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Abstract ecuted at each activation of the application. The decision taken by the

Supply voltage scaling and adaptive body-biasing are important tecgcheduler is based on a set of precalculated supply voltage settings. The
niques that help to reduce the energy dissipation of embedded Systeﬁfgqroach assumes that at ea_ch activation it is known in advance which
This is achieved by dynamically adjusting the voltage and performané&&bgraphs of the whole application graph will be executed. For each
settings according to the application needs. In order to take full agSuch subgraph worst case execution times are assumed and, thus, no
vantage of slack that arises from variations in the execution time, it @ynamic slack can be exploited. _ _
important to recalculate the voltage (performance) settings during run- N this paper we propose a quasi-static voltage scaling technique for
time, i.e., online. However, voltage scaling (VS) is computationally energy minimization of multi-task real-time systems. This technique is
pensive, and thus significantly hampers the possible energy savings.2fie to exploit the dynamic slack and, at the same time, keeps the online
overcome the online complexity, we propose a quasi-static voltage scakerhead (required to readjust the voltage settings at run-time) extremly
ing scheme, with a constant online time complegitg). This allowsto low. The obtained performance is superior to any of the previously pro-
increase the exploitable slack as well as to avoid the energy dissipate@sed dynamic approaches. Henceforth, we will refer to the proposed
due to online recalculation of the voltage settings. We conduct seveldlltage scaling technique as quasi-static voltage scaling (QSVS).
experiments that demonstrate the advantages of the proposed techniqud he work presented in this paper makes the following contributions:

over the previously published voltage scaling approaches. (a) A quasi-static voltage scaling scheme for multi-task applications is
proposed. In the offline phase, it computes and stores possible voltage
1 Introduction and Related Work settings. The online phase is responsible to adapt the applied voltage

settings at run-time, based on the stored information and the actual task
Two system-level approaches that allow an energy/performance tradgacution times. We investigate the “optimality” of QSVS compared
off during application run-time are dynamic voltage scaling (DVS) [Stg an ideal, but practically infeasible, online voltage scaling approach.
9,12] and adaptive body-biasing (ABB) [10, 12]. While DVS aims torhe time complexity of the QSVS technique is polynomial in the offline
reduce the dynamic power consumption by scaling down circuit suppbhase and constant in the online pgio). The introduced QSVS scheme
voltageVyq, ABB is effective in reducing the leakage power by scaling;qqresses theombinedreduction of dynamic and leakage power con-
d_owp frequency and increasing the threshold vo_IMggmrough' body- sumption using supply and body-bias voltage scal{eyjWe perform,
biasing. Voltage scaling (VS) approaches for time constrained multisy the first time, an evaluation of the impact of the overhead of differ-
task systems can be broadly classified infine (€.9. [3,5,9,11]) entdynamic voltage scaling approaches on realistic applications. These
andonline(e.g. [5,7, 8, 20]) techniques, depending on when the actug{,a|yations are performed using cycle accurate simulation tools as well
voltage settings are calculated. Offline techniques calculate all voltage measurements on a real processor.
settings at compile time (before the actual execution), i.e., the voltage The paper is organized as follows: Preliminaries and motivations are
settings for each task in the system are not changed at run-time. @ien in Section 2, as well as the key ideas behind the presented work.
the other hand, online techniques recompute the voltage settings durgg exact problem formulation for quasi-static voltage scaling is given
run-time. Both approaches have their advantages and disadvantagessection 3. Our algorithms to solve this problem are described in
Offline VS approaches avoid the computational overhead in terms 8htion 4. Extensive experimental results, including a real-life example,

time and energy associated with the calculation of the voltage settingge presented in Section 5. Finally, conclusions are drawn in Section 6.
However, to guarantee the fulfilment of deadline constraints, worst-case

execution times (WCET) have to be considered during the voltage cal-

culation. In reality, nevertheless, the actual execution time of the task®, Preliminaries

for most of their activations, is shorter than their WCET, with variations . . .

