
Tag Overflow Buffering:
An Energy-Efficient Cache Architecture

Mirko Loghi Paolo Azzoni Massimo Poncino
Dipartimento di Informatica Dipartimento di Informatica Dip. di Automatica e Informatica

Università di Verona Università di Verona Politecnico di Torino
37134 Verona, Italy 37134 Verona, Italy 10129 Torino, Italy
loghi@sci.univr.it azzoni@sci.univr.it massimo.poncino@polito.it

Abstract

We propose a novel energy-efficient memory architecture
which relies on the use of cache with a reduced number of
tag bits. The idea behind the proposed architecture is based
on moving a large number of the tag bits from the cache
into an external register (Tag Overflow Buffer) that iden-
tifies the current locality of the memory references; addi-
tional hardware allows to dynamically update the value of
the reference locality contained in the buffer. Energy effi-
ciency is achieved by using, for most of the memory ac-
cesses, a reduced-tag cache.

This architecture is minimally intrusive for existing de-
signs, since it assumes the use of a regular cache, and does
not require any special circuitry internal to the cache such
as row or column activation mechanisms. Average energy
savings are 51% on tag energy, corresponding to about 20%
saving on total cache energy, measured on a set of typical
embedded applications.

1. Introduction
Unlike their general-purpose counterparts, embedded sys-
tems typically execute a well-defined application mix,
which results in a higher predictability of the execution and
memory access patterns. This fact offers additional oppor-
tunities for optimizing the performance or the energy con-
sumption of the system, by allowing powerful application-
specific optimizations that have been particularly successful
in the design of the memory hierarchy (see [2, 3] for a sur-
vey).
Such type of optimizations is also suitable for caches, in
spite of their natural adaptation to different workloads, and
thus, to different application mixes. One of the most natural
way of exploiting the predictability of a given application
mix in a cache is that of constructively using the high local-
ity of its memory references. As experimentally observed
in several works, typical embedded applications can be de-
composed into a few localities, each one accessing a small
number of memory regions. In the context of a cache, this
translates to a limited number of tags which could poten-
tially be used for comparison. The most interesting prop-
erty of these localities is their size; experiments show that,

regardless of how many localities an application may con-
tain, each locality span a limited range of addresses, which
very seldom exceeds the size of a few tens of cache lines.
This translates into the use of no more than 5-6 tag bits for
most memory accesses.
Using a reduced number of tags in a cache, however, may
result in incorrectly classifying an actual miss as a hit, since
matching two values will in general require the compari-
son of the full tags. This false positive is called false hit,
which cannot obviously be allowed in the execution of a
program. At the same time, however, this solution seems
to be quite appealing, since, the area and energy consump-
tion of the tag portion can be sizable, especially for rela-
tively small caches, like those typically used in embedded
systems.
The use of partial tags in a cache has already been proposed
in the literature [11, 12, 13, 14, 15]; most solution, how-
ever, require complex cache arrangements (such as the cir-
cuitry for selectively activating or disactivating columns of
the cell array), or even external hardware.
In this work, we propose an energy-efficient cache struc-
ture which relies on the partial tag mechanism and a min-
imal amount of additional hardware external to the cache.
The scheme is based on bringing most of the tag bits out-
side the cache, into a register which works as a sort of level-
0 cache, and identifies the current locality. On a memory ac-
cess, this register is first checked against the most significant
bits of the address to determine whether we are inside the
current locality or not. On a hit, the partial-tag cache is ac-
cessed normally (yet with a small cost); on a miss, the nor-
mal miss procedure is followed, with minor modifications.
Two are the main strengths of the proposed scheme. First,
it uses a fixed number of tag bits in the cache; thus, it does
not require any activation circuitry for changing the num-
ber of active tags, thus allowing to use a regular, yet smaller
cache. Second, it achieves a tag energy reduction compa-
rable to other schemes, yet with a much smaller hardware
overhead (one register, two comparators, and a 3 bit-counter
in the most complex configuration).
The proposed architecture allows to save 51% on tag en-
ergy (corresponding to a 20% saving on total cache energy)
on average, measured on a set of typical embedded applica-
tions [16].

