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Abstract
Supply voltage scaling and adaptive body-biasing are important tech-
niques that help to reduce the energy dissipation of embedded systems.
This is achieved by dynamically adjusting the voltage and performance
settings according to the application needs. In order to take full ad-
vantage of slack that arises from variations in the execution time, it is
important to recalculate the voltage (performance) settings during run-
time, i.e., online. However, voltage scaling (VS) is computationally ex-
pensive, and thus significantly hampers the possible energy savings. To
overcome the online complexity, we propose a quasi-static voltage scal-
ing scheme, with a constant online time complexityO(1). This allows to
increase the exploitable slack as well as to avoid the energy dissipated
due to online recalculation of the voltage settings. We conduct several
experiments that demonstrate the advantages of the proposed technique
over the previously published voltage scaling approaches.

1 Introduction and Related Work
Two system-level approaches that allow an energy/performance trade-
off during application run-time are dynamic voltage scaling (DVS) [5,
9, 12] and adaptive body-biasing (ABB) [10, 12]. While DVS aims to
reduce the dynamic power consumption by scaling down circuit supply
voltageVdd, ABB is effective in reducing the leakage power by scaling
down frequency and increasing the threshold voltageVth through body-
biasing. Voltage scaling (VS) approaches for time constrained multi-
task systems can be broadly classified intooffline (e.g. [3, 5, 9, 11])
andonline(e.g. [5, 7, 8, 20]) techniques, depending on when the actual
voltage settings are calculated. Offline techniques calculate all voltage
settings at compile time (before the actual execution), i.e., the voltage
settings for each task in the system are not changed at run-time. On
the other hand, online techniques recompute the voltage settings during
run-time. Both approaches have their advantages and disadvantages.
Offline VS approaches avoid the computational overhead in terms of
time and energy associated with the calculation of the voltage settings.
However, to guarantee the fulfilment of deadline constraints, worst-case
execution times (WCET) have to be considered during the voltage cal-
culation. In reality, nevertheless, the actual execution time of the tasks,
for most of their activations, is shorter than their WCET, with variations
of up to 10 times [15]. Thus, an offline optimization based on the worst
case is too pessimistic and hampers the achievable energy savings. In
order to take advantage of the dynamic slack that arises from variations
in the execution times, it is useful to dynamically recalculate the voltage
settings during application run-time, i.e.,online.

Dynamic approaches, however, suffer from the significant overhead
in terms of execution time and power consumption caused by the on-
line voltage calculation. As we will show, this overhead is intolerablly
large even if low complexity online heuristics are used instead of higher
complexity optimal algorithms. Unfortunatelly, researchers have ne-
glected this overhead when reporting high quality results obtained with
dynamic approaches [5, 7, 8, 20].

In [13] an approach is outlined in which the online scheduler is ex-

ecuted at each activation of the application. The decision taken by the
scheduler is based on a set of precalculated supply voltage settings. The
approach assumes that at each activation it is known in advance which
subgraphs of the whole application graph will be executed. For each
such subgraph worst case execution times are assumed and, thus, no
dynamic slack can be exploited.

In this paper we propose a quasi-static voltage scaling technique for
energy minimization of multi-task real-time systems. This technique is
able to exploit the dynamic slack and, at the same time, keeps the online
overhead (required to readjust the voltage settings at run-time) extremly
low. The obtained performance is superior to any of the previously pro-
posed dynamic approaches. Henceforth, we will refer to the proposed
voltage scaling technique as quasi-static voltage scaling (QSVS).

The work presented in this paper makes the following contributions:
(a) A quasi-static voltage scaling scheme for multi-task applications is
proposed. In the offline phase, it computes and stores possible voltage
settings. The online phase is responsible to adapt the applied voltage
settings at run-time, based on the stored information and the actual task
execution times. We investigate the “optimality” of QSVS compared
to an ideal, but practically infeasible, online voltage scaling approach.
The time complexity of the QSVS technique is polynomial in the offline
phase and constant in the online part.(b) The introduced QSVS scheme
addresses thecombinedreduction of dynamic and leakage power con-
sumption using supply and body-bias voltage scaling.(c) We perform,
for the first time, an evaluation of the impact of the overhead of differ-
ent dynamic voltage scaling approaches on realistic applications. These
evaluations are performed using cycle accurate simulation tools as well
as measurements on a real processor.

The paper is organized as follows: Preliminaries and motivations are
given in Section 2, as well as the key ideas behind the presented work.
An exact problem formulation for quasi-static voltage scaling is given
in Section 3. Our algorithms to solve this problem are described in
Section 4. Extensive experimental results, including a real-life example,
are presented in Section 5. Finally, conclusions are drawn in Section 6.