of up to 10 times [15]. Thus, an offline optimization based on the wordt-1  Application and Architecture Model

case is too pessimistic and hampers the achievable energy savingsinlthis work, we consider applications that are modeled as task graphs,

order to take advantage of the dynamic slack that arises from variatioins., several tasks with possible data dependencies among them, as in

in the execution times, it is useful to dynamically recalculate the voltageig. 1(a). Each task is characterized by several parameters (see also

settings during application run-time, i.enline section 3), such as a deadline, the effectively switched capacitance, and
Dynamic approaches, however, suffer from the significant overhealde number of clock cycles required in the best-case (BNC), expected-

in terms of execution time and power consumption caused by the ocase (ENC), and worst-case (WNC). Tasks are running without being

line voltage calculation. As we will show, this overhead is intolerabllypreempted until their completion. For such systems is has been proved

large even if low complexity online heuristics are used instead of highan [19] that the EDF (earliest deadline first) scheduling is optimal from

complexity optimal algorithms. Unfortunatelly, researchers have néhe energy point of view. Thus, we assume that the order of task execu-

glected this overhead when reporting high quality results obtained witton is fixed offline, according to an EDF policy, as shown in Fig. 1(b).

dynamic approaches [5, 7, 8, 20]. The tasks are executed on an embedded architecture that consists of a
In [13] an approach is outlined in which the online scheduler is exvoltage-scalable processor (scalable in termsugfplyand body-bias
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voltage). The processor is connected to a memory that stores the appli-  Figure 2. Ideal online voltage scaling approach

cation and a set of look-up tables (LUT), one for each task, required for

QSVS. This architectural setup is shown in Fig. 1(c). During executiog 3 Motivation

the scheduler has to adjust the processor’s performance to the appropyi- . . . .

ate level via voltage scaling, i.e., the scheduler writes the settings for tﬁ_‘é's section motivates the presented vyork and (_)utllnes the basic idea of

operational frequency, the supply voltag¥y4, and the body-bias volt- € proposed quasi-static voltage scaling technique.

ageV,s into special processor registers before the task execution stads3.1  Complexity Evaluation of Voltage Scaling

An appropriate performance level allows the tasks to meet their deafis we have mentioned in the introduction, to fully take advantage of

lines while maximizing the energy savings. In order to exploit slack thatariations in the execution time of tasks, with the aim to reduce the en-

arises from variations in the execution time of tasks, it is unavoidablkrgy dissipation, it is unavoidable to recompute the voltage settings on-

to dynamically re-calculate the performance levels. Nevertheless, as livee according to the actual task execution times. This is demonstrated

shall see later in Section 2.3.1, voltage scaling (the means by which pér-Fig. 2, where we consider an application consisting ef 4 tasks.

formance levels are calculated) is a computational expensive task, i@nly after taski; has terminated, we know its actual finishing time and,

it requires precious CPU time, which, if avoided would allow to loweraccordingly, the amount of dynamic slack that can be distributed to the

the CPU performance and, consequently, the energy. remaining taskstg,t3,14). Ideally, in order to optimally distribute the
The approach presented in this paper aims to reduce this online ovelack among these taske (T3, andty), it is necessary to run a volt-

head by performing the necessary VS computations offline (at compi#ge scaling algorithm (in Fig. 2 indicated as VS 1) before starting the

time) and storing a limited amount of information as look-up tablegxecution of task;. A straightforward implementation of an ideal on-

(LUTs) within memory. This information is then used during appli-line voltage scaling algorithm is to perform a “complete” recalculation

cation run-time (i.e., online) to calculate the voltage and performanc# the voltage settings each time a task finishes, using for example the

settings extremely fast (constant tird¢l)), see Fig. 1(d). VS approaches described in [11, 17]. However, such an implementa-
tion would be only feasible if the computational overhead associated
2.2 Power and Delay Models with the voltage scaling algorithm is very low, which is not the case in

Digital CMOS circuitry has two major sources of power dissipation: (apractice. The computational complexity of such optimal voltage scal-
dynamic powePyyy,, Which is dissipated whenever active computationgng algorithms for monoprocessor system®ign-n) [11, 17] (withm
are carried out (switching of logic states), and (b) leakage p&uge  specifying the accuracy-a usual value of 100 artaeing the number
which is consumed whenever the circuit is powered, even if no compo# tasks). That is, a substantial amount of CPU cycles are spent calcu-
tations are performed. The dynamic power is expressed by [4,12], lating the voltage/frequency settings each time a task finishes—during
these cycles the CPU uses precious energy and reduces the amount of
Payn=Cerf- f -V (1) exploitable slack.