2. Motivation
Tags may take a significant portion of cache area and
power, especially for relatively small caches, as those
typically used in resource-constrained embedded systems.
Their contribution is approximately proportional to the rel-

1530-1591/05 $20.00 © 2005 IEEE

ative weight of the tags with respect to the total number of
bits in a cache line. For instance, for a 4KB cache with a line
size of 4 bytes and 32-bit address, tags take 20 bits, which
roughly translates to 20/52 = 38.4% of total cache power.
This figures can even be much larger in the case virtual
caches (i.e., where the core accesses the cache using vir-
tual addresses) in 64-bit address spaces, although the latter
are not very common in the embedded systems domain. In
these cases, all processes see the entire virtual address space
and the cache must in principle store the entire tags.
The relative weight of tags in caches motivates the use of
techniques that reduce the size of the tags. Experimental
evidence, on the other hand, shows that it is actually possi-
ble to reduce them. Typical embedded applications, in fact,
due to their high locality of execution, tend to access a small
number of memory regions, which would require a limited
number of tags for identification. As a matter of fact, pre-
vious works [12, 14] have shown that using as few as 5–6
tag bits for address matching provides hit rates that are al-
most identical to full tag matching. This is confirmed by our
analysis on a different platform and using different applica-
tions, as shown in Figure 1.

�������������������������

�������������������������

�������������������������

�������������������������

� �

� �

� �

� 	

�

� �� �� � �� �� �� �� �� �� �� �� �� ���������
������� ��� �"! � #

$%&
'(&
)
*
+ ,

Figure 1. Hit Ratio vs. Number of Tag Bits.

The plot, referred to one of the PowerStone bench-
marks [16], shows that four bits suffice to achieve the same
hit rate of a full-tag comparison. Similar plots have been ob-
served for the other benchmarks. Notice also that even us-
ing a zero-tag comparison would provide in this case a hit
rate that is only marginally degraded. However, how it will
be shown later, other issues than just hit rate must be con-
sidered in deciding the optimal number of tag bits to be con-
sidered.

3. Previous Work
The vast literature on application-specific memory opti-
mizations only marginally involves caches, mainly because
the terms “application-specific” and “cache” have histor-
ically been intrinsically contrasting terms. More recently,
many authors have begun to use the high predictability of
memory access patterns of embedded systems for cache op-
timization.
One class of solutions leverage a configurable cache struc-
ture in which line sizes, associativity, and other features can
be dynamically reconfigured at runtime, upon detection of
a decrease in performance, such as an increased miss rate
([4, 5, 6, 7, 8]).
The technique proposed by Villa et al. exploits the dom-
inance of 0’s in cached values by dynamically compress-
ing zeroed data in the cache [9], resulting in lower en-
ergy thanks to reduced traffic. Givargis [10] proposes an
application-specific cache indexing mechanism based on bit
selection. Although the approach is meant for reduction of
miss rate, energy efficiency is achieved as a byproduct.

A totally different class of approaches targets the optimiza-
tion of the consumption of tag memory. In these approaches,
power reduction is achieved through the reduction of the
number of tag bits to be used for the comparisons; yet they
differ in the choice of what and how many tag bits must ac-
tually be considered. The knowledge of the memory access
pattern of the application may then be used to make this
choice more effective.
Comparing addresses using a reduced number of tags, how-
ever, may result in incorrectly classifying an actual miss as
a hit. We call this situation a false hit, which cannot obvi-
ously be tolerated because it does alter the correct behavior
of a program.
For this reason, matching with reduced tags must be used
carefully. For instance, some authors have used it where the
cost of a misprediction is not critical, such as in branch pre-
diction engines [11, 12]. The solutions proposed in [13, 14]
deal instead with false hits by combining a detection scheme
with a two-level comparison. On detection of a false hit,
the remaining tag bits are enabled and used to complete the
comparison. These solutions are indeed effective, but re-
quire a re-design of the caches, in order to accommodate
the activation/deactivation mechanisms.
A completely different solution is proposed by Petrov and
Orailoglu [15], in which addresses belonging to different lo-
calities of the application are encoded into a minimal-length
tag. Encoding is implemented by an external block, which
can be programmable. This solution, besides needing a rel-
atively complex encoder, requires the capability of selec-
tively disabling a sparse subset of the tag bits in the cache,
since they can be dynamically adapted to the program lo-
cality.
Our approach is closer to [15], in that it is a combina-
tion of an architectural arrangement (the encoder) and a
re-organization of the cache structure. However, it substan-
tially differs in several aspects. First, it does not require any
custom modification to the cache structure; no shutdown
or selective activation circuitry whatsoever is required. We
rather use a regular cache, yet with a reduced number of
tags which is predefined up-front. Second, the complexity
of the extra logic required by our solution is almost negligi-
ble.
Since our approach does not require modification of the
cache structure, it might seems comparable to purely ar-
chitectural techniques, such as the method proposed by of
Bellas et al. [17], in which a small L0 instruction cache is
employed to store only the most frequently executed basic
blocks. Our method, however, sensibly differs from this ap-
proach because it does not increase the depth of the mem-
ory hierarchy, and therefore, the additional register does not
work as a filter of cache accesses;

