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Abstract 
 

When applying Dynamic Power Management (DPM) 
technique to pervasively deployed embedded systems, the 
technique needs to be very efficient so that it is feasible to 
implement the technique on low end processor and tight-
budget memory. Furthermore, it should have the 
capability to track time varying behavior rapidly because 
the time varying is an inherent characteristic of real world 
system. Existing methods, which are usually model-based, 
may not satisfy the aforementioned requirements. In this 
paper, we propose a model-free DPM technique based on 
Q-Learning. Q-DPM is much more efficient because it 
removes the overhead of parameter estimator and mode-
switch controller. Furthermore, its policy optimization is 
performed via consecutive online trialing, which also 
leads to very rapid response to time varying behavior. 

 
1. Introduction 

 
Dynamic Power Management (DPM) is a very general 

and important power reduction technique targeting on 
controlling performance and power levels of electronic 
systems. In DPM system, a Power Manager (PM) 
monitors the overall system states, and controls the power 
state of system components. In the coming deep 
submicron era, DPM will gain more and more importance, 
because DPM is the one of the most effective techniques 
to combat with leakage current. 

Actually DPM has attracted a lot of interests in the past 
a few years [1]. Most of them apply stochastic modeling 
and optimization. The existing methods usually assume 
that DPM is controlling a stochastic system with explicit 
model completely known.  Recently, some papers have 
studied how to handle the uncertainty and nonstationary 
characteristics of the real world. However, these 
techniques are still based on model. 

In the near future, a lot of research challenges will be 
imposed on DPM. Above all, DPM is demanded by 
deeply embedded and pervasively employed smart nodes 
around us, e.g., biosensor node. They have only low end 
processor and tight budget memory. Hence, the DPM 
policy optimization needs to be extremely efficient. 
Actually the same requirement exists in large system and 
System on Chip as well. Moreover, as discussed in some 
previous papers, in most real world systems parameters 
are undertaking continuous varying, and the varying 

behavior needs to be rapidly tracked, so that the maximum 
potential of power reduction can be delivered. 

Existing techniques have a number of shortcomings 
that prevent them from surviving the research challenges. 
First of all, the existing model-based techniques are 
impractical for low-end deeply embedded systems 
because of the complexity of policy optimization and time 
penalty for dealing with time varying. In experiments we 
observe that, even on Pentium III 800MHz PC, the widely 
applied linear programming policy optimization runs 
extremely slow. Besides policy optimization, the 
parameter estimation also consumes a lot of time to 
maintain a reasonable accuracy. In addition, the model-
switch controller, which detects parameter variation and 
determines when to perform policy optimization, is fairly 
time consuming as well. Hence, when parameters vary 
continuously, existing model-based approaches may not 
track the varying rapidly. 

In this paper, we present a Reinforcement Learning 
(RL) based DPM technique namely Q-DPM. The 
proposed technique is model free, i.e., it does not require 
explicit model of the system. On the contrary, it learns the 
optimal policy by trialing continuously. The complexity 
of the technique is much lower than the model-based 
counterpart, so that it is feasible to implement on almost 
any low end systems. Furthermore, since Q-DPM 
performs consecutive adaptation in every time interval 
and it removes the overhead of parameter estimator as 
well as mode-switch controller, its response to varying 
behavior is very rapid.  

 
2. Q-DPM 

 
RL is the problem faced by an agent that must learn 

behavior though trial and error interactions with a 
dynamic environment. In the standard RL mode, an agent 
is connected to its environment via perception and action.  
On each step of interaction the agent receives input as 
some indication of the state of the environment. The agent 
then chooses an action, which changes the state of the 
environment. The value of this state transition is 
communicated to the agent through a reinforcement signal. 
The agent's behavior should choose actions that tend to 
increase the long-run sum of values of the reinforcement 
signal. It can learn to do this over time by systematic trial 
and error.  

From above description we can see that the RL is one 
way to derive the policy for Discrete Time Markov 
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Decision Process (DTMDP). RL methods solve DTMDP 
by learning good approximations to the optimal value 
function, *J , given by the solution to the Bellman 
optimality equation [3] which takes the following form 
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where )(sA is the available action set in the current state 
s , ),,( sasc ′ is the effective immediate payoff (in the 
context of DPM. The payoff is energy reduction or certain 
function of energy reduction), and sE ′ is the expectation 
over possible next states s′ , and β  is the discount factor. 
Also, RL can be interpreted as direct adaptive control [4].  

We adopt Q-Learning [5] for our model free DPM. Q-
Learning is almost the most practical RL algorithm 
because it is quite easy to implement. When applying the 
Watkin’s Q-Learning, Bellman’s equation can be 
rewritten in Q-factor as  
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where ),(* asQ  can be interpreted as the expected 
discounted reinforcement (actually a function of energy 
reduction) of taking action a in state s . Intuitively, on 
each step we can greedily take the action with 
maximum ),( asQ . On a transition from state s to s′ with 
action a , the ),( asQ is updated as following: 
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where γ is the learning rate. In order to make Q-Learning 
perform well, all potentially important state-action pairs 

),( as must be explored. At each state, with probability 
χ a random action needs to be taken instead of the action 
recommended by the ),( asQ .  

Apparently the run time complexity of Q-DPM is very 
low. On each step, the DPM daemon only needs to select 
the maximum ),( asQ , and update the ),( asQ  using Eqn. 
3. Q values can be encoded in a |||| as × table that 
requires a little bit memory space. Hence, it is feasible to 
implement Q-DPM on almost any embedded nodes. 
Actually, Q-DPM has a number of additional advantages, 
and the most attractive one is that it is tolerant to small 
scale variations, which is very likely to happen in real 
world system. 

 
3. Simulation and Conclusion 
 

The simulation is to preliminarily investigate the 
performance of Q-DPM. In order to study Q-DPM under 
various conditions, synthetic input is used to drive the 
simulation. First we study whether Q-DPM can deliver the 
maximum potential of DPM in stationary environment. In 
Fig.1 we compare Q-DPM to the optimal policy derived 
by analytical techniques which assume model is 
completely known in prior. After studying many cases, we 
conclude that Q-DPM can approximate the theoretically 

optimal policy at reasonable speed despite it requires 
much less resources. Moreover, we put Q-DPM in a 
nonstationary environment by feeding temporarily 
stationary synthetic input. One typical case is shown in 
Fig. 2, where switching points are marked by vertical lines. 
We can read that the energy reduction may be heavily 
affected by parameter variation (e.g., around the first 
changing point), and the proposed Q-DPM responds to the 
variations almost instantly. In contrast to Q-DPM that 
directly learns optimal state-action mapping, existing 
methods need to detect parameter change, perform 
parameters, and then perform time consuming policy 
optimization. The significant time overhead is removed in 
Q-DPM. 

 
Fig. 1 Convergence on Optimal Policy 

 
Fig. 2 Rapid Response 

There is still a lot of rewarding research remaining to 
perform, such as QoS guaranteed Q-DPM and Fuzzy Q-
DPM in noisy environment. More importantly, the 
proposed approach is to be verified in experiments. 
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