) . To get insight into the computational requirements of voltage scal-
whereCetf, f, andVyq denote the effective charged capacitance, opng algorithms and how this overhead compares to the amount of
erational frequency, and circuit supply voltage, respectively. Althouglomputations performed by actual applications, we have simulated
until recently, the dynamic power dissipation had been dominating, thg,q profiled several applications and voltage scaling techniques, us-
trend to reduce the overall circuit supply voltage and, consequently,g two cycle accurate simulators: StrongARM (SA-1100) [14] and
threshold voltage is raising concerns about the leakage Cu”entS—f%werPC(MPC750)[18]. We have also performed measurements on ac-
near future technology<( 70nm) it is expected that leakage will ac- 3 implementations using an AMD platform (AMD Athlon 2400XP).
count for more than 50% of the total power. The leakage power is givefyp 1 shows these results for two applications that can be commonly
by [12], found in hand-held devices: a GSM voice codec and an MPEG video

Pleak = Lg-Vaa K- e Vo . gRoVbs Vod - 1u @ encoder. Results are shown for AMD, SA-1100 and MPC750 and are

Bench- AMD Athlon SA1100 MPC750

whereVys is the body-bias voltage angl, represents the body junction
leakage current. The fitting parameté¢s, K4 andKs denote circuit | Mark || BNC | WNC \gar. BNC | WNC \{Jar. BNC | WNC \{)ar.
technology dependent constants agaeflects the number of gates. For type () | () | C6)] (K | )] & (o _| (%)
clarity reasons we maintain the same indices as used in [12], where al &ISDM 140 | 155 | 10 | 367 | 394 | 7 | 159 | 181 | 13
actual values for these constants are provided. Nevertheless, scaling EG]| 731 ] 1,700] 43 | 4,458] 8,043] 45 | 3,869] 6,439 40

the supply and the body-bias voltage, in order to reduces the power Table 1. Simulation results of different applications
consumption, has a side effect on the circuit delayhich is inverse given in terms of best-case (BNC) and worst-case number (WNC) of

proportional to the operational frequenty4, 12], thousands of clock cycles needed for the execution of one period of the
1 14+ Kyq) -Vig + Ko - Vie — Ve )@ considered applications (20 ms for the GSM codec and 40 ms for the
¢ 1 _ ((1+Ka) Voa+ Kz Vos—Vin) (3) MPEG encoder)! For instance, on the SA-1100 processor one itera-

d Ke-La-Vad tion of the MPEG encoder requires in the best-case 4.458 kcycles and
wherea denotes the velocity saturation imposed by the given techndi the worst-case 8.043 kcycles, that is a variation of 45%. Similarly,
ogy (common value: .4 < a < 2), Lq is the logic depth, anéy, K>, 1
Ke, andVi,; reflect circuit dependent constants [12]. Equations (1), (2), Note that the num_pers for BNC and WNC are Iow_er and upper bounds ob-
and (3) provide the energy/performance trade-off of digital circuits. served during the profiling. They have not been analytically derived.




\oltage scaling AMD SA-1100 | MPC750 Quasi-Static Voltage Scaling
i Stored offline
algorithm NC (k) NC (k) NC (k) P o) / /o) ~_ o)

OptimalVS(Vdd+Vbs, 20 tasks) [11]| 8,410 | 1,232,552| 136,950 ts [ [Vad ts | f[Vad ts [ [Vad

OptimalVS(Vdd, 20 tasks) [11] 210 32,320 3,513 TRE  _Saataal  -|22iR A
1.5424(1.75 4 36021158 5.6518|1.53 —

MTS Heuristic(Vdd, 20 tasks) [6] 8 84 12 (1'?:;3)0}.'5) (' f-?fé‘po“_ﬁ‘g ((S-Tm;fm‘l_ﬂ)

MTS Heuristic(Vdd+Vbs, 20 tasks) 40 623 73 | f ‘

Greedy Heuristic(Vdd) [7] 0.9 10 1.0 (1.62,-0.02)