2 Preliminaries
2.1 Application and Architecture Model
In this work, we consider applications that are modeled as task graphs,
i.e., several tasks with possible data dependencies among them, as in
Fig. 1(a). Each task is characterized by several parameters (see also
section 3), such as a deadline, the effectively switched capacitance, and
the number of clock cycles required in the best-case (BNC), expected-
case (ENC), and worst-case (WNC). Tasks are running without being
preempted until their completion. For such systems is has been proved
in [19] that the EDF (earliest deadline first) scheduling is optimal from
the energy point of view. Thus, we assume that the order of task execu-
tion is fixed offline, according to an EDF policy, as shown in Fig. 1(b).
The tasks are executed on an embedded architecture that consists of a
voltage-scalable processor (scalable in terms ofsupplyandbody-bias
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Figure 1. System architecture

voltage). The processor is connected to a memory that stores the appli-
cation and a set of look-up tables (LUT), one for each task, required for
QSVS. This architectural setup is shown in Fig. 1(c). During execution
the scheduler has to adjust the processor’s performance to the appropri-
ate level via voltage scaling, i.e., the scheduler writes the settings for the
operational frequencyf , the supply voltageVdd, and the body-bias volt-
ageVbs into special processor registers before the task execution starts.
An appropriate performance level allows the tasks to meet their dead-
lines while maximizing the energy savings. In order to exploit slack that
arises from variations in the execution time of tasks, it is unavoidable
to dynamically re-calculate the performance levels. Nevertheless, as we
shall see later in Section 2.3.1, voltage scaling (the means by which per-
formance levels are calculated) is a computational expensive task, i.e.,
it requires precious CPU time, which, if avoided would allow to lower
the CPU performance and, consequently, the energy.

The approach presented in this paper aims to reduce this online over-
head by performing the necessary VS computations offline (at compile
time) and storing a limited amount of information as look-up tables
(LUTs) within memory. This information is then used during appli-
cation run-time (i.e., online) to calculate the voltage and performance
settings extremely fast (constant timeO(1)), see Fig. 1(d).

2.2 Power and Delay Models
Digital CMOS circuitry has two major sources of power dissipation: (a)
dynamic powerPdyn, which is dissipated whenever active computations
are carried out (switching of logic states), and (b) leakage powerPleak
which is consumed whenever the circuit is powered, even if no compu-
tations are performed. The dynamic power is expressed by [4, 12],

Pdyn = Ce f f · f ·V2
dd (1)

whereCe f f, f , andVdd denote the effective charged capacitance, op-
erational frequency, and circuit supply voltage, respectively. Although,
until recently, the dynamic power dissipation had been dominating, the
trend to reduce the overall circuit supply voltage and, consequently,
threshold voltage is raising concerns about the leakage currents—for
near future technology (< 70nm) it is expected that leakage will ac-
count for more than 50% of the total power. The leakage power is given
by [12],

Pleak = Lg ·Vdd ·K3 ·eK4·Vdd ·eK5·Vbs + |Vbs| · IJu (2)

whereVbs is the body-bias voltage andIJu represents the body junction
leakage current. The fitting parametersK3, K4 andK5 denote circuit
technology dependent constants andLg reflects the number of gates. For
clarity reasons we maintain the same indices as used in [12], where also
actual values for these constants are provided. Nevertheless, scaling
the supply and the body-bias voltage, in order to reduces the power
consumption, has a side effect on the circuit delayd, which is inverse
proportional to the operational frequencyf [4, 12],

f =
1
d

=
((1+K1) ·Vdd +K2 ·Vbs−Vth1)α

K6 ·Ld ·Vdd
(3)

whereα denotes the velocity saturation imposed by the given technol-
ogy (common value: 1.4≤ α ≤ 2), Ld is the logic depth, andK1, K2,
K6, andVth1 reflect circuit dependent constants [12]. Equations (1), (2),
and (3) provide the energy/performance trade-off of digital circuits.

τ 2
τ 1

τ 3
τ 4

θ
t

(1.7,−0.01)
(1.68,−0.01)

(1.72,0.0) (1.72,0.0)

P

forall tasks
Volt_scale

.
.
.

.
.
.

.
.
.

set_voltage

forall tasks
Volt_scale

.
.
.

.
.
.

.
.
.

set_voltage

forall tasks
Volt_scale

.
.
.

.
.
.

