

RTK-Spec TRON:

A Simulation Model of an ITRON Based RTOS Kernel in SystemC

M. AbdElSalam Hassan Keishi Sakanushi Yoshinori Takeuchi Masaharu Imai
Graduate School of Information Science and Technology, Osaka University, Osaka, Japan

{hassan, sakanusi, takeuchi, imai}@ist.osaka-u.ac.jp

Abstract

This paper presents the methodology and the modeling
constructs we have developed to capture the real time
aspects of RTOS simulation models in a System Level
Design Language (SLDL) like SystemC. We describe
these constructs and show how they are used to build a
simulation model of an RTOS kernel targeting the µ-
ITRON OS specification standard.

1. Introduction

In recent years, as the embedded S/W started to
increase in size and complexity; including firmware as
device drivers, kernels, and boot code. An extra overhead
started to appear from S/W side and it became time
consuming to execute all this amount of S/W on
simulated H/W using an instruction set simulator (ISS).
So it was obvious that we need some higher level of co-
simulation abstraction that can accelerate the co-
simulation session and still maintain global system
synchronization. This abstraction – referred here as RTOS
level simulation is to simulate the embedded S/W
consisting of the kernel and the application running on
the top directly with H/W at the “C” source code level.
This abstraction can be regarded as an evolution of host
code execution technique, where the embedded S/W is
not cross compiled to target code but compiled and
executed as host code and its timing information is
estimated a priori and annotated. After the emergence of
SLDLs as SpecC [1] & SystemC [2], there have appeared
some research results that are considering this level of
abstraction as a candidate for simulating embedded S/W
in a system level design methodology. The enabler of this
new simulation abstraction is to accurately model and
simulate an RTOS at the system level.

Researchers addressed this topic in variety of ways,
using their own simulation engine as in [3,4], or SLDLs
as in [5,6,7,8]. The differences mainly were in (i) the
design of the kernel simulation model, whether they used
an abstract generic RTOS and adopted a refinement
methodology [3,6,7] or used the exact kernel code in
simulation [4,5,8], (ii) the way to achieve global system

synchronization, using a co-simulation manager [4] or a
synchronization function [5], (iii) the modeling of multi-
tasking feature of the application S/W; whether they used
the SLDL simulation environment to perform context-
switching [6] or used the multi-threading functionality of
the host OS [5]. In our work, which is based on SystemC,
we define two problems to be solved. First, although each
kernel has its own specification that should be captured
and modeled at the system level, in a market where over
40% of RTOSs are based on one specification standard i.e.
µ-ITRON [9], our solution should also move towards a
System ITRON standard. Second, the SystemC core
language doesn’t have the semantics to support
preemption, thread priority assignment or scheduling
necessary for RTOS modeling, so we should focus on
extending the functionality of the language with libraries
and programming constructs with well defined semantics
that are capable of modeling embedded S/W performance.

Our contribution is that we present a novel technique
to model and simulate µ-ITRON based RTOS kernels in
SystemC. The technique depends mainly on isolating all
µ-ITRON related dynamics in one simulation library and
providing the designer with programming constructs that
can be used to build a simulation model from the exact
kernel implementation. We also propose a controllable
process model, with execution semantics that support
interruption, preemption, and further capable of gathering
performance statistics including execution time and
energy. To demonstrate the effectiveness of our approach,
we build RTK-Spec TRON, a simulation model of the T-
Kernel/OS [10], the core of the T-Engine system; an open
development platform for embedded systems widely used
in Japanese industry.

The rest of this paper is organized as follows. In
section 2, we give an overview of RTK-Spec TRON. In
section 3 and 4 we describe the RTOS modeling
constructs we used to build the kernel simulation model,
namely T-THREAD process and SIM_API library. In
section 5, we present a case study on building a co-
simulation framework based on RTK-Spec TRON and
show different performance measures that can be
gathered when running a video-game application in this
framework. Section 6 concludes this paper.