Greedy Heuristic(Vdd+Vbs) 4.9 34 3.8 T

Quasi-Static(Vdd+Vbs) (proposed) 0.9 1.0 1.0 ' -

1

Table 2. Simulation results: Voltage scaling algorithms

Tab. 2 presents the simulation outcomes for different voltage scaling F19ure 3. Quasi-static voltage scaling based on pre-

algorithms. As an example, performing the optimal online voltage scal- stored look-up tables

ing using the algorithm from [11dncefor 20 remaining tasks (just like

VS 1 is once performed for the three remaining tasks3, andt4 in  and voltage interpolation requires only 900 CPU cycles each time new

Fig. 2) requires 8,410 kcycles on the AMD processor, 136,950 kcyclesltage settings have to be calculated. Please note the complexity of the
on the MPC750 processor, while the SA-1100 requires even 1,232,588line quasi-static VS is independent of the number of remaining tasks.

keycles. Using the same algorithm fdgg-only scaling (novps scal-

ing), needs 210 kcycles on the AMD processor, 32,320 kcycles on the .

SA-1100 and 3,513 kcycles on the MPC750. The difference in cond Problem Formulation

plexity between supply voltage scaling and combined supply and bo@yonsider a set oNT tasks,7 = {t;} such that the execution order
bias scaling comes from the fact that in the caségfonly, foragiven s fixed according to an EDF policy. The processor can vary its supply
frequency there exists one corresponding supply voltage, as opposeddfagev,q and body-bias voltagé,s within certain continuous ranges.

a potentially infinite number oMyq, Vbs) pairs in the other case. Given The dynamic and leakage power dissipation as well as the operational
a certain frequency, an optimization is needed to computé#€\Mbs)  frequency (cycle time) depend on the selected voltage pair (mode).
pair that minimizes the energy. Comparing the results in Tables 1 andrgsks are executed cycle by cycle and each cycle can be potentially ex-
indicates that voltage scaling often surpasses the complexity of the gRqted at different voltage settings, i.e., a different energy/performance

plications itself. For instance, performing a “simpMjg-only scaling  trade-off. Each task; is characterized by a six-tuple,
requires more CPU time (on AMD 210k cycles) than decoding a sin-

gle voice frame using the GSM codec (on AMD 155k cycles). Clearly, Ti =< BNG,ENG,WNG,Ceff,D; >
such overheads seriously affect the possible energy savings, or even
outdo the energy consumed by the application. whereBNG, ENG, andW NG denote the best-case, the expected-case,

Several suboptimal heuristics with lower complexities have beednd the worst-case number of clock cycles, respectively, thattask
proposed for online computation of the supply voltage. Gruian [6] ha@uires for its executionBNC (WNQ) is defined as the lowest (highest)
proposed a linear time heuristic, while the approaches given in [7, 20pmber of cycles task needs for its execution, whieNCis the arith-
use a greedy heuristic of constant time complexity. We report thefetic mean value of the probability density functipWNC) of the
performance in terms on the required number of cycles in Tab. 2, itask execution cycle&/ NG i.e., ENC= 3YNCj. pj(j). FurtherCef {
cluding also their additional adaptation for combined supply and bodindD; represent the effectively charged capacitance and the deadline.
bias scaling. While these heuristics have a smaller online overhead tHEme aim is to reduce the energy consumption by exploitiggamic
the optimal algorithms, their cost is still high, except for the greedy aklack as well asstatic slack Dynamic slack results from tasks that
gorithm for supply voltage scaling [7,20]. However, even the cost afequire less execution cycles than in their worst case. Static slack is
the greedy increases up to 5.4 times when it is used for supply and batie result of idleness due to system over-performance, observable even
bias scaling. The overhead of our proposed algorithm is given in thwehen tasks execute with the worst-case number of cycles.

last line of Tab. 2. Our goal is to store a look-up table Lyfor each task;, such that
the energy consumption during runtime is minimized. The size of the
2.3.2 Basic Idea: Quasi-Static Voltage Scaling memory available for storing the look-up tables (and, implicitly the total

