocks
arising in the local modules. This paper, concentrates on
the modeling of the proposed design methodology and its
correctness is proved with the help of a public domain veri-
fication tool.

1. Introduction
Future VLSI systems will be based on system-on-chip

concepts, involving multiple clocked domains, e.g. syn-
chronous processor cores. The on-chip modules will be
glued together by interface logic that must facilitate high
speed communication between synchronous modules oper-
ating at different clock frequencies. Such heterogeneous
systems have a high requirement of a reliable high speed
communication scheme, and mitigation of synchronization
failure. Designing systems with such characteristics is a
difficult task. Globally Asynchronous and Locally Syn-
chronous (GALS) architectures takes advantage of industry
standard synchronous methodology with individual clock
domains and of self timed interface to cross clock bound-
aries. An important issue related to designing GALS sys-
tems is the dearth of proven design methodologies for
the asynchronous communication network that encapsu-
lates each synchronous island to aid data transfer.

The design process must be based on a system model
which would aid the traversal from specification to imple-
mentation. Petri net modeling allows sound representa-
tion of the functionality of the system. There exists var-
ious model checking tools to verify the correctness with
respect to certain desired properties, refining the system,
at every step, leading to efficient synthesis of the system.
Correctness of communication protocols play a key role for
GALS architectures. The traditional synchronous valida-
tion schemes, e.g. simulation and testing, are not compati-
ble or viable to verify the correctness. Formal verification is
becoming the most practical way to ensure the correctness
of designs.

Point-to-point GALS architectures have been a major
impediment in providing efficient throughput and greater
freedom in composing existing Intellectual Property(IP)

cores of different speed and different types of interfaces.
The use of a simple topologies like fork, join, bus and ring,
is a possible solution to the above problems. The design
architecture proposed by Villiger et. al. [1], is a step to-
wards the right direction but has some inherent limitations.
The ring transceiver in [1], consisted mainly of two parts, a
router that decides where the incoming packets have to go
and an arbiter that either allows an incoming packet from
the preceding ring transceiver, or allows the output port of
the host circuitry to feed a packet into the ring. The ring de-
sign methodology encounters a deadlock in the entire sys-
tem, if an input port of a participating synchronous module
is by any way blocked or defective. The occurrence of such
a phenomenon will block the whole ring, as the pipeline
stages get filled up with data packets from the dead node
backwards to all the senders. This drawback is deterrent to
the performance and reliability of GALS architectures. This
paper extends GALS multi-point scheme presented in [1] to
handle the limitations posed by the previous designs by in-
troducing reliable intermodule communication through ring
architectures and achieve maximal throughput, while pre-
serving self-timed operation.

2. GALS Ring Architecture
2.1. The Overall Design

A ring architecture design which handles the problem
stated in the previous section is depicted in Fig.1(a). The
ring transceiver mainly consists of a ring access controller,
which decides whether to allow an incoming packet from
the previous transceiver or a new data packet pushed into the
channel by the output port of the host synchronous module,
shown in Fig.1(b).

2.2. The Ring Transceiver
As opposed to the ring transceiver in [1], the proposed

design of the ring transceiver does not have a router, which
decodes where the incoming packet needs to go. This is
solely because, the packet due to a particular module has
been put onto the channel, dedicated to that module, right
from the start of its journey. Therefore there are as many
channels as there are synchronous modules. The ring ac-
cess controller receives both the incoming data from pre-
vious transceivers and from its host circuitry, as shown in
Fig.1(b). At this point it decides whether to pass or insert
data into the channel with the help of an arbiter. The input
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port and the output port of the synchronous modules can
carry out processes concurrently as they are independent.
Hence the module can send and receive data at the same
time. In our design, the output port sends data packets to
the input port of its host, in addition to sending it to other
participating modules.
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2.3. Ring Access Controller
Fig.3 shows the Petri net (PN) representation of the ring

access controller of a system consisting of three participat-
ing synchronous modules. The requests arriving from the
previous transceiver, Req2 and Req3, exclusively try to win
the arbiter grant on arb2. On reception of the grant signal
on either PR2 or PR3, the request proceeds to latch the data
to be sent to the appropriate module.

2.4. The Input Port
The PN of the channel leading to input port is depicted

in the Fig.2. There exist, dedicated channels, to each input
port. The shown in the figure, the request R1 due to arrive at
the input port of Module1 has no connection with the other
two channels dedicated to modules 2 and 3. Hence, requests
R2 and R3 continue to traverse the ring, unaffected by the
failure of the input port occurrences of Module1. Hence
with the above method, global deadlock arising from local
deadlock can be prevented.
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Figure 2. Input channel for Mod1
2.5. The Output Port

The output port generates data packets and inserts them
in the channel to be transmitted to the appropriate syn-
chronous module. Before feeding packets into the channel,
the output port decides, where it is due and inserts it accord-
ingly in the respective channels. Therefore, an additional
circuitry is required to decode the addresses (not shown in
the figure). The pipeline stages, on each channel, hold data
sent from any module, only to liberate it after the reception
of the acknowledgement signal from the receiving module.
The output port either sends to or stores data on appropriate
channels depending on the arbitration circuit (as shown in

Fig.3). The output port can send data packets to the input
port of its host on channel InR1. This channel does not pro-
ceed to contest for an arbiter grant on arb1, since it creates
its own channel and stores its data in the FIFO, and proceeds
towards the input port of Module1 (shown in Fig.2).
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3. Verification of GALS Ring Architecture
Model checking is an approach to formal verification

used to determine whether a model satisfies the system
specification. The model checking can be done by using
two parameters, the system model and the property that the
system must satisfy. In our design, for the verification we
consider 1-safe nets, i.e. a place p ∈ P may hold a max-
imum of one token for a certain marking. This is done to
reduce the complexity of verification. The tool used to ver-
ify the design is CLP[2]. The choice of the verification tool
is based on its expressiveness and analysis power.

There are several types of analysis that can be performed
using CLP: mainly, reachability and functional analysis.
Our verification procedure focuses on reachability analysis
and deadlock check.

4. Results
This section presents the verification results of the design

of the Ring Transceiver in [1], Des1, and the new design,
Des2, proposed in this paper. The results obtained when
the input port of one of the participating module is faulty,
in both designs, is shown in the Table below. As a first
step of verification, the system models are unfolded using
PUNF[2]. The output of PUNF is provided as input to CLP.
The analysis proved that the new design was deadlock free,
while the previous design experienced global deadlock. We
are currently involved in the circuit synthesis of the ring
transceiver.

Mod |s| |t| |B| |E| DSt DTr Live
Des1 60 39 1526 799

√ √

x
Des2 50 35 2034 947 x x

√

|s|=No. of States, |t|=No. of Transitions
|B|= No. of conditions, |E|=No. of Events
DSt=Dead States, DTr= Dead Transitions
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