1530-1591/05 $20.00 © 2005 IEEE

Figure 2. T-THREAD Process Model

)(oTsitionSourceTran

THREADT −

},,{),(xicrERunEvent r ∈ },...,,...,2,1,0{),(fqpTTransition p ∈

)(sEntStartupEve

)(wESleepEvent

),(so ET

)(},{

},...,2,1{),(

cyclefCEECETm

fpmPlace

p

p

=

∈ pm
1+pm
),(rp ET

),(1 rET

),(2 rET

),(3 rET

),(rf ET

),(1 rf ET −

),(wq ET
)(},{ clockfEEMETMKToken =HandlerTask |

2. Overview of RTK-Spec TRON

RTK-Spec TRON consists of three components: (i) T-
Kernel/OS is the core that provides scheduling, resources,
and resource management, (ii) T-Kernel/DS, acts as a
debugger that references different resources and kernel
internal states, and (iii) the user application, a
programmable module wrapped in T-THREADs.

The T-kernel/OS is a real time OS that inherits ITRON
technology, and further strengthens it. It employs a
priority-based preemptive scheduling policy and supports
several synchronization and communication mechanisms,
including event flags, semaphores, mutexes, message
buffers, and mailboxes. It provides a group of APIs for
managing tasks, dynamic memory allocation (fixed and
variable size pools), managing time (system time, cyclic,
and alarm handling), interrupt handling, and system
management. More details on T-Kernel and T-Engine
system S/W can be found in [10].

3. T-THREAD Process

A Task Thread or shortly a T-THREAD process as
shown in figure 2 was proposed here to capture the real
time aspects of an application task or a handler (cyclic,
alarm, or external interrupt) in embedded S/W. A T-
THREAD is based on SystemC SC_(C)THREAD process
[2] running under the supervision of a simulation API
library (SIM_API) to simulate the behavior of a
synchronized Petri-Net (PN) [11]. We used the following
PN properties in implementation as execution semantics
for the T-THREAD process model:

 A T-THREAD is a cyclic object of atomic
transitions T with a single token K marking the
state of the T-THREAD m . Only the activated state

can fire if the corresponding enabling event occurs.
 An event E that can occur within a T-THREAD

belongs to one of RTOS kernel specific
events },,,,{ wixcs EEEEEE ∈⇒ , sE is a startup
event after kernel initialization, it is always
associated with a source transition oT .

cE is a
continue-run event denoting normal T-THREAD

operation similar to an SC_(C)THREAD process.
xE is a return from preemption event, when a given

T-THREAD is preempted by a higher priority T-
THREAD. iE is a return from an interrupt event
when a T-THREAD is interrupted by another T-
THREAD. wE is an arrival of a sleep event, when a
T-THREAD voluntarily sleeps waiting for this event.

 Transitions are mapped to events based on the
context at which the T-THREAD is executing, i.e. at
startup, or within a service call, an application task,
a handler, or H/W (BFM) access.

 A firing sequence S is a sequence of transitions that
is synchronized with the global system clock and
causes a T-THREAD execution (token moving) from
an initial marking to a designated marking. The
execution time (delay) model associated to this
firing sequence is denoted by)|(THREADTSETM − . The
execution energy model associated to this firing
sequence is denoted by)|(THREADTSEEM − .

 A firing sequence S has a characteristic vector S

whose thi component is the number of times iT is
fired in a firing sequence S .

 The consumed execution time/energy associated to a
given place (marking) is denoted by

)|(THREADTSCET − and)|(THREADTSCEE − respectively.
These are accumulation of execution time/energy
over multiple cycles of T-THREAD execution.

∑
=

−− =⇒
N

Cycle
THREADTTHREADT SETMSCET

1
)|()|(

∑
=

−− =⇒
N

Cycle
THREADTTHREADT SEEMSCEE

1

)|()|(

 A Scenario is the execution sequence of different T-
THREADs running on the top of a given kernel
using a selected scheduler and under pre-determined
timing constraints.