. . umberNL of table entries) is given as a constraint.
To overcome the VS overhead problem, we propose a quasi-static vor]t- )isg

age scaling technique. This approach is divided into two phases. In . . .
the first phase, which is performed before the actual execution (i.e., & Quasi-Static Algorithm

fline), voltage settings for all tasks are pre-computed based on possipjgasi-static voltage scaling aims to reduce the online overhead required
task start times. The resulting voltage/frequency settings are storedi§compute voltage settings by splitting the voltage scaling process into
look-up tables (LUTs) that are specific to each task. It is importaf{yo phases. That is, the voltage settings are prepared offline, and the
to note that this phase performs the time intensive optimization of th§ored voltage settings are used online to adjust the voltage/frequency

voltage settings. _ _ N ~_ inaccordance to the actual task execution times.
The second phase is performed online and it is outlined in Fig.

3. . .
Each time new voltage settings for a task need to be calculated, tel ~Offline Algorithm
online scheme looks up the voltage/frequency settings from the LUThe pseudo-code corresponding to the calculations performed offline
based on the actual task start time. If there is no exact entry in the LU3 given in Fig. 4. The algorithm requires the following input infor-
that corresponds to the actual start time, then the voltage settings aration. The scheduled task g€t defined in section 3. For the tasks
estimated using a linear interpolation between the two entries that say< 7, the expected (ENG, the worst-case (WNgand the best-case
round the actual start time. For instance, tegkas an actual start time (BNC;) number of cycles, the effectively switched capacitance {Leff
of 3.58ms. As indicated in Fig. 3, this start time is surrounded by thand the deadline D Furthermore, total number of look-up table entries
LUT entries 3.55ms and 3.60ms. In accordance, the frequency and vaitt is given. The algorithm returns the quasi-static scaling tabl&;,
age setting for tasks are interpolated based on these entries. The mafor each task;; € 7. This table includesy (3 ;n = NL) possible
advantage of the online quasi-static VS algorithm is its constant timetart timeds ;,j = 1..n; for each task;, and the corresponding optimal
complexity O(1). As shown in the last line of Tab. 2, the LUT look-up settings for the supply voltagédd and the operational frequenty



Algorithm: QUASLSTATIC_VS.OFF-LINE Algorithm: QUASLSTATIC_VS.ONLINE
Input: - execution order of tasks 1eT Input: - start time ts, of next task Tn

- for all tasks HeT: - Quasi-Static Scaling Table LUT n

BNG, ENG, WNG, Ceff, D; - number of start time interval steps n

- NL Output: - frequency and voltage settings for task Ty
Output: - Lookup tables LUT 01: (x,y) «— calc st _interval(LUT  n, tg,)
01: for i=1to NT { 02: f , « inter _freq(LUT nXxy, tg)
02: EST; « calc _earliest _starttime 03: Vvdd , « inter _Vdd(LUT Xy, ts)
03: }iend for 04: Vbs , « calc _Vbs(f ,,Vvdd )
04: for i=NT downto 1 { 05:  return (f n,vdd ,,Vbs )
05: LST; « calc _latest _starttime
06:  }irend for . ) .
07: T — T Figure 5. Pseudocode: Online Algorithm
08: for all Ti €% { lordered i=1.NT
09: li «— LIST; — EIST;
10: j o ' S+t < St (6)
11: n; < comp.interpolation _points(  T;,LST;,EST)) Sx‘Hk < Dk VTk that have a deadline (7)
12: for (ts<—EST; ts<LSTi; ts—ts+1li/n) { -
13: [ S+t < LSki1 (8)
14: (Vdd i,Vbs i,f i) « volt _scaling( 7, ts) /ENC based s > 0 9)
15: LUTi[] « store _QSlookup( ts,Vdd if)
16: i —j+1 Vddmin < Vdde < Vdduax and Vps,,, < Vdd, < Vosnax (10)
17: }irend for . L . . .
18: T — T The variables that need to be optimized in this formulation are the task
19:  }send for all execution timedy, the task start times, as well as the voltagegyq,
20 forall  weT rewumn  LUT andVyg . The whole formulation can be explained as follows. The total

energy consumption, which is the combination of dynamic and leak-
age energy, has to be minimized. As we aim the energy optimization
e . ) in the most likely case, the expected number of clock cyEIBE is

