
Defining an enhanced RTL Semantics

Shuqing Zhao, Daniel D. Gajski
Center for Embedded Computer Systems

University of California, Irvine
Irvine, California, 92697 USA

{szhao, gajski}@uci.edu

Abstract

In this paper we formally define an enhanced RTL se-
mantics. This is intended to elevate the RTL design abstrac-
tion level and help bridge the HDL semantic gap among
synthesis, simulation and formal verification tools. We
define the enhanced semantics based on a new RTL++
language that supports pipelined operations using a new
pipelined register variable concept. The execution seman-
tics of RTL++ is specified in a structural operational se-
mantics style aimed to form the basis for related simulation
and formal verification algorithm development. A RFSM
model is defined to support natively the synthesis semantics
of RTL++. We also present an example of extending Sys-
temC to support the notion of pipelined register variable.

1. Introduction

In today’s SoC era most of the new hardware block de-
signs are still conducted at the register transfer level. En-
gineers first use hardware design language like Verilog or
VHDL to model the RTL hardware components: control
logic and datapath units such as multiplexers, registers,
arithmetic units etc. Synthesis, simulation, and optionally
formal verification tools are then used on this model to gen-
erate the hardware logic and verify its functional correct-
ness. Often times this is a long and error-prone process that
has been and continues to be the major bottleneck of SoC
design productivity. One of the main source of the prob-
lem is always attributed to Verilog or VHDL. They were
designed and well suited to support gate-level simulation
details e.g. their delta cycle semantics guarantee that they
can simulate the combinational logic behavior even if there
are combinational feedback loop within the circuit. They do
not support conveniently the true RTL semantics for synthe-
sis, simulation and formal verification. Furthermore their
semantics are not formally defined and even the IEEE stan-

dard documents have ambiguities which led to incompati-
ble simulation results among different vendors. In practice
whatever coding style the dominant EDA tool accepts be-
came thede factostandard for RTL semantics.

To alleviate this problem, many languages [2, 10, 6, 3]
and associated tools have been proposed and implemented
in the industry and academia. However in our opinion some
of these languages are not suited for RTL, some inherited
the exact problems that exists in today’s HDLs, and some
are headed in a wrong direction [4]. We believe a study on
the appropriate RTL semantics is necessary and could shed
light on the design of the next generation HDLs by allow-
ing precise specifications of intended program behavior and
permitting proofs that a program does (or perhaps does not)
meet its specification.

In Section 2 we review some of the related works that
have been accomplished. We propose a new RTL++ lan-
guage as our basis to discuss and describe the enhanced
RTL semantics in Section 3. In Section 4 we present the for-
mal execution semantics for RTL++ using structural opera-
tional semantics(SOS) [12] as the framework. In Section 5
we give the definition of a new model of computation called
Register-transfer Finite State Machine (RFSM) as a plat-
form to describe the synthesis semantics for RTL++. Sec-
tion 6 shows an example to extend SystemC to support the
key semantic enhancement. Section 7 concludes the paper
and suggests the future research direction.

2. Related Work

There has been some effort attempted to define formal
semantics for existing HDLs. The most relevant one is [7]
in which Gordon defined a trace semantics model for Ver-
ilog synthesizable subset. Accellera made an effort in 2001
to standardize on RTL semantics [1]. [14] provides an im-
plementation using a C++ library to model this proposed
semantics. Zhu in [15] defined a meta RTL language to
enrich RTL data types. Another inspiration source has been
from synchronous programming community who pioneered

1530-1591/05 $20.00 © 2005 IEEE

the synchrony concept which is also the assumption used in
this paper. Esterel [3] is ideal for control-dominant applica-
tion and has been adopted in control software domain while
Lustre [8] has been largely applicable to digital signal pro-
cessing software development. We believe a good RTL lan-
guage should be simpler and more attuned for both control
and data oriented application.

