Systematic Transaction Level Modeling of Embedded Systemswith SystemC

Wolfgang Klingauf
Technical University of Braunschweig, Abt. E.I.S.
Muehlenpfordtstr. 23, 38106 Braunschweig, Germany
klingauf @eis.cs.tu-bs.de

Abstract

This paper gives an overview of a transaction level mod-
eling (TLM) design flow for straightforward embedded sys-
tem design with SystemC. The goal is to systematically de-
velop both application-specific HW and SW components of
an embedded system using the TLM approach, thus allow-
ing for fast communication architecture exploration, rapid
prototyping and early embedded SW development. To this
end, we specify the lightweight transaction-based commu-
nication protocol SHIP and present a methodology for au-
tomatic mapping of the communication part of a system to
a given architecture, including HW/SW interfaces.

1. Introduction

Recently, the transaction level modeling (TLM)
paradigm has been widely propagated for System-on-Chip
(SoC) design. By orthogonalizing system functionality
and system communication, very high simulation speeds
become feasible enabling fast communication architecture
exploration [4].

In contrast to SoC modeling, the design of embedded
systems typically incorporates the assembly of standard
HW and SW components with user-designed HW (recon-
figurable logic or ASIC) and SW. As system complexity
continuously rises, the proper connection of user HW and
SW to the systems communication architecture becomes
more and more a focus of design. As a result, the devel-
opment of embedded software (eSW) that is closely related
to the HW will have to wait for the RTL model to be com-
pleted.

To fill this gap, we present a TLM approach for embed-
ded system design with SystemC that considerably relieves
the designer of the task of implementing platform-specific
communication protocols. Moreover, fast communication
architecture exploration, early eSW development, and rapid
prototype generation is supported.

The proposed design flow is displayed in figure 1. It
specifies three TLM models, namely component-assembly

1530-1591/05 $20.00 © 2005 IEEE

model (defined in [2]), cycle count accurate at the bound-
aries model (CCATB, introduced in [4]), and communica-
tion architecture model (adapted from cycle-accurate com-
putation model in [2]).

PE2 ifi i
Specmcatlon Untimed computation
model Shared variables

¥

Component_ SHIP channels

aSSGmny Early eSW development
model Functional validation

PE3
HW/SW
artitionin,
Fast communication arch.

CCATB exploration
model Mixed SHIP and OCP
channels

PE1 PE2

L 2
PES M channal
PE2 ¥

@ Comr_nunlcat. Pin-accurate interfaces
architecture OCP channel wrappers
model PEs at TLM or RTL level

Bommunicat

HW/SW PE2
& let
A | eSW) Synthesizable RTL model
Implementation| accessors map OCP
1 model interfaces to target comm.

architecture

Figure 1. Design flow

To encourage highly systematic development, each
model is clearly associated with a predetermined commu-
nication protocol. For communication modeling in the up-
per two TLM models, we introduce the SystemC High-level
Interface Protocol (SHIP). Below the CCATB model, the
widely supported and openly-licensed Open Core Protocol
(OCP) [1] is used. By specifying a generic SHIP-based
HWI/SW interface, fully transaction-based HW/SW com-
munication in the final system is rendered possible.

2. SHIP

SHIP is a lightweight communication protocol for
transaction-based modeling of directed point-to-point con-
nections between two communication entities such as pro-
cessing elements (PE) or communication architecture ac-
cessors. SHIP was designed to allow for top-down com-
munication modeling on a level of abstraction that is com-
pletely independent of the HW/SW partitioning.

The SHIP channel is a message passing channel
which transfers any C++ object that implements the
shi p_serializabl e.i f interface. This interface de-
fines the seri al i ze and the deseri al i ze function.
The channel calls these functions to transform communica-
tion objects into serial data streams and vice versa.

The SHIP channel offers four blocking interface method
calls: send, recv, request, and repl y. While PEs
that exclusively use the send and r equest functions
implicitly represent a communication master, r ecv and
r epl y are slave methods. When consequently applied, this
allows for automatic master/slave detection.