Upon initialization, the algorithm computes the earliest and lategfseq  The minimization has to comply to the following relations and
start times for each task (lines 01-06). The earliest start B8& - ,ngiraints. The task execution time has to be equivalent to the number
is based on the situation in which all tasks would execute with thegt ¢jock cycles of the task multiplied by the circuit delay for a partic-
best-case numbgr of clock _cycIe; at the highest voltage settings, '&arvd¢ andVpg, setting, as expressed by Eq. (5). Eq. 6 expresses the
the shortest possible execution (lines 01-03). The latest start®Me 55 execution order. Deadlines are inforced in Eq. 7. Up to this point,
is calculated as the latest start time of taskhat allows to satisfy the . have used the expected number of clock cyEIRE as this is the
deadlines for all the tasks, j > i, executed with the worst-case num- gjy;ation for which we want to optimize the energy consumption. How-
ber of clock cycles at the highest voltages (lines 04-06). The algorithgyer in order to insure that tasks will not miss their deadlines in the
proceeds_ by initializing the set_of remaining tasksvith the setof all | st case, we need Eq. 8. Please remember from the computation of
tasksT (line 07). In the following (lines 08-18), the voltage and fre'tHe latest start time (LST), that if tagk finishes the execution before

quency settings for the start time intervals of each task are calculatgfe |atest start time of tagi, 1, then the rest of the tasks are guaranteed
More detailed, in line 09 and 10 the size of the inten&BTi, LSTi] {5 meet their deadlines even in the worst case.

of possible start times is computed and the interval coyntsrinitial-
ized. The number of entry pointg that are stored for each task (i.e., . .
the number of possible start times considered) is calculated in line 14L:2 Online Algorithm
This will be further discussed in Section 4.3. Formllpossible start Fig. 5 gives the pseudocode of the online algorithm. This algorithm is
timests in the start time interval of task (line 12), the task start time called each time after a task finishes its execution, in order to calculate
ts is set to the possible start time (line 13) and the corresponding offi Voltage settings for the next task The input consists of the task
timal voltage and frequency settingspfare computed (line 14). For start timetg , the quasi-static scaling tabl&JTy, and the number of in-
this computation, we use the algorithm presented in [3], modified to iierval stepsin. As output, the algorithm returns the frequerigyand
corporate the optimization for the expected case. We will explain thigltage setting®/dd, andVbs, for the next taskrn. In the first step,
algorithm in Section 4.1.1. At this point, the voltages and frequency dhe algorithm calculates the two entriesandy from the quasi-static
taskr; for a starting at timey, are stored in the quasi-static scaling tablescaling tableLUTy that contain the start times which surround the ac-
LUT; (line 15). The for-loop (line 11-23) is repeated formllpossible tual timetg, (line 01). According to the identified entries, the frequency
start times of taskj. Please note that we do not store the body-biasettingf , for the execution of tasky is linearly interpolated using the
voltagesVbs;, which will be recomputed online. The reason behindwo frequency settings from the quasi-static scaling tabl&,[x] and
this decision will be outlined in the quasi-static online algorithm (SeckUTa[y] ~ (line 02). Similarly, in step 03 the supply voltayeldn is
tion 4.2). The algorithm returns the quasi-static scaling tabl& for  linearly interpolated from the two surround voltage entries Wiy,
all taskstj € 7. As mentioned in Section 4.1, we do not directly interpolate the setting
for the body-bias voltag¥'bsy,, due to the nonlinear relation between

. . frequency, supply voltage, and body-bias voltage. That is, interpolat-

4.1.1 Voltage Scaling Algorithm ing V4g andVps at the same time, can result in operational frequency

We will briefly present the voltage scaling algorithm used in line 14hat d_o not ma;ch the actually needed frequency—result_ing in possib!e
(Fig.4). The problem can be formulated as a convex nonlinear opﬁl_eadllne violations. Therefore, we calculate the body-bias voltage di-

Figure 4. Pseudocode: Offline Algorithm

mization as follows: Minimize rectly for the interpolated frequency and supply voltage values, using
Eqg. 3 (line 04). The algorithm terminates and returns the settings for

|7 the frequency, supply and body-bias voltage (line 05). It is worthwhile
Z (ENGK‘Ceffk -V§¢+Lg(Ks.vdd(.eK4~vddK -V 13- Vg |) ~tk> to mention that all four steps that are necessary to perform the online
k=i = calculation are computed in constant time, i.e., the time complexity of

Eaync 1ok the quasi-static online algorithm @(1).