3. The RTL++ language

module d i f f e q (
i npu t wire bool s t a r t ,
output p r e g i s t e r <2> bool ready ,
i npu t wire bool r e s e t ,
i npu t wire i n t e g e r Xinp ,
i npu t wire i n t e g e r Yinp ,
i npu t wire i n t e g e r Uinp ,
i npu t wire i n t e g e r Ap ,
i npu t wire i n t e g e r DXp,
output r e g i s t e r i n t e g e r Xoutp ,
output r e g i s t e r i n t e g e r Youtp ,
output r e g i s t e r i n t e g e r Uoutp ,
c lock c l k) ;

r e g i s t e r i n t e g e r x , y , u , a , dx ;
r e g i s t e r i n t e g e r t1 , t3 , t4 , t 5 ;
p r e g i s t e r<2> i n t e g e r t 2 ; / / pa th t o t 2 i s p i p e l i n e d

whi le t r u e {
wai t u n t i l (s t a r t == 1) ;
ready = 0 ;
x = Xinp ; y = Yinp ; u = Uinp ;
a = Ap ; dx = DXp;
wai t ;
whi le (x < a) {

t 1 = u ∗ dx ;
t 2 = 3 ∗ x ; / / s t a r t 1 s t p i p e l i n e d op
wai t ;
t 2 = 3 ∗ y ; / / s t a r t 2nd p i p e l i n e d op
x = x + dx ;
wai t ;
t 4 = t 1 ∗ t 2 ; / / t 2 from 1 s t p i p e l i n e d op
y = y + t 1 ;
wai t ;
t 5 = dx ∗ t 2 ; / / t 2 from 2nd p i p e l i n e d op
wai t ;
u = u − t 4 ;
wai t ;
u = u − t 5 ;
wai t ;

}

Xoutp = x ; Youtp = y ; Uoutp = u ; ready = 1 ;
}

endmodule

Listing 1. RTL++ code example for differential
equation y′′ +3xy′ +3y = 0 solver

Our goal is to provide a formal semantic framework to
guide the related simulation, synthesis and formal verifi-
cation tool. It is not our intention to invent yet another
new HDL though we have not found an suitable language
allowing us to define the RTL semantics we would like

to propose. We also would like to stay language neutral
to avoid inheriting something without knowing the conse-
quence. Therefore we start by defining an new RTL lan-
guage calledRTL++ that will serve the purpose as an ex-
perimental ground for studying the new semantics we pro-
posed. The new features in the RTL++ language could help
inspire designs of future HDLs or extensions of existing lan-
guages. In Section 6 we showed an example of extending
SystemC to support a feature in our RTL++.

A good way to introduce a new language is by exam-
ple. Listing 1 presents an RTL++ program example which
we adapted from [11]. This example demonstrates most of
the language constructs needed for specifying a RTL block.
Similar to HDLs like Verilog module is the basic composi-
tional unit for building structural hierarchy. A system mod-
eled in RTL++ is composed of a list of modules that runs in
parallel while communicating through their ports connected
by wires. Each module is synchronous to a clock. The
whole system can be seen as a globally asynchronous but
locally synchronous one which suffice to represent most of
the hardware systems. The detailed communication mech-
anism is outside the scope of this paper where we focus on
the behavior of each individualmodule. The module be-
havior is specified with awhile true loop statement. You
can see that the language is mainly an imperative language
which is familiar to most engineers. In contrast to the cur-
rent practice of describing a FSM in a HDL case statement
that explicitly branches to executing different actions block
based on specific state values, RTL++ promotes the usage
of so-called implicit state-machine style. A sequential block
of program is divided intocycle blockusing a cycle delim-
iter - wait statement in RTL++. Eachcycle blockimplies a
distinct program control flow state.

We presents in the following sections the main ingredi-
ents in RTL++ that distinguishes it from other HDLs. Many
topics of importance are omitted. These include data struc-
tures, data types, functions and procedures etc. For instance
RTL++ only usesinteger andbool as the only data types
accepted for boolean and arithmetic operations. In this pa-
per we focus on the execution flow control aspect of a RTL
program.

