
Functional Validation of System Level Static Scheduling

Samar Abdi
Center for Embedded Computer Systems

University of California, Irvine, USA
sabdi@cecs.uci.edu

Daniel Gajski
Center for Embedded Computer Systems

University of California, Irvine, USA
gajski@cecs.uci.edu

Abstract

Increase in system level modeling has given rise to a
need for efficient functional validation of models above cy-
cle accurate level. This paper presents a technique for
comparing system level models, before and after the static
scheduling of tasks on processing elements of the architec-
ture. We derive a graph representation from models written
in system level design languages (SLDLs) and define their
execution semantics. Notion of functional equivalence of
system level models is established using these graphs. We
then present well defined rules for reduction of such graphs
to a normal form. Finally, we show how to check for func-
tional equivalence of two system level models by isomor-
phism of their normal graph representations. A checker
built on the above concept is used to automatically validate
the functional correctness of the static scheduling step. As
a result, the models generated for various scheduling deci-
sions do not have to be reverified using costly simulations.

1. Introduction

System level (SL) design has received much attention
lately due to the rising complexity of modern HW-SW de-
signs. Design methodologies now involve several modeling
stages to take an executable specification of the design to a
cycle accurate implementation in a gradual, step wise fash-
ion. At each step, the system model is transformed to reflect
the design decision made at that step. However, it is imper-
ative that the functionality of the original specification is
preserved as the design progresses through these incremen-
tal model transformations. In other words, we need to vali-
date if two models, before and after the implementation of
a design decision, are functionally equivalent. In this paper,
we look at functional validation of model transformations
resulting from system level static scheduling.

A possible system level design methodology is as fol-
lows. We start by distributing the specification tasks (re-

ferred to asbehaviors) onto different HW and SW process-
ing elements (PEs) to derive an architecture model. How-
ever, the behaviors in this architecture model are not yet
scheduled. The static scheduling step allows for serializing
the concurrent behaviors on the HW PEs, since they will be
implemented with a single controller. Also, at this stage,
the communication between PEs may be statically sched-
uled to optimize timing. Communication synthesis adds bus
architecture and arbitration policy, resulting in a completely
scheduled bus transaction model. Finally, the SW tasks are
compiled for the target processor and the HW behaviors are
synthesized.

Research on task level static scheduling has mostly been
done for embedded systems targeting real time applications
[9]. For distributed systems, static communication schedul-
ing [8] has been proposed for improving timing. SLDLs like
SystemC 2.0 [1] and SpecC [4] help in incorporating task
level static scheduling in system level design methodolo-
gies by allowing the exploration of different schedules for
both computation and communication in a much speedier
manner than cycle accurate co-simulation. This has led to
research being directed towards modeling and verification
at system level in order to verify the correctness of design
steps. Traditional software model checking [6] and bounded
model checking [3] allow property verification of high level
models written in C-like languages. However, to the best
of our knowledge, there has been little work in equivalence
verification of system level models. The closest work [7]
relies on textual comparison of models and requires them to
be syntactically very similar.

The rest of the paper is organized as follows. In Section
2, we look at how and why is static scheduling performed
in SL models. Section 3 presents a graph based abstrac-
tion of SL models using key language concepts. We also
look at the execution semantics of such graphs and their
extraction from SLDL code. In Section 4, we propose a
method for checking functional equivalence of SLDL mod-
els by reducing their abstracted graphs to a normal form.
The rules for performing this graph normalization are also
explained. Finally, we present experimental results for a

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1530-1591/05 $20.00 © 2005 IEEE 



functional equivalence checker based on the above concept
and wind up with conclusions.

2. Static scheduling in SL models

Static scheduling is performed in system level models ei-
ther due to resource constraints or timing optimization. Be-
haviors mapped to HW are implemented using controller(s)
and data path(s). As a result, behaviors that are grouped for
implementation with the same controller must be serialized.
Consider an unscheduled HW PE with two threads of exe-
cution. The first thread executes behaviorb1 followed by
b2, while the second thread executesb3 followed byb4. A
possible serialization of the PE would sequentially execute
the behaviors in the order{b1, b3, b2, b4}. Other schedules,
that do not violate data dependencies, are also possible.

