
Exploring Energy/Performance Tradeoffs in Shared Memory MPSoCs:
Snoop-Based Cache Coherence vs. Software Solutions

Mirko Loghi Massimo Poncino
Dipartimento di Informatica Dipartimento di Automatica e Informatica

Università di Verona Politecnico di Torino
37134 Verona, Italy 10129 Torino, Italy
loghi@sci.univr.it massimo.poncino@polito.it

Abstract

Shared memory is a common interprocessor communi-
cation paradigm for single-chip multi-processor platforms.
Snoop-based cache coherence is a very successful tech-
nique that provides a clean shared-memory programming
abstraction in general-purpose chip multi-processors, but
there is no consensus on its usage in resource-constrained
multiprocessor systems on chips (MPSoCs) for embedded
applications.

This work aims at providing a comparative energy and
performance analysis of cache coherence support schemes
in MPSoCs. Thanks to the use of a complete multi-
processor simulation platform, which relies on accurate
technology-homogeneous power models, we were able to
explore different cache-coherent shared-memory communi-
cation schemes for a number of cache configurations and
workloads.

1. Introduction
The rapid advances of silicon technology have made it pos-
sible to build small- to medium-scale single-chip multi-
processors. These devices can be coarsely distinguished in
two classes: general purpose chip multiprocessors [1, 2, 3]
(GPCMs) which integrate a small number of advanced pro-
cessor cores (e.g. Itanium 2, UltraSPARC) and large caches
in a tightly connected cluster, and Multi-Processor Systems-
on-Chip (MPSoC) [4, 5, 6, 7, 8], which contain simpler
cores and many application-specific heterogeneous copro-
cessors, embedded memories and peripherals. These two
classes have completely different application targets and de-
sign constraints. GPCMs target the high-end server market
and are also often used as building blocks for large scale
supercomputers. In contrast, MPSoC are targeted for em-
bedded applications (multimedia, video, graphics) in tightly
cost- and power-constrained markets (e.g., smart phones,
home entertainment centers, etc.).
The focus of this paper is the study of power-performance
tradeoffs in supporting shared memory programming mod-
els in MPSoCs. Needless to say, power consumption is also
a concern in GPCMs. In the case of GPCMs, however, fully
hardware supported cache coherence is an undisputed re-
quirement, because it makes much easier to support gen-

eral purpose application workloads. Recent papers by Ek-
man et al. [9, 10] have studied the power consumption of
snoop-based cache coherence using a full-system simula-
tion approach targeted to GCMPs.
The picture is much less clear in MPSoCs; although
some MPSoCs explicitly support cache coherence in HW
(e.g., [6]), other devices on the market rely on non-cache-
coherent architectures (e.g., [4]). This is motivated by the
fact that embedded applications are usually carefully tuned
to the target hardware platform, and interprocessor commu-
nication is often performed by explicitly managing shared
memory areas, without much hardware support for a full
shared-memory abstraction. Clearly, the ease of program-
ming in a fully cache coherent memory space could simplify
embedded application development, but designers would re-
luctantly accept this approach if this should affect the en-
ergy efficiency of the architecture.
Our work sheds some light on this open issue. We set up
a complete and accurate environment for exploring the en-
ergy efficiency of cache coherence in a MPSoC context, us-
ing cycle-accurate simulation and power models which are
technology-homogeneous (i.e., all obtained from character-
ization in the same .13µm technology). We compared three
alternative approaches to cache-coherence: in the first one
(hardware-based), cache coherence is imposed by a spe-
cific device implementing a snoopy protocol; in the second
one (software-based), coherence is enforced by preventing
the caching of shared data. In the third scheme (OS-based),
the burden of coherence is left to the operating systems IPC
primitives (based on message passing).
Our analysis allows us to derive some interesting and non-
trivial conclusions. First, results show that an OS-based co-
herence solution is extremely inefficient both power- and
performance-wise (up to 7x), independently of the bench-
mark and of the cache configuration. Second, we show that
cache coherence is not always convenient in terms of ei-
ther performance and energy; this strongly depends on hard-
ware features such as cache size, as well as on the charac-
teristics of the application such as the access patterns for
shared variables. The latter in particular, allows to define
some high-level guidelines for writing embedded software
for cache-coherent MPSoCs.