4. Reduced-Tag Cache Architecture
Let n be the number of bits of the address, split into b bits of
byte offset, s index bits, and t tag bits. The cache will thus
consist of S = 2s lines, each one with size L = 2b bytes.
The proposed architecture is based on using a cache with
k < t tag bits; this implies that, of the t tag bits of the ad-
dress, only k bits are actually fed to the cache. The actual
value of k is determined up-front by profiling of the appli-
cation mix during the software development phase, using a
criterion which will be discussed later.
The remaining t−k bits represent the locality around which
the application is supposed to evolve for a large number of
memory accesses. This implies that, except when locality
changes, these t − k bits do not change. The idea is thus to
store this value and use it as a reference one, against which
each memory access is compared. We called this locality
value tag overflow value, and tag overflow buffer (TOB) the

register used to store it; the name emphasizes that fact that
the TOB represents an extension of the cache tag array. In
practice, since we assume that for most of the cache lines
these tag bits are identical, it is more energy efficient to take
it out from the cache.

4.1. TOB-Based Architecture
Figure 2 shows a block diagram of the reduced-tag archi-
tecture. The shaded box represents the block which imple-
ments the TOB-based operations.
The figure emphasizes the fact that the TOB does not filter
the accesses to the cache; rather, the TOB and the cache are
always accessed in parallel at each memory reference. The
outcome of the TOB lookup tells whether an access to the
reduced-tag cache is feasible.

� ��� �

��� � � 	
� � �

� ���� � � � � � � �

������� � !

" # $&% � ' � � (' � � !
)�* � +�, - . � +

/�0
1��� � � 	
� � �

243527698
: ; < = : ; < > # ? ? @ A BC D E A F

GIH4JIK4L M N O
PRQ K4S
T�U
V�U
N U�JIN M H9S

WX Y W Z

Figure 2. Dynamic TOB-Based Architecture.

The functional operations are as follows. On a memory ref-
erence, the t − k most significant bits of the address are
fed to the TOB. If the two values match (a TOB hit), then
we can safely access the reduced-tag cache without worry-
ing about false hits. Clearly, the lookup in the cache may
result in a hit or miss as any access to a regular cache. In
case of cache miss, the missed line would be replaced us-
ing some replacement strategy.
A TOB miss, conversely, regardless of the possible cache
outcome, results in an equivalent cache miss. In fact, a TOB
miss corresponds to a change in locality; a corresponding hit
in the cache would result in a false hit, since the full tag does
not actually match. There is however one important differ-
ence with respect to a regular cache miss: on a TOB miss,
we do not fetch the corresponding line into the cache, that
is, we do not replace the missed line in the cache. In fact,
since we are referring to a single locality value, we regard
a change in locality (a TOB miss) as a “sporadic” event.
Therefore, the data contained in the cache are not modified.
In other words, the replacement of a cache line occurs only
within the context of the pre-defined locality value.
From the above discussion, it clearly emerges that a key is-
sue for the efficient operations of this scheme is the choice
of value of the TOB. The most reasonable choice, at a slight
expense of hardware complexity, is to allow the TOB value
to change and to dynamically adapt to possible changes
in locality. This is the task of the block labeled “Local-
ity Change Detection”, which, based on the observation of
both the address and TOB miss output decides whether or
not to enable the loading of a new locality value (i.e., the
t − k bits of the current address). When this occurs, the
cache must be flushed, since all the values it contains actu-
ally refer to the previous locality. The functional operations
of the dynamic architecture are summarized in Table 1.
Concerning the actual implementation of the locality
change detection, we opted for a very simple realization,

TOB Cache Description
H H Regular cache hit, no replacement
H M Regular cache miss, with replacement

If a change in locality is detected
M – cache flush; otherwise, regular cache

miss, without replacement.