3.1 Variables

To avoid the shortcomings in other HDLs such as reg-
ister inferencing ambiguities, a clear semantics for synthe-
sis is the number one objective for the design of RTL++.
We define respectively three types of variables:wire, regis-
ter, andpipelined registerintended to be mapped exactly to
the same type of objects in the synthesized hardware logic.
They all associate with the module clock. We present their
informal semantics as follows.

simulated equivalently to synthesized to by pipeline retiming

R2

d

R2

d

R1

f1

f1

R1

f2

f2 Q

Q’

D

Q

Q’

DQ

Q’

D

Q

Q’

D

Figure 1. Using back-to-back shift registers to
represent pipelined operation

3.1.1 Wire

Wire variable is used to store intermediate computation re-
sults within thecycle blockboundary. Once assigned a new
value it is immediately available to all readers. This is in
a sense similar to VHDLvariable from which it neverthe-
less differs in an aspect that the storage of awire variable is
volatile. The variable lives only in its definitioncycle block,
where there is an assignment with the variable being on the
left hand side. The variable dies immediately once it passes
thecycle blockboundary delimited bywait statement. The
wire variable can be mapped to the combinational output of
a function in hardware logic.

3.1.2 Register

Register variable is used to store computation results across
cycle blockboundaries. It uses essentially two buffers to
hold its current value and its new value. When a value is as-
signed to the register variable, the value is stored in the new
value buffer first. Only in the beginning of next clock cy-
cle, its current value will be updated to the saved new value
buffer. Unlike VHDL signal or Verilog reg which could be
synthesized to registers or wires depending on how they are
inferred, a register variable in RTL++ language corresponds
to a specific physical register (flip-flop) in hardware.

3.1.3 Pipelined Register

It is very awkward to capture in RTL HDL the design intent
of pipelined operations which are very common in RTL de-
sign. We introduce apipelined registervariable in RTL++
to facilitate this purpose. As illustrated in Figure 1 a back-
to-back shift register array is used to represent the effect
of an pipelined operation. The depth of the array is equal
to the number of stages of the pipeline. With respect to
the pipeline output, it is an equivalent abstraction - the
same input sequences produce the same output sequence.
(This is under the normal assumption that the intermedi-
ate pipeline stage registers are not used directly for com-

putation.) The introduction of this new type of variable in
RTL++ (as the name suggests) help raise the RTL abstrac-
tion level which usually deals only with computations hap-
pening in one clock cycle. This abstraction works for mod-
eling and simulation obviously. To be synthesizable it relies
on the availability of pipeline retiming tools such as Synop-
sys Design Compiler [13] which has a behavioral retiming
feature that can essentially find an optimal boundary in the
combinational logic to insert pipeline stage registers. Also
as exemplified in Listing 1pipelined registervariable can
be used on module ports to account for interconnect delay
that has become dominant for deep submicron chip design.

3.2 Abstract Syntax

We define the RTL++ language with an abstract syntax
which lets us focus on the structures of the program with se-
mantic significance rather than worrying about parsing cor-
rectly the lexical token. The syntax can be captured in a
BNF-like notation as follows:

a ::= n | v | a1 aop a2 (Arith. Expression)

b ::= true| false| a1 bopa a2 (Boolean Expression)

| bopb1 b | b1 bopb2 b2

S::= v = a (Assignments)

| wait (Cycling)

| wait until b (Conditional Cycling)

| nop (No Operation)

| S1; S2 (Sequencing)

| if b thenS1 elseS2 (Branching)

| while b doS (Loop)

Where the various syntactic categories and meta-variables
that are used to range over constructs of each category:

n will range over numerals,

w will range over wires,

r will range over registers,

p will range over pipelined registers,

v will range over all three types of variables,v = w∪ r ∪ p

a will range over arithmetic expressions,

b will range over boolean expressions,

Swill range over statements, and

aop ∈ {+,−,∗, ...} a finite set of integer binary operators,

bopa ∈ {=,<,>, ...} a finite set of binary integer boolean operators,

bopb1 ∈ {not, ...} a finite set of unary boolean operators,

bopb2 ∈ {and,or, ...} a finite set of binary boolean operators.

[ass] 〈v = a, s〉⊲s[v 7→ v.write(A[a]s)]
[nop] 〈nop, s〉⊲ s
[wait] 〈wait, s〉⊲ 〈(V 7→V.update())〉