2. Background and Previous Work
The problem of cache coherence has been thoroughly stud-
ied by researchers, and a vast literature on the subject
is available. Widely speaking, approaches for solving the
cache coherence problem in multiprocessor systems fall

1530-1591/05 $20.00 © 2005 IEEE

into two major classes: hardware-based approaches, and
software-based ones. The former impose cache coherence
by adding suitable hardware which guarantees coherence of
cached data, whereas the latter impose coherence by lim-
iting the caching of some shared data to when it is safe
to do it; this can be done by the programmer, the com-
piler, or the operating system. For a survey of hardware-
based cache coherence solutions the reader is referred
to [11, 13, 12]; software-based cache coherence solutions
are reviewed in [14].
Hardware-based cache coherence solutions (called cache
coherence protocols hereafter) can be further classified ac-
cording to two orthogonal dimensions [11]:

1. The type of interconnect of the multiprocessor ar-
chitecture. When processors are connected through a
shared medium (such as a bus), protocols can use
broadcasting to enforce coherence. These protocols
are called snoopy protocols. These schemes apply
to small-scale bus-based multiprocessors, due to the
limited scalability of buses. In absence of a shared
medium as interconnect (e.g., if a crossbar connection
is used) snoopy protocols are replaced by directory-
based protocols (which are outside the scope of this
paper).

2. The type of cache coherence policy. There are es-
sentially two options: a write-invalidate and a write-
update policy. In the former scheme, whenever any
cache line L is written the coherence protocol invali-
dates all copies of L in other caches; in the latter one,
the protocol updates those lines with the new value
which is being written.
Invalidation-based solutions are more common in co-
herence protocols because they are easier to implement
in hardware; they are also more efficient than update-
based one for large cache line sizes, since updates re-
quires multiple bus transfers. Update-based protocols
become more efficient when accessing heavily con-
tended lines, since subsequent accesses to those lines
will result in a cache hit thanks to the update.

Multiprocessor architectures (and hence cache coherence)
have been historically designed with performance in mind.
Therefore, the impact of coherence schemes on energy
has not been considered until the tight energy constraints
of single-chip multiprocessors made the problem relevant.
Early work on this topic include the Jetty scheme [15],
where a small structure (Jetty) is attached to each cache so
as to filter out useless snoop accesses. Instead of doing a
tag-lookup directly, the Jetty is checked first; if no copies
of data do exist, a cache access is avoided, thus achiev-
ing significant energy savings. Another approach is serial
snooping [16], based on the assumption that if a miss oc-
curs in one cache, it is possible to find the block in another
cache without having to check all the other caches. Both
schemes have been devised for multi-chip SMPs; they have
been evaluated on GPCMs in [9], where it was shown that
these solutions are quite ineffective. The same authors have
also proposed an energy-efficient cache coherence scheme
for virtual caches in GPCMs [10].
None of these approaches is explicitly meant for MPSoCs,
for which much tighter energy and area constraints do ex-
ist. As a matter of fact, all these schemes require quite high
computational and/or hardware overhead, and assume non-
realistic software architectures. For example, in [9, 10] no
operating system is assumed to be executing in the system.
In this work, we propose the first energy/performance anal-
ysis in MPSoCs, that includes an embedded operating sys-
tem. The result is a comparison of basic hardware-based co-
herence schemes, with minimal impact on the architecture,
with respect to schemes imposed at the software level.

3. The Multiprocessor Platform
Figure 1 shows the architectural template of the multi-
processor simulation platform used in this work, called
MPARM [17]. It consists of (i) a configurable number of
32-bit ARM processors, (ii) their private memories, (iii)
a shared memory, (iv) a hardware interrupt module, (v) a
hardware semaphore module, and (vi) the interconnect.