Table 1. Summary of TOB-Based Operations.

based on the sole observation of the TOB miss output.
Specifically, a change in locality is determined as the num-
ber of consecutive TOB misses exceeding a given threshold.
The value of the threshold may be critical, since we want to
avoid an excessive number of locality switches. An explo-
rative analysis has experimentally shown that a threshold of
7 suffices to track the actual locality changes.

[\]_^ `�a�b&c d e�f

g�h�ikj \ l m

[\]_^ d n�f e�opn�a&q r
spt u v wx y z { v

| }I~�p� � � �I� { {

������� �_�I�

Figure 3. Detailed TOB Implementation.

Although more sophisticated schemes do exist for locality
detection (e.g., [18]), the simple scheme of Figure 3 works
reasonably fine, and meets the tight constraints of embed-
ded systems.
It is important to emphasize that that the TOB-based archi-
tecture exhibits a tradeoff between the access to a reduced-
tag, energy-efficient cache and an increase of the miss rate.
In fact, a TOB miss will always be considered as a cache
miss, regardless of what the result of a cache lookup would
be. Clearly, the overall scheme is advantageous, energy-
wise, if (i) the TOB miss rate is very low, and (ii) the access
to the reduced cache (i.e., the common case) is more energy-
efficient than the conventional cache. Section 4.2 discusses
an analytical solution to this tradeoff.

4.2. Choosing the Optimal Tag Size
In the above discussion we have assumed that the value of k
is given; however, its choice is actually the most critical de-
sign issue for making the TOB architecture effective. In the
following, we propose a derivation of the optimal value of
k, based on an analytical formulation of the total memory
energy Emem as a function of k.
Let Ecache(k) the energy consumed by a single cache ac-
cess. For simplicity, in this discussion we do not distinguish
between read and write energy. Ecache(k) is monotonically
increasing with respect to k; for k = 0 (i.e., no tag) Ecache

is the energy of the data array only, whereas for k = t
Ecache is the energy of a full-tag cache. To decouple the de-
pendence of Ecache versus k, we can express it as the sum of
a constant term (the energy per access in the data array) plus
the tag contribution, that is, Ecache(k) = Edata + Etag(k).
As discussed in Section 4, the use of the TOB trades off a
reduced energy access cost in the cache (Ecache(k)) for a
slight increase in the overall miss rate (in correspondence of

TOB misses). Clearly, the miss rate will also depend on k:
as k increases and tends to t, the miss rate will tend to reach
the miss rate value of the full-tag cache. In other terms, the
miss rate is monotonically decreasing with respect to k. We
denote the miss rate with MR(k).
The total energy of memory accesses is thus given by:

Etot(k) = Ecache(k) + MR(k) · Emiss (1)

where Emiss denotes the energy cost of a miss penalty, and
can be assumed as a constant. Equation 1 consists of the
sum of two quantities with opposite behavior with respect
to k. Therefore, there must be a value kopt of k which min-
imizes the expression for Etot, which is used as a value for
k in the architecture of Figure 2.
Figure 4 shows the plots of the quantities of Equation 1
for the same benchmark used for Figure 1, for a value of
miss penalty of 5 (i.e., Emiss/Ecache = 5). This value, al-
though apparently small, is typical of systems-on-chip ar-
chitectures, where even the background memory is on-chip,
connected through a fast interconnect.
Notice how MR(k) (the middle curve) is not actually
monotonically decreasing up to the value k that saturates
the miss rate (k = 3, from Figure 1). Notice also the lin-
ear behavior of Ecache.

�����������������������������

�����������������������������

�����������������������������

�����������������������������

��������� ���������������

�����������������������������

�
	 ��������

�
	 ��������

� 	 ��������

� 	 ��������

�
	 ��������

�
	 ��������

�
	 ��������

�
	 ��������

� ����� �� �� �� �� �� �� �� � �� �� ������� ���
!