Figure 1. RTK-Spec TRON Structure

4. SIM_API Library

To realize the T-THREAD process model, we extended
SystemC simulation engine with a new simulation library
represented by the APIs of Table 1. These APIs will be
used as programming constructs from the different
modules of an RTOS kernel simulation model to control
the T-THREADs operation. The simulation dynamics of
these APIs uses the µ-ITRON v.4 specification standard
[9] as a reference in kernel dynamics and depends on
events and dynamic sensitivity feature introduced in
SystemC 2.0 in implementation, therefore, building on an
existing functionality in SystemC. Current dynamics
support dispatching, delayed dispatching, service call
atomicity1 , preemption - with system clock simulation
granularity -, interrupts, and nested interrupts handling.
The library contains a Thread hash table (SIM_HashTB)
that keeps a record on every T-THREAD created upon
startup and gets updated whenever a T-THREAD changes
its state, a stack (SIM_Stack) data structure to model
nested interrupts, and it interacts directly with external
schedulers to schedule the next T-THREAD to run. It also
has a debugging option for displaying time GANTT chart,
and energy statistics for all registered T-THREADs.

To guarantee SIM_API coverage to capture real RTOS
dynamics, we used SIM_API to build three kernel
simulation models: RTK-Spec I, II, and TRON. RTK-Spec
I (round robin scheduler) [8] and II (priority-based
preemptive scheduler), are examples of user defined
kernel specifications running on 8051 micro-controllers,
and RTK-Spec TRON is an example of industrial kernel
specification, that is widely used in Japan.

Figure 3 gives an illustration of RTK-Spec TRON
simulation dynamics and SIM_API usage. In the shown
dynamics, the kernel simulation model consists of a
central module having three SC_THREADs: Thread
Dispatch, Interrupt Dispatch and Boot Modules sensitive
to system tick, external interrupts, and reset signals
respectively. Thread Dispatch activates the timer handler
inside the T-Kernel/OS. The timer handler updates the
system clock, checks for cyclic, alarm events, or task
resuming events in the timer queue, it then calls
simulation library APIs to start running a task/handler or
preempt the running task if a task of higher priority is
ready to run. Interrupt Dispatch identifies and responds to
external interrupts by calling a simulation API to notify,
their dedicated interrupt service routines. Boot is
responsible for kernel startup sequence upon receiving
H/W reset, i.e. initializing the kernel internal state and
starting the initialization task, that will consequently call

1 Delayed Dispatching - A preemption that takes place within an
interrupt handler or a nested interrupt handler is postponed till after the
interrupt handler returns. Service Call Atomicity - All system calls issued
by the user are executed with continuity.

the user main entry to create & start tasks, handlers and
allocate application resources.

T-Kernel/OS wait services like tk_slp_tsk will call a
simulation API to indicate that a given task is waiting for
a sleep event and request for context switching to a new
task based on T-Kernel/OS scheduling policy. The waiting
task will be notified later, upon the arrival of its event.

Each task or a handler will be assigned to a T-
THREAD and a token gathers execution time/energy
statistics as it propagates through different T-THREADs.
To enable interruption and preemption; SIM_Wait will be
used in a T-THREAD. SIM_Wait inherits sc_wait
capability to model execution time and extends it to
model energy. Furthermore, checking of interruption or
preemption will be performed within SIM_Wait and when
a T-THREAD is interrupted or preempted, it is scheduled
to suspend upon reaching the next preemption point.

5. Case Study

In this section, we present a case study, on building an
RTOS centric co-simulation framework based on RTK-
Spec TRON. Our co-simulation framework example
consists of RTK-Spec TRON, bus functional model
(BFM) of i8051 MCU – modeled at register transfer level
(RTL), a group of ASIC components connected to the
BFM and wrapped in GUI widgets to give the look & feel
of a virtual system prototype, and a video game
application. An overall picture of the co-simulation
framework is shown in figure 5. A description of the
BFM and the application tasks module is presented next.