(a) (b)

……...
run (b1)

c.send (d)
run (b2)
………

PE1

……...
run (b3)

c.recv (&d)
………

PE2

c

……...
run (b1)
run (b2)

c.send (d)
………

PE1

……...
run (b3)

c.recv (&d)
………

PE2

c

Figure 1. Different communication schedules
for transaction over channel c.

Reordering of behaviors can also take place as a result
of communication scheduling. Such a scenario is shown in
Figure 1, where datad is sent from PE1 to PE2 over chan-
nel c. The channel implements rendezvous communication
semantics, i.e. both sender and receiver must synchronize
for the transaction to take place. Consequently, for the case
shown in Figure 1(a),b2 must wait untilb3 has completed
and the transaction is performed. Ifb3 takes a long time to
execute, execution inside PE1 will stall, as it waits for the
data transaction. Behaviorb2 may be scheduled before the
transaction, if it has no data dependency onb3. The result-
ing schedule,shown in 1(b), optimizes timing.

3. Graph abstractions of SL models

Computation in SLDLs is encapsulated inside behav-
iors that read data from variables via in-ports, perform lo-
cal computation, and then write data to variables via out-
ports. Most SLDLs, also support the concept of hierarchy,
where a complex behavior can be described in terms of sub-
behaviors and their compositions. A behavior without any
sub-behaviors is called aleaf behavior. We will assume

that model transformations will treat the leaf behaviors as
atomic. We also define a class of leaf behaviors,B I , con-
sisting of identity behaviors that output the same data as
their input. They do not perform any computation, and are
typically used as place holders or for data routing. We as-
sume channel transactions only between identity behaviors.

In this section we will define two graphs, namely thebe-
havior control graph(BCG) and theport connection net-
work (PCN). The former is used to capture the control de-
pendencies between leaf behaviors, while the latter captures
data dependencies between various objects in the model.

q1

qm

q1'

qn'

b1_queue b1_q1'_queue

b1_qn'_queue

b1

bk

bk_qn_queue

Figure 2. The firing semantics of BCG nodes

3.1. Control and data dependency graphs

The BCG is a directed graph (N,E) with two types of
nodes, namelybehavior nodes(NB) andcontrol nodes(NQ).
The behavior nodes, as the name suggests, indicate behav-
ior execution, while the control nodes evaluate control con-
ditions that lead to further behavior executions. Directed
edges are allowed from behavior nodes to control nodes and
vice versa. Also, a control node can have one, and only one,
out going edge. Thus,
E(BCG) ⊂ NB(BCG)×NQ(BCG)∪NQ(BCG)×NB(BCG)

The execution of a behavior node, and similarly, evalua-
tion in a control node, will be referred to as afiring. Node
firings are facilitated by tokens that circulate in the queues
of the BCG as shown in Figure 2. Each behavior node
(shown by rounded edged box) in the BCG has one queue,
for instanceb1 queuefor behavior nodeb1. All incoming
edges to a behavior node represent the various writers to the
queue. A behavior node blocks on an empty queue and fires
if there is at least one token in its queue. Upon firing, one
token is dequeued from the node’s queue. The control node
(shown by circular node), on the other hand, has as many
queues as the number of incoming edges. For instanceqn

hask queues, one each for edges fromb1 throughbk. A con-
trol node checks all its queues and blocks on empty queues.



If the queue is not empty, it dequeues a token from the queue
and proceeds to check the next queue. The node fires after
it has dequeued one token from each of its queues.

After firing, a behavior node generates as many tokens as
its out-degree, and each token is written to the correspond-
ing queue of the destination control node in a non-blocking
fashion. Upon firing, the control node evaluates its condi-
tion. If the condition evaluates to TRUE, then a token is
enqueued to the queue of the destination behavior node.

v

b1

b

q b2

v'

p

p11
p21

p12

Figure 3. Port connection network showing
data dependencies

The PCN is a directed graph which has three types of
nodes, namely behavior nodes (NB), condition nodes (NQ)
and variable nodes (NV ). The edges represent data depen-
dencies in the model and are labeled using the port names
involved in the dependency as shown in Figure 3. For in-
stance, a directed edge from a behavior nodeb to a vari-
able nodev (shown by rectangular box), labeledp (written
(b,v, p)) would mean thatb writes to the storage indicated
by v via its out-portp. Similarly, an edge from a variable
nodev′ to a behavior nodeb′, labeledp′ (written (v′,b′, p′))
would indicate thatb′ reads variablev′ using its in portp′.
Note that for each variablev, there can be only one writer
behavior (written aswr(v)). Control conditions also create
data dependencies in the model. Thus, if a control condi-
tion q is a boolean function callq = fb(v1,v2, ...,vn), then
the node representingq has a directed edge from all then
variable nodesv1 thoroughvn.