�������

� � �	�

�� � � � � �

��� �

� ��

�	��
�������

� ���

�������

� ���

�������

� � ��

� ����	�

�	� � � � �

��� �

� � � � � � �

��� �

�� � � � � �

��� �
�� � � � � �

��� �

Figure 1. Hardware Architecture.
The processor cores are modeled by means of an adapted
version of a GPL-licensed Instruction-Set-simulator (ISS)
called SWARM [18], written in C++ and embedded into a
SystemC wrapper. Each ISS contains his own cache. Mem-
ories and all other devices are implemented in SystemC in a
straightforward fashion. The semaphore module and the in-
terrupt device are used to handle the synchronization among
the cores. The former provides a test-and-set operation to
the software, while the latter allows a processor to send an
interrupt request to another core. The platform is entirely
described in SystemC at the signal level, except the ISS
which performs cycle-accurate simulations of the cores.
The platform is configurable, and it allows to specify sev-
eral parameters, such as the type of interconnect (AMBA vs.
ST-Bus), the number of processing elements, and the cache
and memory parameters (cache size, line size, cache type,
memory size and latency, etc.)
A port of a real-time operative system called RTEMS [20] is
available for the platform. RTEMS offers support for multi-
processing, and native calls for process communication and
synchronization. Inter-process and inter-thread communica-
tion in RTEMS rely on message queues; threads communi-
cate using the a send primitive to put data into the queue,
and a receive primitive to retrieve data, both provided by
RTEMS as system calls.
Concerning power analysis, the platform provides accurate
power models associated to each component. All models
are cycle accurate, and have been characterized on a 0.13
µm technology by STMicroelectronics and validated on sil-
icon implementations of the various components. For the
processor cores we have used an instruction-based power
model (see [21] for details). For the memories (both caches
and private memories) we have used an analytical model de-
rived from the work presented in [22], whereas the power
model for the STbus interconnect has been taken from [23].

3.1. Cache Coherence Support
The base MPARM architecture does not support cache co-
herence, in the sense that no hardware support is used to en-
force it. We have enhanced the platform by adding a hard-
ware coherence support based on a write-through policy,
which comes into two variants: one based on an invalidate
policy (Write-Through Invalidate, WTI), the other based on
an update policy (Write-Through Update, WTU).
The devices are quite similar: when a write request on the
shared memory is coming from another processor (detected

from the observation of the corresponding bus signals), The
corresponding action is taken (invalidate or update). Notice
that the update device is slightly more complex. It features
extra I/O interface for the data, since in this case we are
writing a value to the updated locations.

SnoopDeviceInvalidate(addr_in,src,opcode,req)
{
if ((req==1) && /* a request */

(opc[3:0]==2) && /* a write */
(src != 0) && /* by another core */
((address>=LOW) && (address<HIGH))) {

invalidate = 1;
addr_out = addr_in;

} else {
invalidate = 0;
address_out = 0;

}
}

���������	� �
��� � ����� �����
�� � �
� � �
� ����� ��� � � �� !�" � !�� �# � �$ % &&

� ����� ��!�' (
$ %

� �) ��� � � � (�

SnoopDeviceUpdate(addr_in,data_in,src,opcode,req)
{
if ((req==1) && /* a request */

(opc[3:0]==2) && /* a write */
(src != 0) && /* by another core */
((address>=LOW) && (address<HIGH))) {

update = 1;
addr_out = addr_in;
data_out = data_in;

} else {

update = 0;
address_out = 0;
data_out = 0;

}
}

���������	*+������� �����
�� ���
� � �

� ����� ��� � � �� !�" � ! ���# � �$ % &&

��� ��� ��!�' (
$ %

' " ��� (�

$ %��� (� ��� �

$ %
��� (� ��!�' (

, -/.

, 0+.
Figure 2. Operations of the Snoop Device for the
Invalidate (a) and Update (b) Policies.

The hardware snoop devices are in charge to enforce the
cache coherence protocols. The snoop devices sample the
bus signals to detect the transaction on the bus, its rele-
vant data and the core involved. When a write operation
is flagged, the corresponding action is performed, i.e., in-
validation for the WTI policy, rewriting of the data for the
WTU one. Write operations are performed in two steps. The
first one is performed by the core, which asserts the signals
on the bus, while the second one is performed by the tar-
get memory, which sends its acknowledge. The write ends
when the second step is complete and when it is the right
time, for the snoop device, to interact with the cache. Of
course, the device must ignore writes issued by its core.
In our simulation model, synchronization between the core
and the snoop device is handled using shared variables. Dur-
ing a clock cycle only one of them can access the cache
memory; therefore the other one must be locked, waiting
for the cache accessibility.