" #
$%

��& '�& ()
* + ,
-/.0* + , 1 ��2/3 4 4
��5 6 5 * + ,

Figure 4. Energy vs. Number of Tag Bits.

In general, the energy is maximally reduced by applying
Equation 1 for each individual application, in order to de-
termine an optimal value of k for each application. The
application-specific nature of the architecture could be par-
tially relaxed, however, by computing an “average” value
of kopt, derived from the memory access characteristic of
a set of applications, at the expense of reduced energy sav-
ings.

4.3. Architectural Refinement
Some applications, such as loop-intensive kernels (e.g.,
FFT), may be highly localized so that a single main local-
ity does exist; in these cases, the dynamic locality detection
mechanism is somehow wasted, since it will not detect any
significant locality change. These situations, which can be
identified during the profiling phase, a static TOB-based ar-
chitecture may be as effective as the dynamic one, yet with
a smaller hardware overhead. By static we mean that the
value in the TOB does not change during system opera-
tions; this fixed value represents the most “typical” local-
ity value of the application.
Although a static arrangement seems to be overly simplis-
tic, it actually eliminates the possibility of a cache flush: in
a static scheme, since no change in locality is allowed, a
TOB miss always incurs only in the penalty of an ordinary

cache miss. As Section 5 will show, some embedded appli-
cations may benefit from the use of a fixed locality value.
The static scheme simplifies the architecture of Figure 2 by
eliminating the counter and the comparison with the thresh-
old value, so that the additional hardware consists just of
the TOB register and a comparator; besides reduced ca-
pacitance, switching activity is also much lower, since they
switch only in correspondence of TOB misses.

4.4. Performance Issues
One important point to emphasize is that the above archi-
tecture do not affect the cycle time of the cache, since the
TOB and the cache are accessed in parallel, and the former
has a much shorter delay than the cache.
Rather, these schemes actually improve cache access time,
as a byproduct. Since the tag has reduced size, any access
to the cache (be it a miss or a hit) will require a shorter time
(not just less energy) than accessing a full-tag cache.

5. Experimental Results
We have applied to proposed architecture to the PowerStone
suite, a set of widely used embedded benchmarks, which in-
cludes typical multimedia, control, filtering, decoding, and
communication kernels [16]. Memory reference traces have
been derived after compilation and execution of the bench-
marks on the Platune simulation platform [19]. Simulations
of the architecture have been carried out using a in-house
cache simulator, augmented with energy and performance
models. The latter are based on an empirical model, derived
from interpolation of data extracted from a memory gener-
ator by STMicroelectronics in a 0.13 µm technology. The
model is parameterized with respect to the number of rows
and column, and has been derived by least-mean square re-
gression of a set of energy values obtained with the mem-
ory generator for different memory sizes. The intrinsic er-
ror of the energy and cycle time models, with respect to ac-
tual data, is below 2%.
Tables 2 and 3 show the energy saving results for a 1KB,
direct-mapped cache with a 4-byte line size, for instruction
and data cache, respectively. Reported data include tag en-
ergy, as well as total cache energy, with the relative savings,
plus, for each benchmark, the corresponding value of kopt.
The average tag energy savings are 51% for the I-cache and
38% for the D-cache; these figures translate into a 21% and
a 16% for the total cache energy.
The first comment is related to the quantification of the sav-
ings. Since the TOB-based architecture targets the reduction
of tag energy only, there is an upper bound to the achiev-
able energy savings; in the best case, we can reduce tag en-
ergy to zero, and cache energy proportionally to the ratio
t/(t + l), where t is the original number of tag bits, and
l the size of a line in bits. The cache configuration of Ta-
bles 1 and 2 corresponds to a t = 22 bit tag cache, with
a l = 32 bit line; therefore, we can achieve no more than
22/(22 + 32) = 40% saving on cache energy, neglecting
the overhead. This bound, however, is simplistic and it is
based on the assumption that energy perfectly scales with
respect to the width (in bits) of the cache; the actual bound
is in fact lower because of the design rules of the memory
array, which tends to keep the aspect ratio as square as pos-
sible. This fact is reflected in the memory models we have
used, and explains why the tag energy savings reported are
smaller than the expected value; for instance, benchmarks
that use only 1 bit of tag actually save less than the simple
ratio ((22 − 21)/22). This is also important when compar-
ing our results to those of other approaches which are based
on less accurate models ([13, 14, 15].
The second observation is concerned with the limited effec-
tiveness of the method for data streams. This is somehow