3.2. Deriving BCG and PCN from SLDL models

BCG and PCN are powerful enough to represent a
model’s execution trace at the granularity level of leaf be-
haviors. However, they lack the concept of hierarchy that
most SLDLs have. Also, BCG does not have different con-
structs for sequential and concurrent execution. Concur-
rency is realized simply by orthogonality of the behavior
nodes. We will now show how a model written in a SLDL
can be abstracted into a BCG, PCN pair.

The control flow between behaviors is typically ex-
pressed using switch-case or goto constructs in SLDL. A
simple pseudo code example for a hierarchical behaviorb
is as follows

(a)

(b)

b11b
vsp

b
vtpb2

q2

q1 q'2

q'1

b1

1 b2

1

1b
vsp

par b
vtp

par

Figure 4. BCGs for different hierarchical be-
havior compositions

l1: run b1; if q1 == 1 goto l2 elsebreak;
l2: run b2; if q2 == 1 goto l1 elsebreak;
This behavioral composition is illustrated in Figure 4(a).
Note the addition of placeholder identity behaviorsvspb and
vt pb (represented by hollow boxes). The former indicates
thevirtual starting pointof b, while the latter indicates the
virtual terminating pointof b. The addition of these identity
behaviors makes the BCG polar, which helps in flattening
the model. Therefore, any control dependency leading tob
can be realized in BCG by an edge leading tovspb. Simi-
larly, any control dependency fromb can be represented by
an edge fromvt pb in the BCG.

The resolution of parallel compositions is done similarly,
as shown in Figure 4(b). The SLDL statement for a parallel
composition:par {run b1; run b2} creates a hierarchical
behaviorbpar. Execution ofbpar indicates that bothb1 and
b2 are ready to execute. The execution ofbpar terminates
when bothb1 andb2 have terminated. Again,vspbpar and
vt pbpar serve as the starting and terminating points, respec-
tively, of the hierarchical behavior.

Due to their rendezvous semantics, channels in SLDLs
imply control flow dependencies between communicat-
ing behaviors. Figure 5 demonstrates this control depen-
dency extraction from channels. Recall our assumption that
the SLDL model has channel transactions only between
identity behaviors. The synchronization properties of the
SLDL channel would ensure that any behavior following
the sender identity behavior would not execute until the re-
ceiver identity behavior has executed, and vice versa. If we
were to optimize away the channel to reveal the control de-
pendencies, the result will be as shown in figure 5. Note
that the channel also results in the edge(e,e′) in the PCN.



e e'c

q1 q1'qn qm'

e e'

+

Original BCG

q1 q1'qn qm'

e e'

New BCG

e

e'

New PCN

Figure 5. Effect of rendezvous channel on
BCG and PCN

4. Equivalence checking of SL models

In this section we present methods for automatically
checking if two models, each represented by a BCG, PCN
pair, are functionally equivalent. We define a notion of
equivalence and rules for reducing the graphs to an equiv-
alent normal form. If the normal forms for two models are
identical, then they are functionally equivalent.

4.1. Notion of Functional Equivalence

Our notion of functional equivalence is based on the
trace of values that the variables hold during model exe-
cution. In particular, we are interested in the variables that
are written to by non-identity behaviors. We will refer to
such variables asobservedvariables. The reasoning is that
variables that are connected to the output ports of identity
behaviors are simply a copy of another variable. Informally
speaking, we consider two models to be functionally equiv-
alent, if they have identical observed variables and the trace
of values assumed by those variables during model execu-
tion is identical, given the same initial assignment. The for-
mal notion of equivalence is as follows.