3. Communication architecture exploration
and prototyping

In the following, we briefly describe our concept of fast
communication architecture exploration and prototyping. It
is based on communication architecture models (CAM) and
accessors.

Communication architecture model. With this term,
we denote a simulation model of a communication architec-
ture such as a bus or a network. CAMs are CCATB models
with a cycle-accurate notion of time when viewed at trans-
action boundaries. Internally, only timed method calls are
used which reflect the simulated bus or network protocol.
Given a library of CAMs (e.g. of the CoreConnect architec-
ture), fast yet timing-accurate communication architecture
exploration is feasible.

It should be noted that the CAMs can be utilized in all
abstraction models below the component-assembly model.
They are connected to the systems PEs using OCP TLM
interfaces. By the use of wrappers, virtually any PE can be
connected to the CAM, independent of its communication
interface. In our approach, wrappers for high-level SHIP
and pin-accurate OCP interfaces are provided.

Communication architecture accessors. They are in-
tended for the automatic generation of a synthesizable pro-
totype of the hardware part. Their use implies that the de-
signer has refined all PEs to the RTL level and has imple-
mented a pin-level OCP interface. Then, to connect a PE
to a selected target communication architecture (e.g. Core-
Connect), the appropriate accessor is attached to the PE.
Since accessors are implemented as RTL, they are fully syn-
thesizable.

4. SW synthesisand HW/SW communication

The ultimate goal of the proposed design methodology
is to use SystemC as a unifying system specification lan-
guage and, after HW/SW partitioning, to generate eSW au-
tomatically from the SystemC code. Moreover, HW/SW
communication should be established without requiring any
changes to the source code. To this end, we adopt the
methodology presented in [3]. Embedded SW can be sys-
tematically generated from SystemC code by simply sub-
stituting some SystemC library elements for behaviourally
equivalent procedures based on RTOS functions.

However, this methodology does not include HW/SW in-
terface generation. Hence, we define two constraints: First,
eSW generation takes place in a transaction-level model of
the system, namely the component-assembly model. Sec-
ond, the PEs that are to become eSW exclusively must use
SHIP channels for communication with other PEs of the
system. PEs that fulfill these requirements can immediately
be synthesized to eSW entities.

To enable fully transaction-based HW/SW communica-
tion, we specify a generic HW/SW interface supporting
SHIP-based communication. This interface virtually real-
izes a SHIP channel with one end in the HW partition and
one end in the SW partition of the system. Its implementa-
tion splits up into a HW and a SW adapter.

The HW adapter essentially features a pin-level OCP in-
terface that allows for connecting to the systems communi-
cation architecture. Data exchange with the SW adapter is
implemented by shared memory and sideband signals.

The SW part of the HW/SW interface consists of a
device driver and a small communication library. While
handshaking and memory-mapping is accomplished by the
device driver, the communication library implements the
SHIP channel interface method calls.

5. Conclusion

Currently, the design flow is being implemented for the
IBM CoreConnect architecture and embedded Linux OS. A
first case example will be demonstrated at the interactive
presentation for which this paper is a base. Future research
will include practical and theoretical analysis of limits and
application areas of the methodology.

References

[1] OCP-IP home page (www.ocpip.org).

[2] L. Ca and D. Ggjski. Transaction Level Modeling: An
Overview. Proc. CODES+ISSS, October 2003.

[3] F Herrera, H. Posadas, P. Sanchez, and E. Villar. Systematic
Embedded Software Generation from SystemC. Proc. DATE,
March 2003.

[4] S. Pasricha, N. Dutt, and M. Ben-Romdhane. Extending the
Transaction Level Modeling Approach for Fast Communica-
tion Architecture Exploration. Proc. DAC, June 2004.

	Main Page
	DATE'05
	Front Matter
	Table of Contents
	Author Index