[seqpartial]
〈S1, s〉⊲ 〈S1′,s′〉

〈S1;S2,s〉⊲ 〈S1′;S2,s′〉

[seqcomplete]
〈S1, s〉⊲ 〈s′〉

〈S1;S2,s〉⊲ 〈S2,s′〉
[i f t] 〈 if b thenS1 elseS2, s〉⊲ 〈S1,s〉

if B[b]s= true
[i f f] 〈if b thenS1 else S2, s〉⊲ 〈S1,s〉

if B[b]s= false
[while] 〈while b doS, s〉 ⊲

〈if b then(S;while b doS) else nop,s〉
[waituntil] 〈wait until b, s〉 ⊲

〈while not bdo wait, s〉

Table 1. Operational Semantics of RTL++

4 Formal Execution Semantics of RTL++

We define execution semantics of RTL++ using Plotkin-
style structural operational semantics (SOS) as our frame-
work. The idea is to explicitly describe how RTL++ pro-
grams compute in stepwise fashion and the possible state-
transformation they perform. SOS uses a transition system
which is a structure〈Γ,⊲〉 whereΓ is a set of configurations
and⊲ ⊆ Γ×Γ is the transition relation.

In the context of RTL++, the configuration is a pair〈S,s〉
whereS is the RTL++ syntactic constructs defined in Sec-
tion 3.2,s is the value(state) of all RTL++ variables includ-
ing wires, registers, and pipelined registers. The transition
relation has two forms:〈S,s〉⊲ 〈S′,s′〉 where S execution is
not completed and results in an intermediate configuration
S′ or 〈S,s〉⊲ 〈v′〉 in whichShas terminated and the terminal
state iss′. The specific configuration transitions for a spe-
cific RTL++ program are obtained inductively from a col-
lection of so-called transition rules of the formpremises

conclusion. If
premiseof a rule is empty it is called an axiom. The com-
plete definition of transition relation⊲ for RTL++ is given
in Table 1.

In the assignment axiom[ass] we useA[a]s andB[b]s to
denote the semantic functions for arithmetic expression and
boolean expression respectively. Semantic function takesa
syntactic entity as argument and returns its meaning. We
will only define semantics of the variables and omit the rest
of the detail of the expression semantics of RTL++. We
uniformly define any of the three types of variables as a
vector~υ = {υ0, ...,υn} where for wire,n = 0; for regular
registers,n = 1; for pipelined registers n is the total number
of pipeline stages. We can define three variable functions as

I

R

O

d

fo

fs PC
frQ

Q’

D

QQ
’

D

QQ
’

D

QQ
’

D
QQ

’

D
QQ

’

D

QQ
’

D

Figure 2. Register-transfer Finite State Ma-
chine

follows:

read() = υn

write(x) = {x,υ1, ...,υn}

update() = {unde f,υ0, ...,υn−1}

With these three functions defined, we have seman-
tic function A[v]s = A[v.read()]s which forms the basis of
A[a]s. Axiom [ass] indicates that an assignment to a vari-
able is equal to a calling to itswrite() function.

Axiom [nop] obviously does not have any effect on the
states at all. Axiom [wait] essentially expresses the update
of all variables. The sequential composition rules[seqpartial]
and[seqcomplete] express that to executeS1;S2 in states we
first executeS1 one step froms. Only when all the state-
ments contained inS1 has been completedS2 can be exe-
cuted. Axioms[i f t] and[i f f] shows that the first step in exe-
cuting a branch statement is to perform the test and to select
the appropriate branch. The[while] rule shows that the first
step in the execution of the while-construct is to unfold it
one level, that is to rewrite it as a branch statement. The
test will therefore be performed in the second step of the
execution (where one of the axioms[i f t] or [i f f] is applied).
The last rule[waituntil] shows that await until statement can
actually be translated into an equivalentwhilestatement.

5 Synthesis Semantics: Register-transfer Fi-
nite State Machine

RTL++ has very clear synthesis semantics. All con-
structs of the program can be easily translated onto a hard-

ware model of computation while preserving its execution
semantics. A commonly used model of computation for
RTL design is FSMD [5]. However it does not support
the pipelined operation semantics directly. Here we define
a new model called Register-transfer Finite State Machine
(RFSM) that natively supports the proposed RTL++ seman-
tics. Figure 2 illustrates the model from a structural hard-
ware logic point of view. Formally a RFSM is a 7-tuple

〈PC,R, I ,O, fs, fr , fo〉

where

• PC ⊂ Z
∗ is a finite set of non-negative integers

which essentially represent the control states (program
counter) of the program. Its initial setPC0 = {0}.

• R is the set of register (memory elements) that store the
datapath states. Its initial setR0 = {unde f}.