Given a modelM, let I(M) be the initial assignment of
observed variables inM. Let
∀v∈ NV(PCN(M)),∃wr(v) ∈ NB(PCN(M))
Let di , i > 0 be the value written tov after theith execution
of wr(v). Let d0 be the initial assignment value ofv. We
define the ordered set
τ(v,M, I(M)) = {d0,d1,d2, ...}
We claim that two modelsM andM′ are equivalent iff
∀v, I(M) = I(M′) ⇒ τ(v,M, I(M)) = τ(v,M′, I(M′))

4.2. Graph reduction

Our goal is to eliminate identity behavior nodes and
redundant dependencies from the BCG and PCN, as the

model is reduced to its normal form. Redundant dependen-
cies include control dependencies that do not influence the
value trace of the observed variables or set of dependencies
that may be replaced by a smaller set.

4.2.1 Identity Elimination

The identity behavior, by definition, does not perform any
computation. Hence, we may remove the identity behaviors
from BCG and PCN, while making appropriate changes to
the variable dependencies.

PCN

v1

q3 b3 b4

p3
p4

v3 v4 v5

q1     q2

BCG

q1     q2

b1

b2

BCG PCN

v2

q3

b3

b4

p3

p4

e

v1

in

out

v3 v4 v5

q1 q2

b1

b2

q1

q2

e

(a) Before applying identity elimination

(b) After applying identity elimination

Figure 6. Parts of BCG and PCN before and
after identity elimination

The simple example illustrated in figure 6(b) shows parts
of the BCG and PCN involving an identity behaviore. In
the BCG,e is part of the control path fromb1 to b2. It must
be noted that there are no other edges to eithereor the con-
trol nodesq1 andq2. As per the semantics of BCG, we can
eliminateeby merging the control nodesq1 andq2 as shown
for the BCG in figure 6(b). Note that in both the models,b2

will execute afterb1 if both control conditionsq1 and q2

evaluate to TRUE. Hence, the elimination ofe leads to the
merging of nodesq1 andq2 to form the new control node
labeled asq1∧q2 (ANDing of the boolean variablesq1 and
q2). However, it must be noted that as a result of elimina-
tion of e, the variable thate was writing to, also becomes
invalid. This variablev2 is shown in the PCN in figure 6(a).
Now, variablev2 is simply a copy ofv1, by definition of
the identity behavior. Therefore, all dependencies onv2,
including in-port connections for behaviors and parameters
for control conditions, must be replaced by dependencies



on v1. The elimination ofe from the original model results
in the PCN shown in figure 6(b). This simple example of
identity elimination shows how the reduction rule works in
principle. We now present the general definition of the rule.

Identity Elimination Rule : Given a model M, lete∈
NB(M) be an identity behavior. Let M’ be the model result-
ing from elimination ofe. Let there bem edges toe from
control nodesq1 throughqm in BCG(M). Also, let there be
n edges frome to control nodes labeledq′1 throughq′n in
BCG. Now,∀i, j,s.t.1≤ i ≤ m,1≤ j ≤ n
In BCG(M), qi has in-degreel(i) and q′j has in-degree
k( j)+1.
Let, (xi

1,qi),(xi
2,qi), ...,(xi

l(i),qi) ∈ E(BCG(M)), and

(e,q′j),(y
j
1,q

′
j), ...,(y

j
k( j),q

′
j) ∈ E(BCG) Also, let (q′j ,zj) ∈

E(BCG). After, elimination of e, the merger of control
nodes would result inm×n new control nodes. Therefore,
∀i, j,s.t.1≤ i ≤ m,1≤ j ≤ n
qi ∧q′j : xi

1& ...&xi
l(i)&yj

1& ...&yj
k( j) ; zj ∈ BCG(M′)

In the PCN, if(e′,e),(e,v,out) ∈ PCN(M),e′ ∈ B I , then
PCN(M′) = (PCN(M)− (e′,e))∪ (e′,v,out).
If (v,e, in),(e,v′,out) ∈ PCN(M),
then∀x, s.t.(v′,x, p) ∈ PCN(M)
PCN(M′) = (PCN(M)− (v′,x, p))∪ (v,x, p).