. ) At this point it is also interesting to note that the linear approxi-

subject to (Ke-Lg-Vag,) mation performed by the online algorithm is safe (i.e. frequencies are

ty = ENG; - ((1+Kz) - Vg, + K2 - Vog, — Ven,)® () calculated such that they guarantee that tasks will not violate their dead-
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Figure 6. Experimental results: online voltage scaling

lines). It can be shown that running the voltage scaling algorithm fadvance the exact number of clock cycles executed by each task. Of
all possible start timef of a task results in a frequency functidfts)  course such an approach is practically impossible. Nevertheless, we
that is convex [2]. Thus any linear approximation of the frequency willse this theoretical lower limit as baseline for the comparison. Dur-
result in frequency values higher or equal to the optimal one, and coimg the experiments, we varied the ratio of actual number of clock cy-
sequently no deadline will be violated. The quality of the the linear apzles (ANC) and worst case number of clock cycles (WNC) from 0.1
proximation depends directly on the number of intermediate start timés 1 with a step width of 0.1. For each step, 1000 randomly generated

used. The next section will discuss this important aspect. task graphs were evaluated, resulting in a total of 10000 evaluations for
. . each plot. As mentioned earlier, for this first experiment we ignored
4.3 Calculation of the Look-Up Table Sizes the computational overheads of all the investigated approaches, i.e., we

In this section we address the problem of how many entries to assiggsumed that the voltage scaling requires zero time. Furthermore, the
to each LUT under a given memory constraint, such that the resultirgtual number of clock cycles (ANC) are set based on a normal distribu-
entries yield high energy savings. A simple approach to distribute thRyn using the expected number of cycles (ENC) as the mean value. Ob-
memory among the LUTs is to allocate the same number of entries fg&rving Fig. 6(a) leads to the following interesting conclusions. Firstly,
each LUT However_, due to the faCt that different tasks have differefgt the actual number of cycles (ANC) corresponds to the worst-case
start time interval sizes and nominal energy consumptions, the mefumber (WNC), all VS techniques approach the theoretical limit. In
ory should be distributed using a more effective scheme (i.e. reserviggner words, if the application has been scaled for the WNC and all
more memory for critical tasks). In the following we will introduce atask execute with WNC, then all online VS techniques perform equally
heuristic approach to solve the LUT size problem. Clearly, the two maigell. This, however, changes if the ANC differs from the WNC, which
parameters that determine the criticality (in the sense that it should Realways the case in practice. For instance, in the case that the ratio
allocated more entries in the LUT) of a task are the size of the intervgbtween ANC and WNC is 0.1, we can observe that ideal online VS
of possible task; start times (ST — EST) and the nominal expected s 259 off the theoretical limit. On the other hand, the technique de-
energy consumption of a task;j. The expected energy consumptionscribed in [5] is 60% worse than the theoretical limit. The approaches
of a taskE; is the energy consumed by that task when executing thgased on the methods proposed in [7, 20] yield results that are 42% and
expected number of clock cycleBNG) at the nominal voltages. Con- 45y, below the theoretical optimum. Another interesting observation is
sequently, in order to allocate thelook-up table entries for each tasks, the fact that the ideal online scaling and our proposed quasi-static tech-
we use the following formula: nique produce results of the same high quality. Of course, the quality
E.(LST-EST) pf the quasi-static VS depends on the number of entries thqt are stored
NT' (11) in the look-up tables (LUTs). Due to the importance of this influence,
i1 Ei-(LST—EST) we have devoted a supplementary experiment to demonstrate how the
number of entries affects the VS quality. In the experiment illustrated in