.
.
.

set_voltage

VS
1

VS
2

VS
3

O(m(n−1)) O(m(n−2)) O(m(n−3))

0 1 32 4 5 6 7

Ideal Online Voltage Scaling

Figure 2. Ideal online voltage scaling approach

2.3 Motivation
This section motivates the presented work and outlines the basic idea of
the proposed quasi-static voltage scaling technique.

2.3.1 Complexity Evaluation of Voltage Scaling
As we have mentioned in the introduction, to fully take advantage of
variations in the execution time of tasks, with the aim to reduce the en-
ergy dissipation, it is unavoidable to recompute the voltage settings on-
line according to the actual task execution times. This is demonstrated
in Fig. 2, where we consider an application consisting ofn = 4 tasks.
Only after taskτ1 has terminated, we know its actual finishing time and,
accordingly, the amount of dynamic slack that can be distributed to the
remaining tasks (τ2,τ3,τ4). Ideally, in order to optimally distribute the
slack among these tasks (τ2,τ3, andτ4), it is necessary to run a volt-
age scaling algorithm (in Fig. 2 indicated as VS 1) before starting the
execution of taskτ2. A straightforward implementation of an ideal on-
line voltage scaling algorithm is to perform a “complete” recalculation
of the voltage settings each time a task finishes, using for example the
VS approaches described in [11, 17]. However, such an implementa-
tion would be only feasible if the computational overhead associated
with the voltage scaling algorithm is very low, which is not the case in
practice. The computational complexity of such optimal voltage scal-
ing algorithms for monoprocessor systems isO(m·n) [11, 17] (withm
specifying the accuracy-a usual value of 100 andn being the number
of tasks). That is, a substantial amount of CPU cycles are spent calcu-
lating the voltage/frequency settings each time a task finishes—during
these cycles the CPU uses precious energy and reduces the amount of
exploitable slack.

To get insight into the computational requirements of voltage scal-
ing algorithms and how this overhead compares to the amount of
computations performed by actual applications, we have simulated
and profiled several applications and voltage scaling techniques, us-
ing two cycle accurate simulators: StrongARM (SA-1100) [14] and
PowerPC(MPC750)[18]. We have also performed measurements on ac-
tual implementations using an AMD platform (AMD Athlon 2400XP).
Tab. 1 shows these results for two applications that can be commonly
found in hand-held devices: a GSM voice codec and an MPEG video
encoder. Results are shown for AMD, SA-1100 and MPC750 and are

Bench- AMD Athlon SA1100 MPC750
mark BNC WNC Var. BNC WNC Var. BNC WNC Var.
type (k) (k) (%) (k) (k) (%) (k) (k) (%)

GSM 140 155 10 367 394 7 159 181 13
MPEG 731 1,700 43 4,458 8,043 45 3,869 6,439 40

Table 1. Simulation results of different applications
given in terms of best-case (BNC) and worst-case number (WNC) of
thousands of clock cycles needed for the execution of one period of the
considered applications (20 ms for the GSM codec and 40 ms for the
MPEG encoder).1 For instance, on the SA-1100 processor one itera-
tion of the MPEG encoder requires in the best-case 4.458 kcycles and
in the worst-case 8.043 kcycles, that is a variation of 45%. Similarly,

1Note that the numbers for BNC and WNC are lower and upper bounds ob-
served during the profiling. They have not been analytically derived.



Voltage scaling AMD SA-1100 MPC750
algorithm NC (k) NC (k) NC (k)

OptimalVS(Vdd+Vbs, 20 tasks) [11] 8,410 1,232,552 136,950
OptimalVS(Vdd, 20 tasks) [11] 210 32,320 3,513

MTS Heuristic(Vdd, 20 tasks) [6] 8 84 12
MTS Heuristic(Vdd+Vbs, 20 tasks) 40 623 73
Greedy Heuristic(Vdd) [7] 0.9 10 1.0
Greedy Heuristic(Vdd+Vbs) 4.9 34 3.8
Quasi-Static(Vdd+Vbs) (proposed) 0.9 1.0 1.0