4.2.2 Redundant control dependency elimination

In order to eliminate spurious edges in a BCG, we first
need a control dependence analysis. Given model M, let
y ∈ NB(BCG(M)),x ∈ N(BCG(M)). If during any execu-
tion of M, y always fires at least once before and at least
once between every firing ofx, then we definey to be a
dominator of x. The set of dominator nodes forx will be
represented bydom(x,M). The setdom(x,M) can be de-
fined inductively as follows

1. If x ∈ NB(BCG), then dom(x,M) = dom(x,M) ∪
T

(q,x)∈E(BCG(M)){y : y∈ dom(q,M)}

2. If x ∈ NQ(BCG), then dom(x,M) = dom(x,M) ∪
S

(b,x)∈E(BCG(M)){b∪{y : y∈ dom(b,M)}}

Givenq∈ NQ(BCG(M)). Let
b1,b2 ∈ NB(BCG) and(b1,q),(b2,q) ∈ E(BCG)
Thusb1 andb2 must fire forq to fire.If we can show that
b1 ∈ dom(b2,M) then the edge(b1,q) can be eliminated
from the BCG. This is because, upon execution ofb1, a to-
ken will be enqueued in the queue corresponding to(b1,q).
Now, if b2 executes, we know thatb1 has already executed
and enqueued the relevant token. The nodeq will dequeue
this token fromb1 and will wait for a token fromb2. Hence,
a token fromb2 means thatb1 must already have a token
sent toq. If we remove edge(b1,q), while keeping edge
(b2,q), the order of firings in BCG would not change.

Control Dependency Elimination Rule: Given model
M, let q∈ NQ(BCG(M)). If ∃b1,b2 ∈ NB(BCG(M)), s.t.
b1 ∈ dom(b2,M) and(b1,q),(b2,q) ∈ E(BCG(M)), then
E(BCG(M)) = E(BCG(M))− (b1,q).

b1 q1 b2 q2 b3 q3

b1 q1 b2 q2 b3 q3

Figure 7. Control relaxation for edge (b2,q2)

4.2.3 Control Relaxation

Given model M, let(b2,q2),(q2,b3) ∈ BCG(M). If there is
no data dependency betweenb2 andb3 and betweenb2 and
q2, then changing the order of firing betweenb2 andq2, or
b2 and b3 would not change the value trace for any vari-
able in M. Therefore, the artificial control dependency from
b2 to q2 may be removed, as illustrated in figure 7. How-
ever, the rule applies only if the nodesq1 andb2 must have
an in-degree of 1, while the nodeb3 has an out-degree of
1. With these restrictions,dom(b2,M) = b1∪dom(b1,M).
Thus, firing ofb1 will enqueue a token on the queue forb3 if
q2 is TRUE. Also, the token released by firing ofb2 must be
enqueued toq3 if the edge(b2,q2) is to be removed. Hence,
the transformation illustrated in figure 7 is functionally cor-
rect under the given restrictions.

e1 1 b2 q2 b3 1 e2q1

e1 1 b2 q2 b3 1 e2q1

b2 q2 b3
q1

Figure 8. Control relaxation for edge (b2,q2)
without in and out-degree restrictions

Control relaxation can be further generalized by remov-
ing the restrictions on the in-degree ofb2 and q1 and the
out-degree ofb3. The original BCG, with arbitrary degrees
for the relevant nodes can be transformed as shown in fig-
ure 8. Using the inverse of rule on identity elimination, we
can add identity behaviorse1 ande2 beforeb2 and afterb3,
respectively. This would allow us to use the control relax-
ation transformation to derive the BCG shown in the midle



of figure 8. Finally, after control relaxation, the identity re-
duction rule can be applied to optimize awaye1 ande2.

4.3. Testing functional equivalence

In order to validate functional equivalence of M and M’,
we convert their BCG and PCN to the normal form. The
normal form of M is derived by iteratively applying the
reduction rules to the BCG(M), PCN(M) pair until none
of the rules is applicable anymore. The resulting normal
form graphs are represented by NBCG(M) and NPCN(M).
Similarly, we derive the normal form graphs for M’. If
NBCG(M) is identical to NBCG(M’) and NPCN(M) is
identical to NPCN(M’), then M is equivalent to M’. This
follows from transitivity of the equivalence relation and
the functionality preserving nature of the reduction rules.
Since, the static scheduling process (Section 2) changes
only the control dependencies, the leaf level behaviors in
both models should match. For lack of space, we could not
present a walk through example of the normalization pro-
cess. We refer the reader to [2] for the same.