Benchmark kopt Tag Energy (pJ) Cache Energy (pJ)
Original Optimized ∆ Original Optimized ∆

*adpcm 1 5,65e05 3,25e05 42,6% 1.37e6 9.21e5 32.8%
bcnt 2 9,76e3 5,43e3 44,4% 2.34e5 1.89e5 19.4%
blit 0 1,50e5 0 100% 3.58e5 2.81e5 21.5%

compress 3 1,05e6 6,08e5 41,9% 2.51e6 2.05e6 18.4%
crc 2 2,49e5 1,39e5 44,1% 5.95e5 4.79e5 19.4%

*des 1 9,69e5 5,60e5 42,3% 2.34e6 1.74e6 25.7%
engine 0 2,73e6 0 100% 6.54e6 5.15e6 21.3%

fir 2 1,17e5 6,50e4 44,4% 2.81e5 2.26e5 19.4%
g3fax 2 7,51e6 4,20e6 44,1% 1.80e7 1.45e7 19.4%
jpeg 3 3,08e7 1,79e7 41,8% 7.37e7 6.02e7 18.4%

pocsag 2 3,52e5 1,95e5 44,4% 8.45e5 6.80e5 19.5%
qurt 2 8,75e3 4,83e3 44,8% 2.11e4 1.70e4 19.5%

ucbqsort 2 1,70e6 9,41e5 44,5% 4.09e6 3.29e6 19.4%
v42 3 1,94e7 1,12e7 42,3% 4.68e7 3.81e7 18.5%

Table 2. Energy Results (1KB Direct-Mapped I-Cache, Line Size = 4B).

Benchmark kopt Tag Energy (pJ) Cache Energy (pJ)
Original Optimized ∆ Original Optimized ∆

adpcm 10 1,31e5 9,51e4 27,3% 3.06e5 2.70e5 11.7%
bcnt 0 4,45e3 0 100% 1.05e4 7.23e3 31.6%
*blit 0 5,91e4 0 100% 1.41e5 5.88e4 58.5%

compress 10 5,59e5 4,05e5 27,6% 1.32e6 1.17e6 11.7%
crc 10 2,18e4 1,58e4 27,5% 5.12e4 4.52e4 11.7%
des 10 2,17e5 1,56e5 27,9% 5.16e5 4.56e5 11.7%

engine 10 1,44e6 1,05e6 27,2% 3.37e6 2.98e6 11.6%
fir 10 4,00e4 2,91e4 27,3% 9.38e4 8.28e4 11.7%

g3fax 10 2,02e6 1,46e6 27,7% 4.77e6 4.21e6 11.7%
jpeg 10 1,04e7 7,53e6 27,5% 2.44e7 2.16e7 11.7%

pocsag 10 1,02e5 7,38e4 27,4% 2.38e5 2.10e5 11.7%
qurt 10 4,32e3 3,11e3 27,9% 1.01e4 8.97e3 12.0%

ucbqsort 10 4,33e5 3,15e5 27,3% 1.01e6 8.95e5 11.6%
v42 10 5,68e6 4,11e6 27,6% 1.34e7 1.19e7 11.7%

Table 3. Energy Results (1KB, Direct-Mapped D-Cache, Line Size = 4B).

expected, since it is a well-known fact that data references
exhibit smallesmaller locality than instruction ones.
Entries in the tables which are marked with an asterisk de-
note benchmarks for which the static scheme proved more
effective than the dynamic one. For the I-cache, these cases
(adpcm and des) correspond to the situation in which the lo-
cality detection hardware would force to use an unnecessar-
ily large number of bits in the tag memory, to avoid a large
number of cache flushes (402 for adpcm and 191 for des, us-
ing a 1-bit dynamic TOB).
For the D-cache, the saving for the blit benchmark actu-
ally exceeds the above mentioned upper bound. As a mat-
ter of fact, this is due to the cache pollution that occurs for
the full-tag cache, while the use of a reduced tag avoids the
loading of non useful data into the cache.