Table 2. Simulation results: Voltage scaling algorithms

Tab. 2 presents the simulation outcomes for different voltage scaling
algorithms. As an example, performing the optimal online voltage scal-
ing using the algorithm from [11]oncefor 20 remaining tasks (just like
VS 1 is once performed for the three remaining tasksτ2, τ3, andτ4 in
Fig. 2) requires 8,410 kcycles on the AMD processor, 136,950 kcycles
on the MPC750 processor, while the SA-1100 requires even 1,232,552
kcycles. Using the same algorithm forVdd-only scaling (noVbs scal-
ing), needs 210 kcycles on the AMD processor, 32,320 kcycles on the
SA-1100 and 3,513 kcycles on the MPC750. The difference in com-
plexity between supply voltage scaling and combined supply and body
bias scaling comes from the fact that in the case ofVdd-only, for a given
frequency there exists one corresponding supply voltage, as opposed to
a potentially infinite number of (Vdd,Vbs) pairs in the other case. Given
a certain frequency, an optimization is needed to compute the (Vdd,Vbs)
pair that minimizes the energy. Comparing the results in Tables 1 and 2
indicates that voltage scaling often surpasses the complexity of the ap-
plications itself. For instance, performing a “simple”Vdd-only scaling
requires more CPU time (on AMD 210k cycles) than decoding a sin-
gle voice frame using the GSM codec (on AMD 155k cycles). Clearly,
such overheads seriously affect the possible energy savings, or even
outdo the energy consumed by the application.

Several suboptimal heuristics with lower complexities have been
proposed for online computation of the supply voltage. Gruian [6] has
proposed a linear time heuristic, while the approaches given in [7, 20]
use a greedy heuristic of constant time complexity. We report their
performance in terms on the required number of cycles in Tab. 2, in-
cluding also their additional adaptation for combined supply and body
bias scaling. While these heuristics have a smaller online overhead than
the optimal algorithms, their cost is still high, except for the greedy al-
gorithm for supply voltage scaling [7, 20]. However, even the cost of
the greedy increases up to 5.4 times when it is used for supply and body
bias scaling. The overhead of our proposed algorithm is given in the
last line of Tab. 2.

2.3.2 Basic Idea: Quasi-Static Voltage Scaling
To overcome the VS overhead problem, we propose a quasi-static volt-
age scaling technique. This approach is divided into two phases. In
the first phase, which is performed before the actual execution (i.e., of-
fline), voltage settings for all tasks are pre-computed based on possible
task start times. The resulting voltage/frequency settings are stored in
look-up tables (LUTs) that are specific to each task. It is important
to note that this phase performs the time intensive optimization of the
voltage settings.

The second phase is performed online and it is outlined in Fig. 3.
Each time new voltage settings for a task need to be calculated, the
online scheme looks up the voltage/frequency settings from the LUT
based on the actual task start time. If there is no exact entry in the LUT
that corresponds to the actual start time, then the voltage settings are
estimated using a linear interpolation between the two entries that sur-
round the actual start time. For instance, taskτ3 has an actual start time
of 3.58ms. As indicated in Fig. 3, this start time is surrounded by the
LUT entries 3.55ms and 3.60ms. In accordance, the frequency and volt-
age setting for taskτ3 are interpolated based on these entries. The main
advantage of the online quasi-static VS algorithm is its constant time
complexityO(1). As shown in the last line of Tab. 2, the LUT look-up
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Figure 3. Quasi-static voltage scaling based on pre-
stored look-up tables

and voltage interpolation requires only 900 CPU cycles each time new
voltage settings have to be calculated. Please note the complexity of the
online quasi-static VS is independent of the number of remaining tasks.

3 Problem Formulation
Consider a set ofNT tasks,T = {τi} such that the execution order
is fixed according to an EDF policy. The processor can vary its supply
voltageVdd and body-bias voltageVbs within certain continuous ranges.
The dynamic and leakage power dissipation as well as the operational
frequency (cycle time) depend on the selected voltage pair (mode).
Tasks are executed cycle by cycle and each cycle can be potentially ex-
ecuted at different voltage settings, i.e., a different energy/performance
trade-off. Each taskτi is characterized by a six-tuple,

τi =< BNCi ,ENCi ,WNCi ,Ce f fi ,Di >

whereBNCi , ENCi , andWNCi denote the best-case, the expected-case,
and the worst-case number of clock cycles, respectively, that taskτi re-
quires for its execution.BNC (WNC) is defined as the lowest (highest)
number of cycles taskτi needs for its execution, whileENC is the arith-
metic mean value of the probability density functionp(WNC) of the
task execution cyclesWNC, i.e.,ENC= ∑WNC

j=1 j · p j ( j). Further,Ce f fi
andDi represent the effectively charged capacitance and the deadline.
The aim is to reduce the energy consumption by exploitingdynamic
slack as well asstatic slack. Dynamic slack results from tasks that
require less execution cycles than in their worst case. Static slack is
the result of idleness due to system over-performance, observable even
when tasks execute with the worst-case number of cycles.

Our goal is to store a look-up table LUTi for each taskτi , such that
the energy consumption during runtime is minimized. The size of the
memory available for storing the look-up tables (and, implicitly the total
numberNL of table entries) is given as a constraint.