4. Energy Impact of Cache Coherence
To assess the energy/performance efficiency of cache co-
herence in MPSoCs, we compared three different schemes
for enforcing cache coherence, each one corresponding to
a different programming model, i.e., the way coherence is
made available to the programmer. It is worth emphasiz-
ing that all the three models assume strict memory consis-
tency [12]. The following sub-sections describe these three
schemes. For each scheme, its corresponding programming
model will be illustrated through a simple example, namely,
a 1-item producer-consumer application.

4.1. Hardware-Based Coherence
Under this model, cache coherence is imposed by the snoop
devices attached to the cores and their caches. This scheme
implies a program semantics similar to that of an uniproces-
sor context; shared data can be cached because caches are
guaranteed to be coherent. However, the programmer must
explicitly deal with synchronization (e.g., for mutual exclu-
sion) of shared data.
Figure 3 shows a typical textbook pseudocode for our work-
ing example. The use of the shared variable value is

guaranteed to be coherent. However, the programmer must
use a synchronization variable (a semaphore, in the exam-
ple) to regulate access to the data.

void 1�2 3�4�5�6 7�2 8 void 9:
while (TRUE) ;</=�> ?A@ B C+DE? F G H I�? G J K</=�> ?A@ CML�? B N J KO�P�Q 5�7SRUT�2 3�4�5�6 7M8 9 VW > X�Y�=�H�@ C	L�? B N J KW > X�Y�=�H�@ Z > H H B�[G H I�? G J K\\

void 6 3�]�^ 5�_/7�2�8 void 9;
while (TRUE) ;<`=�> ?A@ Z > H H B�[G H I�? G J K<`=�> ?A@ C	L�? B N J Ka 3�] ^ 5�_b7M8 O P�Q 5�7�9 VW > X�Y�=�H�@ CML�? B N J KW > X�Y�=�H�@ B C+DA? F G H I�? G J K\\

c�d�eAf g�h
int

O P�Q 5�7�Vc�d�eAf g�h
sem _i5 j 7 klRnm o�p q Q Q 7�4�^ Q 3�j ^iRsr�o�7�_M1 j t ^ Q 3�j ^iRum V

Figure 3. Producer-Consumer Pseudo-Code with
1-item buffer.

4.2. Software-Based Coherence

The second coherence scheme is straightforward: shared
data are not cached. Although this solution may appear triv-
ial, it is the basis of typical software-based schemes [14].
More advanced schemes belonging to this class require
compiler support to perform accurate analysis, which al-
lows caching of some shared data when it is safe to do it.
In our example, the code differs only marginally from the
one in Figure 3, namely, the shared keyword used on
a variable automatically implies the fact that it cannot be
cached.

4.3. OS-based Coherence

The third scheme consists of leaving to the OS do the task
of guaranteeing coherence, through its IPC abstraction of-
fered by its API. Specifically, RTEMS offers a communi-
cation infrastructure based on message queues [20], shared
objects implemented as a pool of buffers called packets. In
order to communicate with each other, remote processes
obtain packet buffers using the the global identifier of the
queue. Synchronized accesses to these buffers are realized
by means of locks, which can be thought of as an equiva-
lent of a hardware Test-and-Set primitive, implemented by
polling a given location of the shared memory.
From the programming model point of view, not just coher-
ence, but even the notion of shared data is hidden by the OS
primitives. The producer-consumer example becomes then
as shown in Figure 4, where send and receive denote
the generic primitives for communication between remote
processes. In the example, communication is established by
explicitly specifying the peer process involved in the com-
munication.

void v�w x�y�z�{ |�w } void ~���
|�� � ����|

�b�
� � �E� � |

�i�
while (TRUE)

�� � |
�����

w x�y�z�{ |�} ~� z � � y �
�
|�� � ����|�} �

�
� � � |

�
~
�

��� ����� � ����� ���	� � ���E��� ¡¡

void { x � � z
�
|�wA} void ~� � � ��� � |

�b��
|�� � ����|

�i�
while (TRUE)

�� ��� ��¢ £ ��� ¤�� ������� ��� ���E�+� � � |
�	�
| ¥ � w ��{ � � � � |

�
} �
�
~
�

{ x � � z
�
| � � � |

�
} � � |
�
~
�

¡¡

Figure 4. Producer-Consumer Pseudo-Code with
1-element buffer.