R= {Ri |i > 0 and i≤ n}

where n is the total number of registers (pipelined reg-
isters are grouped as one), and

∀Ri ∈ R,Ri = (r i [1], r i [2], ..., r i [mi])

where m is the number of pipeline stages ofRi , and we
define the first stage register set

R[1] = {r i [1]|i > 0 and i≤ n}

and the last stage register set

R[m] = {r i [mi]|i > 0 and i≤ n}

• I is a finite set of input symbols.

• O is a finite set of output symbols.

• fs : PC×R× I → PC is the state transition function.

• fr :

{

PC×R[m]× I → R[1]

∀Ri ,∀ k > 1 and k≤ mi , r i [k] = r i [k−1]

is the register update function.

• fo : PC×R→ O is the output function.

Each cycle block of a RTL++ program can be labeled
with a unique natural number starting with the first cycle
block being 0. These cycle block labels corresponds di-
rectly intoPCstate register of RFSM. Synthesis tool has the
freedom to re-encode the state value assignment using such
as one-hot or one-cold encoding. The register and pipelined
register variables also have a one-to-one mapping from their
declarations in the program to the datapath register setR
of RFSM. These hardware physical registers definitely can
be shared among register variables having non-overlap life
time [9]. This topic is out of the scope of this paper. The
rest of the RTL++ assignment statements can be handled by
synthesis tool using allocation and binding algorithm [5] to
generate the combinational logic and the connections.

templa te < c l a s s T , cons t i n t num stages>

c l a s s reg : sc modu le {
pub l i c :

25 s c i n < bool > c l k ; / / c l o c k

SC HAS PROCESS (reg) ;

reg (sc module name name)
30 : sc modu le (name) {

SCMETHOD (p ipe) ;
s e n s i t i v e p o s << c l k ;
d o n t i n i t i a l i z e () ;

} ;
35

vo id w r i t e (T c) { nex t = c ; }

T read () { re turn d a t a [num stages− 1] ; }

40 p r i v a t e :

T d a t a [num stages] ;
T nex t ;

45 vo id p ipe () {
/ / s h i f t i n g t h e p ipe
f o r (i n t i = num stages− 1 ; i > 0 ; i −−) {

d a t a [i] = d a t a [i − 1] ;
} ;

50 d a t a [0] = nex t ;
}

} ;

Listing 2. SystemC Implementation of
Pipelined Register Variable

6. Adding RTL++ Semantics in SystemC

Because formal semantics can help to clarify the ambi-
guities in the language design by allowing us to make rig-
orous statements about properties of programs and the in-
teractions between program constructs, it provides a firm
foundation for many applications related to programming
languages. In this section we show an example of extend-
ing SystemC language [10] under the guidance of the new
RTL++ semantics described above. More specifically we
implement the key construct pipelined register variable of
RTL++ as shown in Listing 2. It has the form of a new C++
class templatereg〈T, numstages〉.

Listing 3 provides an simple design example us-
ing this newly defined pipelined register variable type
reg〈T, numstages〉. This is an example adapted from the
pipe example bundled in OSCI SystemC software pack-
age. The original example describes a 3-stage pipeline RTL
design using a coding style that captures computation for
each stage in a separate module and connects those modules
back-to-back. We show that using the new semantics the
same design intention can be kept faithfully with the output
equivalence maintained on a per-cycle basis. The new code
yields the cycle-to-cycle equivalent simulation result asthe
original OSCI example while clearly having several advan-
tages. It has 60% less lines of code (˜ 110 comparing to

d e f i n e NUM STAGES 3
s t r u c t a l g s t a g e s : scmodu le {

40 s c i n<double> i n1 ;
s c i n<double> i n2 ;
s c o u t<double> powr ;
s c i n<bool> c l k ; / / c l o c k

45 reg<double , NUM STAGES> ∗powr reg ; / / p i p e l i n e d reg

vo id a l g () ;

/ / C o n s t r u c t o r
50 SC CTOR(a l g s t a g e s) {

powr reg = new reg<double , NUM STAGES>(” powr reg ”) ;
powr reg−>c l k (c l k) ;
SC THREAD(a l g) ;
s e n s i t i v e p o s << c l k ;

55 d o n t i n i t i a l i z e () ;
}

} ;

vo id a l g s t a g e s : : a l g ()
60 {

double a , b , c ;
double sum ;
double d i f f ;
double prod ;