4 Quasi-Static Algorithm
Quasi-static voltage scaling aims to reduce the online overhead required
to compute voltage settings by splitting the voltage scaling process into
two phases. That is, the voltage settings are prepared offline, and the
stored voltage settings are used online to adjust the voltage/frequency
in accordance to the actual task execution times.

4.1 Offline Algorithm
The pseudo-code corresponding to the calculations performed offline
is given in Fig. 4. The algorithm requires the following input infor-
mation. The scheduled task setT , defined in section 3. For the tasks
τi ∈ T , the expected (ENCi), the worst-case (WNCi) and the best-case
(BNCi) number of cycles, the effectively switched capacitance (Ceffi)
and the deadline Di . Furthermore, total number of look-up table entries
NL is given. The algorithm returns the quasi-static scaling tableLUTi ,
for each taskτi ∈ T . This table includesni (∑n

i=1ni = NL) possible
start timestsi, j , j = 1..ni for each taskτi , and the corresponding optimal
settings for the supply voltageVdd and the operational frequencyf .



Algorithm: QUASI STATIC VS OFF-LINE
Input: - execution order of tasks τ ∈ T

- for all tasks τi ∈ T :
BNCi , ENCi , WNCi , Ce f fi , Di

- NL
Output: - Lookup tables LUTi

01: for i = 1 to NT {
02: EST i ← calc earliest starttime
03: }//end for

04: for i = NT downto 1 {
05: LST i ← calc latest starttime
06: }//end for

07: Tr ← T
08: for all τi ∈ Tr { //ordered i=1..NT

09: Ii ← LIST i − EIST i

10: j ← 0
11: ni ← comp interpolation points( τi ,LST i ,EST i )
12: for ( ts←ESTi ; ts≤LSTi ; ts← ts+ Ii/n) {
13: tsi ← ts

14: (Vdd i ,Vbs i ,f i ) ← volt scaling( Tr , tsi ) //ENC based

15: LUT i [j] ← store QSlookup( tsi ,Vdd i ,f)
16: j ← j + 1
17: }//end for

18: Tr ← Tr − τi

19: }//end for all

20: for all τi ∈ T return LUTi

Figure 4. Pseudocode: Offline Algorithm

Upon initialization, the algorithm computes the earliest and latest
start times for each task (lines 01–06). The earliest start timeESTi
is based on the situation in which all tasks would execute with their
best-case number of clock cycles at the highest voltage settings, i.e.,
the shortest possible execution (lines 01–03). The latest start timeLSTi
is calculated as the latest start time of taskτi that allows to satisfy the
deadlines for all the tasksτ j , j ≥ i, executed with the worst-case num-
ber of clock cycles at the highest voltages (lines 04–06). The algorithm
proceeds by initializing the set of remaining tasksTr with the set of all
tasksT (line 07). In the following (lines 08–18), the voltage and fre-
quency settings for the start time intervals of each task are calculated.
More detailed, in line 09 and 10 the size of the interval [ESTi , LSTi ]
of possible start times is computed and the interval counterj is initial-
ized. The number of entry pointsni that are stored for each task (i.e.,
the number of possible start times considered) is calculated in line 11.
This will be further discussed in Section 4.3. For allni possible start
timests in the start time interval of taskτi (line 12), the task start time
tsi is set to the possible start time (line 13) and the corresponding op-
timal voltage and frequency settings ofτi are computed (line 14). For
this computation, we use the algorithm presented in [3], modified to in-
corporate the optimization for the expected case. We will explain this
algorithm in Section 4.1.1. At this point, the voltages and frequency of
taskτi for a starting at timetsi are stored in the quasi-static scaling table
LUTi (line 15). The for-loop (line 11–23) is repeated for allni possible
start times of taskτi . Please note that we do not store the body-bias
voltagesVbs i , which will be recomputed online. The reason behind
this decision will be outlined in the quasi-static online algorithm (Sec-
tion 4.2). The algorithm returns the quasi-static scaling tableLUTi for
all tasksτi ∈ T .