5. Experimental Results

5.1. Benchmark Description
In order to accurately compare the schemes described in
the previous section, we have chosen a set of parallel pro-
grams, which exhibit different access patterns to the shared
memory. The synchronization among processes relies on
OS primitives, for the applications which use the OS, and
on explicit manipulation of the hardware semaphore mod-
ule for the others. In particular, the synchronization is al-
ways based on the test-and-set hardware feature. Addresses
corresponding to semaphores are never cached, because it
is not possible to perform a test-and-set access on a cache
memory. The benchmarks are split into two sets. The first
set includes two synthetic parametric benchmarks:

1. A producer-consumer application (PCx,y,z). The
application is parameterized with respect to the num-
ber of producers x, consumers y, and the size of the
FIFO queue z. All the producers write their data in a
queue and all the consumers read from the same queue.
When the queue is full, the producers busy-stall polling
the semaphore, while consumers busy-stall when the
queue is empty. It is not relevant which consumer gets
the data written by a producer, so the only synchro-
nization point is related to the queue access. Each pro-
cess performs a fixed number (N, set at 1000 in our ex-
periments) of operations (reads or writes to the queue).

2. An application implementing the readers-writers prob-
lem (RWx,y,z,w). The meaning of x, y, and z is the
same as for the PC application, while w denotes the
relative speed of the readers with respect to the writ-
ers. The writers and the readers use the same shared
object for data exchange. Here the aim of synchroniza-
tion is to avoid multiple, simultaneous write accesses,
while simultaneous reads must be allowed. Further-
more, no reads are allowed during a write, and each
writer must to have exclusive access to the shared data.
Unlike the previous case, multiple writes before one
read and multiple reads before one write are possible
Also in this case, each process (reader or writer) ac-
cesses the same number of times N the shared object.
Varying the relative speed of the processes will change
the order of the memory accesses, but not their total
number.

The second set of benchmarks consists of a set of small ker-
nels implementing well-defined functionalities:

1. A parallel matrix multiplication (MM). Each processor
uses the entire source matrices and produces a slice of
the result matrix. This program is written so as to max-
imize the sharing of the read-only variables (the source
matrices) and to minimize the sharing of the variables
that are written.

2. A parallel FFT.
3. A parallel LU matrix decomposition (LU).

The last two application are taken from the SPLASH-2
benchmark suite [24].

5.2. Analysis
We have compared the cache coherency schemes using
power P , execution time T (in cycles), energy E = PT

and the energy-delay product EDP = ET = PT 2. To al-
low an uniform comparison, all results are normalized with
respect to the case of SW cache coherence.
As a first experiment, we compared the three co-
herence schemes on the producer-consumer application

(PC2,2,16). Figure 5 shows performance, energy and
power results of the various coherence schemes. WTI
(WTU) denotes hardware-based coherence using invalidate
(update) protocol, SW denotes software-based coherence
and OS denotes coherence imposed by OS communication
primitives.

Figure 5. Relative Energy and Performance for
the Producer-Consumer Application.

The most striking results emerging from this comparison
is the intrinsic inefficiency of OS-based coherence. The re-
sults show that in MPSoCs the price paid in terms of perfor-
mance and energy for an OS-based user-friendly program-
ming model is very high. The existence of some overhead
due to the OS is generally to be expected, but in this case it
appears to be quite significant. Since the penalties due to the
OS are very similar for all the applications used and for all
the platform configurations, results relative to OS-based co-
herence will not be considered further.