Table 1. RTOS Modeling APIs (partial)

5.1. Bus Functional Model (BFM)

A bus functional model is a key component in an
RTOS centric co-simulation framework. It is an
abstraction that models the external behavior of a
processor with the surrounding H/W. Modeling can be
either at transaction level (TLM) or register transfer level
(RTL). For our experiment, we modeled a cycle accurate
bus functional model that approaches the 8051core
architecture in many structure and timing aspects at
register transfer level. Interface was simplified by using
SystemC as a common modeling platform. It is based on a
Driver Model (handshake functions), and represented by
BFM calls as shown in figure 4. Each BFM Call will be
associated with a cycle budget that is based on BFM
timing characteristics, and an estimation on the energy
consumed during that BFM access. As detailed in figure 5,
the BFM consists of: Real Time Clock driving the kernel
Central Module with default timing resolution = 1 ms,
Memory controller, Interrupt controller, Serial I/O, and
Multiplexed Parallel I/O interface to
which several external peripheral
devices are connected.

5.2. Application Tasks Module

This module represents the
programmable entry for the user. Within
each task, the user is able to access T-
Kernel/OS services, e.g., waiting for a
message or signal a semaphore and access
member functions of the BFM to interact
with H/W peripherals, e.g., reading from a
memory location or writing to an I/O port
or a serial buffer.

In our experiment here, we programmed a video game
application that maps into four communicating tasks:
{LCD:T1, Key pad:T2, SSD:T3, IDLE:T4} and two
handlers {Cyclic:H1, Alarm:H2}, as shown in figure 4.

To measure the co-simulation speed of the overall
framework including the overhead of GUI, the proposed
modeling constructs, and SIM_API dynamics, we
simulated the overall system for 1 s as a reference unit
time S and measured the wall clock time R, considering
different BFM access rates driving the GUI widgets –
wrapping the H/W peripherals and different adjustments
of the host CPU clock that avoids GUI display hazards.
Simulation data in table 2, showed us that co-simulation
speed (R/S) was lagging by 5X (S/R = 0.2) from real time
without GUI overhead and 10X (S/R = 0.1) with GUI
overhead and maximum BFM access driving a GUI
widget every 10 ms. This speed was fast enough to
display an animation on the LCD widget and capture user
events. However, it would be difficult to animate and
watch a display of GANTT chart or signal waveform

Figure 3. Kernel Dynamics & SIM_API Usage

Figure 4. Interaction with BFM–H/W Peripherals

Figure 5. RTOS Centric Co-Simulator in an SLDL

changing at run time, as simulation will be overloaded
with GUI callback functions and writing waveform to a
log file. The simulation has to be performed in step mode,
meaning that we advance simulation in step of system tick
(1ms), rather than animate mode. Simulation was carried
out on Pentium III 1.4 GHz/9% CPU average load.

Our conclusion was that; performing simulation at
RTOS level; significant speed gain can be obtained
compared to the RTL or ISS level co-simulation measures
reported in [12]. This is mainly because of (i) the host
code execution nature of RTOS level simulation, (ii)
SystemC cycle based simulation, and (iii) using the same
language to model the S/W, H/W, and GUI simplifying
communication to direct C++ calls and removing the
overhead of inter-process communication if different
modeling languages where used instead.

We also developed a group of GUI widgets that allow

users debug and optimize their application S/W in terms

of processing performance and power dissipation. Results
can be displayed in different ways. The most interesting
diagrams are, (i) Execution Time/Energy Trace widget –
figure 6 (available in step mode). In this widget, task
dispatching, interrupt handling, and preemption can be
observed. Also, different contexts of execution are
assigned different patterns to display the execution
time/energy of a BFM access, basic block, or OS service.
(ii) Time/Energy distribution widget – figure 7 (available
in animate mode). In this widget, a battery of 10-watt-

Table 2. Co-Simulation Speed Measure

Figure 6. Execution Time/Energy Trace (colored)

hour was assumed and at run time the consumed
execution time (CET) and energy (CEE) were
accumulated and distributed over registered T-THREADs
and the battery’s status bar was updated. From such a
display, designers can figure out the maximum duration of
the battery’s lifespan for a given application, and the tasks
that consume much time or energy, hence making good
decision for HW/SW partitioning, by moving some S/W
tasks to H/W or optimizing tasks’ code. Other debugging
widgets are tracing T-kernel internal states and resource
usage using T-Kernel/DS functions as shown in figure 8,
and monitoring H/W by probing signals and variables in a
waveform viewer as was previously shown in figure 4.