4.1.1 Voltage Scaling Algorithm

We will briefly present the voltage scaling algorithm used in line 14
(Fig.4). The problem can be formulated as a convex nonlinear opti-
mization as follows: Minimize

|Tr |

∑
k=i

(
ENCk ·Ce f fk ·V

2
ddk︸ ︷︷ ︸

Edynk

+Lg(K3 ·Vddk ·e
K4·Vddk ·eK5·Vbsk + IJu · |Vbsk |) · tk︸ ︷︷ ︸

Eleakk

)
(4)

subject to
tk = ENCk ·

(K6 ·Ld ·Vddk)
((1+K1) ·Vddk +K2 ·Vbsk−Vth1)α (5)

Algorithm: QUASI STATIC VS ONLINE
Input: - start time tsn of next task τn

- Quasi-Static Scaling Table LUT n

- number of start time interval steps n
Output: - frequency and voltage settings for task τn

01: (x,y) ← calc st interval(LUT n, tsn )
02: f n ← inter freq(LUT n,x,y, tsn )
03: Vdd n ← inter Vdd(LUT n,x,y, tsn )
04: Vbs n ← calc Vbs(f n,Vdd n)
05: return (f n,Vdd n,Vbs n)

Figure 5. Pseudocode: Online Algorithm

sk + tk ≤ sk+1 (6)

sk + tk ≤ Dk ∀ τk that have a deadline (7)

sk + tk ≤ LSTk+1 (8)

sk ≥ 0 (9)

Vddmin ≤Vddk ≤Vddmax and Vbsmin ≤Vddk ≤Vbsmax (10)

The variables that need to be optimized in this formulation are the task
execution timestk, the task start timessk as well as the voltagesVddk

andVbsk . The whole formulation can be explained as follows. The total
energy consumption, which is the combination of dynamic and leak-
age energy, has to be minimized. As we aim the energy optimization
in the most likely case, the expected number of clock cyclesENCk is
used. The minimization has to comply to the following relations and
constraints. The task execution time has to be equivalent to the number
of clock cycles of the task multiplied by the circuit delay for a partic-
ularVddk andVbsk setting, as expressed by Eq. (5). Eq. 6 expresses the
task execution order. Deadlines are inforced in Eq. 7. Up to this point,
we have used the expected number of clock cyclesENCk as this is the
situation for which we want to optimize the energy consumption. How-
ever, in order to insure that tasks will not miss their deadlines in the
worst case, we need Eq. 8. Please remember from the computation of
the latest start time (LST), that if taskτk finishes the execution before
the latest start time of taskτk+1, then the rest of the tasks are guaranteed
to meet their deadlines even in the worst case.

4.2 Online Algorithm
Fig. 5 gives the pseudocode of the online algorithm. This algorithm is
called each time after a task finishes its execution, in order to calculate
the voltage settings for the next taskτn. The input consists of the task
start timetsn, the quasi-static scaling tableLUTn, and the number of in-
terval stepsnn. As output, the algorithm returns the frequencyf n and
voltage settingsVddn andVbsn for the next task,τn. In the first step,
the algorithm calculates the two entriesx andy from the quasi-static
scaling tableLUTn that contain the start times which surround the ac-
tual timetsn (line 01). According to the identified entries, the frequency
settingf n for the execution of taskτn is linearly interpolated using the
two frequency settings from the quasi-static scaling tableLUTn[x] and
LUTn[y] (line 02). Similarly, in step 03 the supply voltageVddn is
linearly interpolated from the two surround voltage entries inLUTn.
As mentioned in Section 4.1, we do not directly interpolate the setting
for the body-bias voltageVbsn, due to the nonlinear relation between
frequency, supply voltage, and body-bias voltage. That is, interpolat-
ing Vdd andVbs at the same time, can result in operational frequency
that do not match the actually needed frequency—resulting in possible
deadline violations. Therefore, we calculate the body-bias voltage di-
rectly for the interpolated frequency and supply voltage values, using
Eq. 3 (line 04). The algorithm terminates and returns the settings for
the frequency, supply and body-bias voltage (line 05). It is worthwhile
to mention that all four steps that are necessary to perform the online
calculation are computed in constant time, i.e., the time complexity of
the quasi-static online algorithm isO(1).

At this point it is also interesting to note that the linear approxi-
mation performed by the online algorithm is safe (i.e. frequencies are
calculated such that they guarantee that tasks will not violate their dead-
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Figure 6. Experimental results: online voltage scaling

lines). It can be shown that running the voltage scaling algorithm for
all possible start timests of a task results in a frequency functionf (ts)
that is convex [2]. Thus any linear approximation of the frequency will
result in frequency values higher or equal to the optimal one, and con-
sequently no deadline will be violated. The quality of the the linear ap-
proximation depends directly on the number of intermediate start times
used. The next section will discuss this important aspect.