; Fig. 6(a) and (b) the total number of entries was set to 4000, which was
5 Experimental Results ) ) sufficient to achieve results that differed with less thes? from the
We have conducted several experiments using numerous generatshl online scaling for task graphs with up to 100 nodes. In summary,
benchmarks as well as a real-life application, in order to demonstratgy. 6(a) demonstrates the high quality of the voltage settings produced
the applicability of the proposed approach. The processor parametgisthe quasi-static approach, which are very close of those produced by
have been adopted from [12]. the ideal algorithm and substantially better then the values produced by

The first set of experiments was conducted in order to investigaggy other proposed approach.

the quality of the results provided by different online VS techniques in |n order to evaluate the global quality of the different VS approaches
the case when their actual run-time overhead is ignored. In Fig. 6(ghking into consideration the online overheads), we conducted two sets
we show the results obtained with the following five different VS apof experiments (Fig. 6(b) and Fig. 6(c)). In Fig. 6(b) we have compared

ni = NL-

proaches: our quasi-static algorithm with the approaches proposed in [7, 20]. The
1) the ideal online VS approach (the scheduler that calculates tiifluence of the overheads is tightly linked with the size of the appli-

optimal VS with no overhead). cations. Therefore, we use two sets of applications (Applic. 1 and Ap-
2) the quasi-static VS technique proposed in this paper (Section 4plic. 2) of different sizes. Applic. 1 has the size comparable to that of
3) the greedy heuristic proposed in [7]. the MPEG encoder and Applic. 2 has a size similar to the GSM codec.
4) the task splitting heuristic proposed in [20]. As we can observe, the proposed quasi-static voltage scaling achieves
5) the algorithm proposed in [5]. considerably higher savings than the other two approaches. Although

Originally, approaches given in [5, 7, 20] perform DVS only. How-all three approaches illustrated in Fig. 6(b) have constant online com-
ever, for comparison fairness, we have extended these algorithms pdexity (O(1)), the overhead of the quasi-static approach is considerably
wards combined supply and body-bias scaling. The results of all fitewer. At the same time, as shown in Fig. 6(a), the quality of settings
techniques are given as the percentage deviation from the results pposduced by QSVS is much higher.
duced by a hypothetical voltage scaling algorithm that would know in In Fig. 6(c) we have compared our quasi-static approach with a hy-



last row presents the results obtained by our quasi-static algorithm that
improves over the nominal consumption by 78%. The results confirm
1 the high solution quality of the proposed quasi-static scaling technique.

100 tasks

+ 50 tasks 1 6 Conclusions

20 tasks 1 In this paper, we have introduced a novel quasi-static voltage scal-
ing technique for time-constraint applications. The method avoids an
. unnecessarily high overhead by precomputing possible voltage scal-
L R " 2 20 ing scenarios and storing the outcome in look-up tables. The avoided
Memory Size (KB) overheads can be turned into additional energy savings. Furthermore,
Figure 7. Experimental results: deviation from ideal we have addressed both dynamic and leakage power through supply
pothetical "best possible” dynamic voltage scaling algorithm. Such &d body-bias voltage scaling. We have shown that the proposed ap-
hypothetical algorithm would produce the optimal voltage settings witer?Ch_ is superior to both static and dynamic approaches proposed so
a linear overhead similar to that of the heuristic proposed in [6] (sd@" I literature. Experiments _conducted on numerous automatlcally
Tab. 2). Please note that such an algorithm has not been propogg@erated examples and real-life benchmarks demostrate the quality of
since all known optimal solutions incur a higher complexity then th&€ Proposed technique. We have introduced our approach considering
one in [6]. We evaluated 10000 randomly generated task graphs. that continous voltages are available. However, the proposed technique
this particular experiment we set the size of the task graphs similar §7 P€ easily adapted to the situation when only discrete voltage levels
the MPEG encoder. We considered two cases: the hypothetical onlif _avallable. In this case the cal_culatlon of the discrete voltage I(_avels
algorithm is executed with the overhead from [6]Yag-only and with W ich replace th(_a calculated continuous ones, as WeI_I as the cons!dera-
the overhead that would result if the algorithm is rewritten for the comfion Of the transition overheads, can be performed using the techniques
bined Vg, Vbe) Scaling. Please note that in both of the above casd¥Posed in 3, 9].
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