5.1. Sensitivity to Cache Parameters
The data of Tables 2 and 3 refer to a good cache configura-
tion for the TOB scheme, since it has a large number of tags
bits. In this section we report cache energy results for differ-
ent cache configurations, in order to assess when and how
much the proposed architecture can be reasonably used as
an energy-efficient optimization.
Figure 5 shows how energy savings scales with respect to
line size. Larger lines imply a reduced weight of the tags
compared to the number of bits of a cache line. The plot
confirms this, by showing a consistent decrease of cache en-
ergy savings (from an average 20% for a 4-byte line to an
average 10% for a 16-byte line).
Figure 6 shows how energy savings scales with respect to
cache size. Larger cache also imply a reduced weight of the

� � � �

� � � �

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

� �
	 � � �
	 � � �	�� �

� �
�� �
� ��
��
�
� �
�� �
�
�

Figure 5. Effect of Line Size (1 KB Direct-Mapped
I-Cache).

tags because of the increased number of index bits. In ad-
dition, since the energy model depends on both the number
of rows and columns of the cache, the increase in the num-
ber of rows (i.e, cache lines) partially offsets the decrease in
the number of columns due to reduced tags. The plot shows
a progressive decrease of the energy savings from 20% to
about 10%.
Finally, Figure 7 shows how energy savings scales with
respect to cache associativity. In principle, associativity
should not affect the savings significantly, since doubling
the number of ways should even reduce the number of index
bits, and each way has its own set of tags. The plot confirms

��� � �

� � � �

� ��� � �

� � � � �

� ��� � �

� � � � �

� ��� � �

� � � � �

�
	 � � �� � � ����������
	 � � �� � � �����������	 � � �� � � ������ �

! "
#$ %
& '%
()
*
+ "
,- '
)
.

Figure 6. Effect of Cache Size (Direct-Mapped I-
Cache, Line Size = 4).

this trend, showing that the effectiveness of the method is
nearly unchanged for 2- and 4-way associative caches.

/�0 / 1

2�0 / 1

3 /�0 / 1

3 2�0 / 1

4 /�0 / 1

4 2�0 / 1

5 /�0 / 1

5 2�0 / 1

6
7 8 9 : ; < =�> ? ? 9 @ 4 < AB> C�> D D E : F < A�> C�> D D E :

G H
IJ K
L MK
NO
P
Q H
RS M
O
T

Figure 7. Effect of Associativity (1KB I-Cache,
Line Size = 4).

From the above analysis we can conclude that the proposed
technique is maximally effective in the case of small caches
and with small line sizes, that is, the typical scenario of
small-scale, resource-constrained embedded systems. Large
caches, conversely, tend to rapidly nullify the benefits of
the TOB-based architecture, since their large access cost re-
duces the “importance” of tag energy reduction.

5.2. Encoder Implementation
We have implemented the TOB encoder, synthesizing a
RTL description of the architecture of Figure 2 using Syn-
opsys DesignCompiler and a 0.13µm technology library by
STMicroelectronics. An encoder with a 15-bit TOB con-
sumes about 0.09 pJ per access.
This figure compare favorably to the energy per access of
the cache. As a reference value, the energy per access a
16KB, direct-mapped cache with 16 bytes per line is 166.8
pJ. This makes the worst case overhead around 0.6%, and
0.0048% for the best case.
Concerning delay, the arrival time of the TOB hit output is
80 ps, and 140 ps for the cache flush output. As a reference
figure, the access time for a 16KB cache (on a low-power
version of the technology library) is 5ns.

6. Conclusions
Embedded applications which exhibit high locality may
benefit from an architectural arrangement where most of the
cache tag bits are moved out of the cache into a special de-
vice called tag overflow buffer (TOB).
The TOB-based scheme allows to use a reduced-tag cache
on most memory references, thus providing a low-overhead
and minimally intrusive technique to improve the energy
consumption of the memory subsystem. The proposed tech-
nique is orthogonal to many similar cache optimization
techniques, and provides tag energy savings of 51% on av-
erage, corresponding to a 20% average saving of total cache
energy.