4.3 Calculation of the Look-Up Table Sizes
In this section we address the problem of how many entries to assign
to each LUT under a given memory constraint, such that the resulting
entries yield high energy savings. A simple approach to distribute the
memory among the LUTs is to allocate the same number of entries for
each LUT. However, due to the fact that different tasks have different
start time interval sizes and nominal energy consumptions, the mem-
ory should be distributed using a more effective scheme (i.e. reserving
more memory for critical tasks). In the following we will introduce a
heuristic approach to solve the LUT size problem. Clearly, the two main
parameters that determine the criticality (in the sense that it should be
allocated more entries in the LUT) of a task are the size of the interval
of possible taskτi start times (LSTi −ESTi) and the nominal expected
energy consumption of a task (Ei). The expected energy consumption
of a taskEi is the energy consumed by that task when executing the
expected number of clock cycles (ENCi) at the nominal voltages. Con-
sequently, in order to allocate theni look-up table entries for each tasks,
we use the following formula:

ni = NL · Ei · (LSTi −ESTi)
∑NT

i=1Ei · (LSTi −ESTi)
(11)

5 Experimental Results
We have conducted several experiments using numerous generated
benchmarks as well as a real-life application, in order to demonstrate
the applicability of the proposed approach. The processor parameters
have been adopted from [12].

The first set of experiments was conducted in order to investigate
the quality of the results provided by different online VS techniques in
the case when their actual run-time overhead is ignored. In Fig. 6(a)
we show the results obtained with the following five different VS ap-
proaches:

1) the ideal online VS approach (the scheduler that calculates the
optimal VS with no overhead).

2) the quasi-static VS technique proposed in this paper (Section 4).
3) the greedy heuristic proposed in [7].
4) the task splitting heuristic proposed in [20].
5) the algorithm proposed in [5].
Originally, approaches given in [5, 7, 20] perform DVS only. How-

ever, for comparison fairness, we have extended these algorithms to-
wards combined supply and body-bias scaling. The results of all five
techniques are given as the percentage deviation from the results pro-
duced by a hypothetical voltage scaling algorithm that would know in

advance the exact number of clock cycles executed by each task. Of
course such an approach is practically impossible. Nevertheless, we
use this theoretical lower limit as baseline for the comparison. Dur-
ing the experiments, we varied the ratio of actual number of clock cy-
cles (ANC) and worst case number of clock cycles (WNC) from 0.1
to 1 with a step width of 0.1. For each step, 1000 randomly generated
task graphs were evaluated, resulting in a total of 10000 evaluations for
each plot. As mentioned earlier, for this first experiment we ignored
the computational overheads of all the investigated approaches, i.e., we
assumed that the voltage scaling requires zero time. Furthermore, the
actual number of clock cycles (ANC) are set based on a normal distribu-
tion using the expected number of cycles (ENC) as the mean value. Ob-
serving Fig. 6(a) leads to the following interesting conclusions. Firstly,
if the actual number of cycles (ANC) corresponds to the worst-case
number (WNC), all VS techniques approach the theoretical limit. In
other words, if the application has been scaled for the WNC and all
task execute with WNC, then all online VS techniques perform equally
well. This, however, changes if the ANC differs from the WNC, which
is always the case in practice. For instance, in the case that the ratio
between ANC and WNC is 0.1, we can observe that ideal online VS
is 25% off the theoretical limit. On the other hand, the technique de-
scribed in [5] is 60% worse than the theoretical limit. The approaches
based on the methods proposed in [7, 20] yield results that are 42% and
45% below the theoretical optimum. Another interesting observation is
the fact that the ideal online scaling and our proposed quasi-static tech-
nique produce results of the same high quality. Of course, the quality
of the quasi-static VS depends on the number of entries that are stored
in the look-up tables (LUTs). Due to the importance of this influence,
we have devoted a supplementary experiment to demonstrate how the
number of entries affects the VS quality. In the experiment illustrated in
Fig. 6(a) and (b) the total number of entries was set to 4000, which was
sufficient to achieve results that differed with less then 0.5% from the
ideal online scaling for task graphs with up to 100 nodes. In summary,
Fig. 6(a) demonstrates the high quality of the voltage settings produced
by the quasi-static approach, which are very close of those produced by
the ideal algorithm and substantially better then the values produced by
any other proposed approach.

In order to evaluate the global quality of the different VS approaches
(taking into consideration the online overheads), we conducted two sets
of experiments (Fig. 6(b) and Fig. 6(c)). In Fig. 6(b) we have compared
our quasi-static algorithm with the approaches proposed in [7, 20]. The
influence of the overheads is tightly linked with the size of the appli-
cations. Therefore, we use two sets of applications (Applic. 1 and Ap-
plic. 2) of different sizes. Applic. 1 has the size comparable to that of
the MPEG encoder and Applic. 2 has a size similar to the GSM codec.
As we can observe, the proposed quasi-static voltage scaling achieves
considerably higher savings than the other two approaches. Although
all three approaches illustrated in Fig. 6(b) have constant online com-
plexity (O(1)), the overhead of the quasi-static approach is considerably
lower. At the same time, as shown in Fig. 6(a), the quality of settings
produced by QSVS is much higher.