Table 1. Performance of equivalence checker
for different scheduling decisions

Sched. Type Extraction Time Reduction Time

serial 2.12s 5.66s
serial 2.11s 5.18s

comm. 2.42s 7.11s
comm. 2.83s 7.03s
comm. 3.06s 9.02s

5 Experimental Results

A tool, consisting of two modules, was written in C++
for checking equivalence of scheduled and unscheduled
SpecC models. The graph extractor module derives the
BCG and PCN from a SpecC Model, while the Graph Re-
ducer module used the rules in Section 4.2 to generate the
normalized form BCG and PCN. An automatic static sched-
uler was used to create models for different serializations on
HW PEs. Experiments for communication scheduling were
performed by manual transformation of models.

The model used is a GSM voice codec application [5]
for cellular phones. The unscheduled model consisted of
1273 lines of SpecC code, with 43 non-identity leaf level
behaviors that were distributed on 3 PEs. The BCG and
PCN extraction and reduction times were in the order of
a few seconds on a 2 GHz PC running RedHat Linux OS
as shown in Table 1. The type column indicates the type
of scheduling performed; either computation serialization

(serial) or communication scheduling (comm.). Communi-
cation scheduling was done on the serialized model. The
extraction time also includes the time for dominator analy-
sis of all the nodes in the BCG. As expected, extraction and
reduction of models after communication scheduling took
slightly longer due to extra control dependencies and extra
control relaxation cycles needed for normalization. Com-
parison of normalized graphs took negligible time.

6 Conclusion and Future Work

We presented a technique to check the functional equiva-
lence of system level models before and after the scheduling
of behaviors in the architecture PEs. The main advantage
of this technique is that the scheduled model does not re-
quire any functional simulation. On the flip side, the equiv-
alence checker cannot handle run-time scheduling that adds
an RTOS model, which cannot be resolved by the checker.
However, this is only to be expected since dynamic schedul-
ing requires analysis at a smaller granularity level than the
leaf level behaviors, for instance interleaving of concurrent
behaviors. In the future, we would like to extend our equiv-
alence checker to validate more design steps like communi-
cation synthesis.

References

[1] SystemC, OSCI[online]. Available: http://www.systemc.org/.
[2] S. Abdi and D. Gajski. System Level Verification with Model

Algebra. Technical Report ICS-TR-04-29, University of Cal-
ifornia, Irvine, October 2004.

[3] E. Clarke, D. Kroening, and F. Lerda. A tool for checking
ANSI-C programs. In K. Jensen and A. Podelski, editors,
TACAS 2004, volume 2988 ofLecture Notes in Computer Sci-
ence, pages 168–176. Springer, 2004.

[4] D. Gajski, J. Zhu, R. Domer, A. Gerstlauer, and S. Zhao.
SpecC: Specification Language and Methodology. Kluwer
Academic Publishers, January 2000.

[5] A. Gerstlauer, S. Zhao, and D. Gajski. Design of a GSM
Vocoder using SpecC Methodology. Technical Report ICS-
TR-99-11, University of California, Irvine, February 1999.

[6] G. Holzmann. The model checker spin.IEEE Transactions
on Software Engineering, 23(5), June 1997.

[7] H. Saito, T. Ogawa, T. Sakunkonchak, M. Fujita, and
T. Nanya. An equivalence checking methodology for hard-
ware oriented c-based specifications. InIEEE International
High Level Design Validation and Test Workshop, pages 274–
277, October 2002.

[8] D. Surma and E. Sha. Collision graph based communica-
tion scheduling for parallel systems.International Journal of
Computers and Their Applications., 5(1), March 1998.

[9] C. Wong, F. Thoen, F. Catthoor, and D. Verkest. Static task
scheduling of embedded systems. In3rd Workshop on System
Design Automation - SDA 2000 Rathen, Germany, pages 23–
30, March 2000.


	Main Page
	DATE'05
	Front Matter
	Table of Contents
	Author Index




