
Embedded Automotive System Development Process 
Steer-By-Wire System 
Joachim Langenwalter 

jlangenwalter@mathworks.com 
The MathWorks 

 
 

Abstract 
Model based design enables the automatic 
generation of final-build software from models 
for high-volume automotive embedded 
systems.  
This paper presents a framework of 
processes, methods and tools for the design 
of automotive embedded systems. A steer-by-
wire system serves as an example. 

Process 
Model-based design supports the needs of 
controls/DSP systems engineers and software 
developers by providing a common 
environment for graphical specification and 
analysis. In this process, models are made 
and used to specify system data, interfaces, 
feedback control logic, discrete/state logic, 
and real-time behavior. 
 
A common way to view a software process is 
through use of the V diagram. The diagram 
corresponds to most engineering processes, 
however, the process is iterative with many 
repetitive steps throughout the development 
life cycle.  
 
The software process in this diagram is 
comprised of the following: 

• Development (Requirements, Design, 
Coding, Integration) 

• Verification and Validation (V&V) 
• Integral (Software Configuration 

Management, Requirements 
Traceability and Documentation) 

 
Methods & Tools  
Model-based design methods are employed 
during the software engineering process. 
 

The development methods include: 
1. Behavioral Modeling 
2. Detailed Software Design 
3. Distributed Architecture Design 
4. Production Code Generation 
5. Embedded Target Integration 

 
The V&V methods include: 

1. Simulation and Analysis 
2. Rapid Prototyping 
3. Model Testing and Coverage 
4. Code Tracing and Reviews 
5. Hardware-In-the-Loop (HIL) Testing 

 
The Integral methods include: 

1. Source Control Interface 
2. Requirements Management Interface 
3. Report Generation 
 

 

Behavioral Modeling  
Models are used for specifying requirements 
and design for all aspects of every individual  
subsystem (e.g. steer-by-wire in Figure 1 and 
2).  
 
A typical system includes: 

• Inputs (e.g., steering wheel sensors) 
• Controller or DSP Model 
• Plant Model (DC motor, rack and 

pinion, wheels ) 
• Outputs (change of direction) 

 
As shown, a system model can be created to 
represent the desired behavior using control 
system block diagrams for feedback control, 
state machines for discrete events and 
conditional logic, and DSP blocks for filters. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1530-1591/05 $20.00 © 2005 IEEE 



 

Simulation and Analysis 
The model is executed and analyzed to 
ensure that the requirements are satisfied, 
using methods such as time- or event-based 
simulation and frequency domain analysis.  

 
Figure 1: Steer-By-Wire system 
 
 

 
Figure 2: Steer-By-Wire system with fault 
tolerant redundant bus system (FlexRay) 

Rapid Prototyping 
Due to inaccurate plant models and 
insufficient processing power rapid 
prototyping is highly useful because it 
replaces the plant model with the physical 
plant.  
 

Detailed Software Design 
With model-based design, the same model 
used for algorithm specification and validation 
is refined and constrained by the software 
engineers as part of the production code 
generation process.  
 

Model Testing 
It is more beneficial to test the model on a 
desktop rather than deploy it on hardware for 
build and integration. Source code-based 
testing has existed for many years, but recent 
methods now allow for model testing and 
structural coverage.  
 

Figure 3: Coverage for power management 
design in Fig. 3 

Production Code Generation  
Now that the model has been verified and 
validated, it is time to generate code 
automatically from the model.  

Hardware-In-the-Loop Testing 
Once the controller has been built, a series of 
open- and closed-loop tests can be performed 
with the real-time plant model in the loop.  

Integral Components 
Most software standards require traceability of 
requirements, perhaps originating in other 
requirements tools, throughout development.  
 
Conclusion 
Major software evolutions occur when the full 
software engineering process activities are 
supported. Improving bits and pieces alone is 
insufficient.   
 
[1] "Software considerations in airborne 
systems and equipment certification," 
RTCA/DO-178B, RTCA Inc., Dec. 1992 
[2] Dr. Michael von der Beeck, ARTIST 
Industrial Seminar, Paris, 23.4.2002  
[3] Paul Yih, Jihan Ryu, J. Christian Gerdes, 
Modification of Vehicle Handling 
Characteristics via Steer-by-Wire, Dept. of 
Mechanical Engineering, Stanford University 

ECU ECU 

ECU ECU

ECU ECU

ECU ECU

FlexRay 


	Main Page
	DATE'05
	Front Matter
	Table of Contents
	Author Index