In Fig. 6(c) we have compared our quasi-static approach with a hy-
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Figure 7. Experimental results: deviation from ideal
pothetical ”best possible” dynamic voltage scaling algorithm. Such a
hypothetical algorithm would produce the optimal voltage settings with
a linear overhead similar to that of the heuristic proposed in [6] (see
Tab. 2). Please note that such an algorithm has not been proposed
since all known optimal solutions incur a higher complexity then the
one in [6]. We evaluated 10000 randomly generated task graphs. In
this particular experiment we set the size of the task graphs similar to
the MPEG encoder. We considered two cases: the hypothetical online
algorithm is executed with the overhead from [6] forVdd-only and with
the overhead that would result if the algorithm is rewritten for the com-
bined (Vdd, Vbs) scaling. Please note that in both of the above cases
we consider that the hypothetical algorithm performsVdd as well asVbs
scaling. As we can see, the quasi-static algorithm is superior by up to
10% even to the hypothetical algorithm with the lowerVdd-only over-
head, while in case which is still optimistic but closer to reality of the
higher (Vdd, Vbs) overhead the superiority of the quasi-static approach is
up to 30%. Overall these experiments demonstrate that the quasi-static
solution is superior to any proposed and foreseeable dynamic voltage
scaling approach.

The next set of experiments was conducted in order to demonstrate
the influence of the memory size used of the look-up tables on the pos-
sible energy savings with the quasi-static voltage scaling. For this ex-
periment we have used three sets of tasks graphs with 20, 50, and 100
tasks, respectively. Fig. 7 shows the percentage deviation of energy
savings with respect to an ideal online VS as a function of the memory
size. For example, in order to obtain a deviation below 0.5%, a memory
of 40kB is needed for systems consisting of 100 tasks. For the same
quality, 20 and 8kB are needed for 50 and 20 tasks, respectively. It is
interesting to observe that with a small penalty in the energy savings,
the required memory decreases almost by half. For instance, for 100
tasks, the quasi-static algorithm achieves 2% deviation relative to the
ideal algorithm with a memory of only 24kB. It is important to note,
that in all the performed experiments we have taken into consideration
the energy overhead due to the memories. This overheads have been
calculated based on the energy values raported in [1, 16] in the case of
SRAM memories.

In addition to the above given benchmark results, we have conducted
experiments on a real-life MPEG encoder. The MPEG encoder consists

Approach E(µJ) Reduc. (%)

Nominal 1.63 –
Static VS 1.39 15
Greedy [7] 0.55 67
Task Splitting [20] 0.52 69
Quasi-static 0.36 78

Table 3. Optimization results for the MPEG algorithm

of 25 tasks and is considered to run on a MPC750 processor. Tab. 3
shows the resulting energy consumption obtained with different scaling
approaches. The first line gives the energy consumption of the MPEG
encoder running at the nominal voltages. Line two shows the result
obtained with an optimal static voltage scaling approach. The energy
improvement in this case is approximatelly 15%. Lines 3-4 show the
improvements produced using the greedy online techniques proposed
in [7, 20] which achieve reductions of 67% and 69%, respectively. The

last row presents the results obtained by our quasi-static algorithm that
improves over the nominal consumption by 78%. The results confirm
the high solution quality of the proposed quasi-static scaling technique.

6 Conclusions
In this paper, we have introduced a novel quasi-static voltage scal-
ing technique for time-constraint applications. The method avoids an
unnecessarily high overhead by precomputing possible voltage scal-
ing scenarios and storing the outcome in look-up tables. The avoided
overheads can be turned into additional energy savings. Furthermore,
we have addressed both dynamic and leakage power through supply
and body-bias voltage scaling. We have shown that the proposed ap-
proach is superior to both static and dynamic approaches proposed so
far in literature. Experiments conducted on numerous automatically
generated examples and real-life benchmarks demostrate the quality of
the proposed technique. We have introduced our approach considering
that continous voltages are available. However, the proposed technique
can be easily adapted to the situation when only discrete voltage levels
are available. In this case the calculation of the discrete voltage levels
which replace the calculated continuous ones, as well as the considera-
tion of the transition overheads, can be performed using the techniques
proposed in [3, 9].
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