References
[1] P. Panda, N. Dutt, Memory Issues in Embedded SoC Optimization and Explo-

ration, Kluwer, 1999.
[2] A. Macii, L. Benini, M. Poncino, Memory Design Techniques for Low-Energy

Embedded Systems, Kluwer Academic Publishers, 2002.
[3] W. Wolf, M. Kandemir, ”Memory System Optimization of Embedded Soft-

ware,” Proceedings of the IEEE, Vol. 91, No. 1, pp. 165-182, January 2003.
[4] R. Balasubramonian, D. Albonesi, A. Buyuktosunoglu, S. Dwarkadas, “Mem-

ory Hierarchy Reconfiguration for Energy and Performance in General Pur-
pose Processor Architectures,” IEEE International Symposium on Microar-
chitecture, pp. 245–257, Dec. 2000

[5] A. Malik, W. Moyer, D. Cermak, “A Low-Power Unified Cache Architec-
ture Providing Power and Performance Flexibility,” ISLPED’00: International
Symposium on Low Power Electronics and Design pp. 241–243, July 2000.

[6] P. Petrov, A. Orailoglu, “Towards Effective Embedded Processors in Code-
signs: Customizable Partitioned Caches”, CODES’01: IEEE Workshop on
Hardware/Software Codesign, pp. 79–84, Apr. 2001.

[7] C. Zhang, F. Vahid, R. Lysecky, “A Self-Tuning Cache Architecture for Em-
bedded Systems,” DATE’04: Design, Automation and Test in Europe Confer-
ence, pp. 142–147, February 2004.

[8] A. Gordon-Ross, F. Vahid, N. Dutt, “Automatic Tuning of Two-Level Caches
to Embedded Applications,” DATE’04: Design, Automation and Test in Eu-
rope Conference, pp. 208–213, February 2004.

[9] L. Villa, M. Zhang and K. Asanovic, “Dynamic Zero Compression for Cache
Energy Reduction,” MICRO’33: International Symposium on Microarchitec-
ture, pp. 214–220, December 2000.

[10] T. Givargis, “Improved Indexing for Cache Miss Reduction in Embedded Sys-
tems,” DAC-40: 40th ACM/IEEE Design Automation Conference, pp. 875–
880, Jun. 2003.

[11] B. Fagin, “Partial Resolution in Branch Target Buffers,” IEEE Transactions on
Computers, Vol. 46, No. 10, Oct. 1997 pp. 1142–1145.

[12] B-S. Choi, D-I. Lee, “Cost-Effective Value Prediction Micro-Operation us-
ing Partial Tag and Narrow-Width Operands,” PACRIM’01: IEEE Pacific Rim
Conference on Communications, Computers and Signal Processing, Aug.
2001, pp. 319–322.

[13] L. Liu, “Partial Address Directory for Cache Access”, IEEE Transactions on
VLSI Systems, Vol. 2, No. 2, June 1994, pp. 226–240.

[14] R. Min, Z. Xu, Y. Hu, W.-B. Jone, “Partial Tag Comparison: A New Technol-
ogy for Power-Efficient Set-Associative Cache Designs VLSID’04: 17th Inter-
national Conference on VLSI Design, pp. 183–188, Jan. 2004.

[15] P. Petrov, A. Orailoglu, “Data Cache Energy Minimizations Through Pro-
grammable Tag Size Matching to the Applications,” ISSS’01: International
Symposium on System Synthesis, Sept./Oct. 2001, pp. 113–117.

[16] A. Malik, B. Moyer, D. Cermak, “A Lower Power Unified Cache Architec-
ture Providing Power and Performance Flexibility,” ISLPED’00: International
Symposium on Low Power Electronics and Design, 2000, pp. 241–243.

[17] N. Bellas, I. Hajj, C. Polychronopoulos, “Using Dynamic Cache Management
Techniques to Reduce Energy in a High-Performance Processor,” IEEE Trans-
actions on VLSI Systems, Vol. 8, No. 6, pp. 693–708, December 2000.

[18] T. L. Johnson, M. C. Merten, W.-M. W. Hwu “Run-Time Spatial Locality De-
tection and Optimization,” 30th ACM/IEEE International Symposium on Mi-
croarchitecture, pp. 57–64, December 1997.

[19] T. Givargis, F. Vahid, “Platune: A Tuning Framework for System-on-a-Chip
Platforms,” IEEE Transactions on Computer Aided Design, Vol. 21, No. 11,
Nov. 2002.

	Main Page
	DATE'05
	Front Matter
	Table of Contents
	Author Index