Estimation of both execution time and energy of the
kernel & application tasks at the “C” source code level
plays a crucial role in RTOS level simulation abstraction.
By accurate calibration of the kernel simulation model
and good estimation of the tasks runtime; the co-
simulation accuracy can be relatively high compared to
ISS co-simulation as we reported in [8]. In this case study
however, the ETM/EEM annotations we used for RTK-
Spec TRON and the application tasks were estimated. By
cross profiling or calibration against ISS or T-Engine
emulation, for a given supported T-Engine platform based
architecture, we can raise the accuracy of co-simulation,
and create a virtual prototype of the application running
on the synthesis platform (OS+H/W). An investigation of
this issue is the subject of our future study.

6. Conclusion

Increasing software content & design complexity are
driving designers to consider new methodologies of
simulating their systems. RTOS level simulation is one
candidate that fits seamlessly with SLDL & moves in the
direction of raising the modeling abstraction; independent
on the underlying processor architecture or instruction set
used. We addressed the problem of simulating RTOS
kernel implementations that follow the µ-ITRON
specification standard. Our solution proposed
programming constructs & library support in SystemC &
created a simulation model of one kernel implementation
that inherits ITRON technology, i.e. T-Kernel/OS. Finally,
we built an RTOS centric co-simulation framework based
on the simulated model & showed different performance
measures that can be gathered & help designers develop
& test their embedded systems early at design cycle.

7. References

[1] SpecC. Available: http://www.specc.org/

[2] SystemC. Available: http://www.systemc.org/

[3] D. Desmet, D. Verkest, and H. De Man. “Operating system
based software generation for systems-on-chip,” in proc. of
DAC, U.S.A., pp. 396-401, 2000.

[4] S. Honda, T. Wakabayashi, H. Tomiyama, and H. Takada.
“RTOS centric hardware/software co-simulator,” in proc. of
CODES+ISSS’04, Sweden, pp. 158-163, 2004.

[5] A. Bouchhima, S. Yoo, and A. Jerraya. “Fast and Accurate
Timed Execution of High Level Embedded Software using
HW/SW Interface Simulation Model,” in proc. of ASP-
DAC’04, Japan, pp. 469-474, 2004.

[6] A. Gerstlauer, H. Yu, and D. Gajski. “RTOS Modeling for
System-Level Design,” in proc. of DATE’03, Germany, pp.
130-135, 2003.

[7] R. Le Moigne, O. Pasquier, and J-P. Calvez. “A Generic
RTOS Model for real-time Systems Simulation with
SystemC,” in proc. of DATE’04, France, pp. 82-87, 2004.

[8] M. AbdElSalam Hassan, S. Kobayashi, K. Sakanushi, Y.
Takeuchi, and M. Imai. “Towards A Higher Level of
Abstraction in HW/SW Co-Simulation,” in proc. of
ICDCS’04, Japan, pp. 824-830, 2004.

[9] K. Sakamura and H. Takada. “µ-ITRON version 4.0
Specification,” TRON Association.

[10] K. Sakamura, “T-Kernel Standard Handbook,” Ed. T-
Engine Forum. Available: http://www.t-engine.org/

[11] J. L. Peterson. “Petri Net Theory and the Modeling of
Systems,” Ed. NJ: Prentice Hall, 1981.

[12] S. Leef. “A Methodology for Virtual Hardware/Software
Integration,” Mentor Graphics Technical Report. Available:
http://www.mentor.com/seamless/

Figure 7. Consumed Time/Energy Distribution

Figure 8. T-Kernel/DS Output Listing (sample)

	Main Page
	DATE'05
	Front Matter
	Table of Contents
	Author Index