65 double quot ;

whi le (t rue) {
a = in1 . read () ;
b = in2 . read () ;

70 sum = a + b ;
d i f f = a − b ;

i f (d i f f == 0)
d i f f = 5 . 0 ;

75

prod = sum∗ d i f f ;
quo t = sum / d i f f ;

c = (prod>0 && quot >0)? pow (prod , quo t) : 0 . ;
80 (∗ powr reg) . w r i t e (c) ;

powr . w r i t e ((∗ powr reg) . r ead ()) ;
wa i t () ;

} ;
}

Listing 3. Pipelined Register Variable Usage
Example

the original˜ 330) and is more adaptable to design changes
which happens all the time in practice. For example chang-
ing the number of stages from 3 to 4 for this example just
need one change of the macroNUM STAGESin our code.

7. Conclusions and Future directions

In this paper we have proposed an enhanced semantics
that supports pipelined operation. Due to the lack of suit-
able HDL to use to define our proposed semantics, we have
also defined the abstract syntax for RTL++ language in-
tended to capture the minimal but necessary set of ingredi-
ents for RTL design modeling rather than designing a per-
fect language. For example,wait statement in RTL++ only
supports one clock cycle advancement. In a real world lan-
guage, to help user avoid repeatingwait for multiple times

one will certainly add anotherwait[n] statement for coding
convenience and readability improvement purpose. The ex-
ecution semantics of RTL++ is documented in the intuitive
and simple structural operational semantics notations. We
also define a formal RFSM model for us to discuss the syn-
thesis semantics of RTL++. These contributions form the
unambiguous basis for future algorithm and tool develop-
ments in the area of RTL synthesis, formal verification and
simulation. We have shown one example of extending Sys-
temC to support thepipelined registervariable concept in
RTL++ semantics. Our immediate future research direction
is to study the communication semantics between modules
to investigate whether a higher level abstraction is needed
for RTL.

References

[1] Accellera, http://www.eda.org/alc-cwg/cwg-open.pdf.RTL
Semantics.

[2] Accellera, http://www.systemverilog.org. SystemVerilog
3.1a Language Reference Manual.

[3] G. Berry. A hardware implementation of Pure Esterel. Tech-
nical Report 06/91, Sophia-Antipolis, France, 1991.

[4] S. A. Edwards. The challenges of hardware synthesis from
c-like languages. InProceedings of the International Work-
shop of Logic and Synthesis (IWLS), Temecula, California,
June 2004.

[5] D. Gajski, N. Dutt, C. H. Wu, and Y. L. Lin.High-Level
Synthesis: Introduction to Chip and System Design. Kluwer
Academic Publishers, 1994.

[6] D. D. Gajski, J. Zhu, R. Domer, A. Gerstlauer, and S. Zhao.
SpecC: Specification Language and Methodology. Kluwer
Academic Publishers, January 2000.

[7] M. Gordon and A. Ghosh. Language independent rtl seman-
tics. In IEEE CS Annual Workshop on VLSI: System Level
Design, Orlando Florida, 1998.

[8] N. Halbwachs.Synchronous Programming of Reactive Sys-
tems. Kluwer Academic Publishers, 1993.

[9] F. Kurdahi and A. Parker. Real: A program for register allo-
cation. InProceedings of the 24th Design Automation Con-
ference, pages 210–215, 1987.

[10] Open SystemC Initiative, http://www.systemc.org.SystemC
2.0.1 Language Reference Manual.

[11] P. G. Paulin and J. P. Knight. Force-directed scheduling in
automated data path synthesis. InDesign Automation Con-
ference, 1987.

[12] G. D. Plotkin. A Structural Approach to Operational Seman-
tics. Technical Report DAIMI FN-19, University of Aarhus,
1981.

[13] Synopsys Inc., http://www.synopsys.com.Design Compiler.
[14] S. Zhao and D. D. Gajski. Modeling a new rtl semantics

in C++. In Proceedings of ISCAS 2002, Phoenix, Arizona,
2002.

[15] J. Zhu. MetaRTL: Raising the abstraction level of RTL de-
sign, 2001.

	Main Page
	DATE'05
	Front Matter
	Table of Contents
	Author Index