5.2.1. Synthetic Benchmarks. For the producer-
consumer benchmark, the experiments show limited sen-
sitivity to the parameters (# of producers/consumers and
buffer size). This is due to the nature of the applica-
tion; in fact, the average speed for each process is forced
to be the same. If the consumer is faster than the pro-
ducer, the buffer will tend to empty and the consumer
will wait for the producer. Conversely, if the producer
is faster, the buffer will tend to fill up and the pro-
ducer will have to wait for the consumer.
In case of speed mismatches, there are substantial differ-
ences on the access patterns only for the hardware lock
and, due to the non-cacheability of its address space, this
variations have the same impact on system performance
and power consumption for the cache coherent solutions as
well as for the non-coherent one. The WTU solution results
slightly more efficient than the SW one in terms of execu-
tion time; however, it also has larger energy consumption.
The WTI scheme has a worse behavior for the energy con-
sumption and has an execution time which can be worst or
slightly better than the SW one, but always worse than the
WTU one.
The second set of experiments refers to the RW application,
relative to the case of 3 readers and 1 writer (similar results
have been obtained for other numbers of readers and writ-
ers). We have run three sets of simulations corresponding
to the variation of three different parameters: two relative to
the application (buffer size and relative speed), the other rel-
ative to the platform (cache size). This benchmark is more
interesting than the producers-consumer; here, changing the
application parameters (and in particular the speed ratio)
significantly changes the access pattern to the shared mem-
ory and thus the behavior of the coherence scheme involved.
In simple terms, hardware cache coherence makes it possi-
ble to cache the shared variables. Consequently, the power
consumption breakdown shows an increased impact of

cache power with respect to bus and shared memory. There-
fore, there are access sequences which benefit from this fact,
but also sequences which are penalized. For instance, con-
sider a WTU scheme, and a sequence of consecutive writes
in a shared memory location; each write will cause a se-
quence of update command on some data cache. The only
useful update command however is the one which occurs
just before a read access on the cache, because the values
carried by the other ones are lost. For this access pattern the
WTU scheme is thus quite inefficient. Conversely, in a se-
quence of accesses where each write is followed by a read,
WTU will be effective, since the update command issued
during the write access will load the cache with the data
and the following read access will not need a memory and
bus access. Note that an useless update command is nega-
tive for both power and performance; in fact, since the core
cannot access the cache when it is used by the snoop de-
vice, some cycles may be wasted.
Figure 6 shows performance, power, energy, and EDP,
where the relative speed of readers and writers has been set
to 1.

Figure 6. Relative Performance, Power, Energy and

EDP for the RW Application for Varying Cache Sizes.

In this application the resulting access patterns to the shared
object involved in the communication are favorable to the
HW-based schemes. The readers and the writers run at the
same speed, so the reads and the writes tend to be inter-
leaved. A cache coherent platform can be more efficient,
since it allows to cache shared data, as the experiments
show. By increasing the cache size, we can observe an im-
provement of performance for both the HW solutions, un-
til the gain saturates. The saturation is due to the point af-
ter which the cache is bigger than the whole working set
(and further increase of the cache size do not provide any
benefit). Furthermore, in this situation, the WTU solution is
more efficient than WTI because the invalidation of a cache
line will force a read from the shared memory.
While enlarging the cache size is always beneficial for per-
formance, it negatively impacts energy. In larger caches
the energy required for a single access is larger. There-
fore, we can observe an optimal size corresponding to the
point where the hit ratio compensates the energy access
cost. Moreover, notice that the SW solution is very compet-
itive from an energy point of view, because it reduces the
number of accesses to the high-performance, power-hungry
data cache.
The analysis of the sensitivity to the size of the object in-
volved in the communication (i.e., the buffer) show a similar
trend as for the cache size. In fact, the relation between the

object used and the cache size determines the cache hit ratio
and the performance. Clearly, using bigger objects causes
an increase of the execution time, but this increase is the
same for all the cache coherence schemes adopted. Still, us-
ing small objects for the data interchange moves the load of
the application from the communication to the synchroniza-
tion, and the usefulness of the cache coherent scheme tends
to decrease. This is shown in Figure 7, where a shared ob-
ject of 256 bytes appears to be the best choice, with respect
to the 16-byte buffer (too small, synchronization issues be-
came dominant) and with respect to the 1KB bytes case too
(the object is too large for the cache used).

Figure 7. Relative Energy, Performance, Power
and EDP for the RW Application for Varying Buffer
Sizes.

The impact of the speed ratio between readers and the writ-
ers on the various metrics is also interesting. In fact, it di-
rectly affects the access patterns on the shared memory and,
as a consequence, on data caches. If the writer is faster than
the readers, there will be many consecutive writes on the
shared object before a read happens. As mentioned above,
this is the most negative condition for a cache coherent ar-
chitecture.
This explain why the WTU solution is ineffective when the
speed ratio equal to 0.1. The application with speed ratio
equal to 10 is also penalized. Again, this occurs because
of the unfavorable access pattern. The quicker reader fin-
ishes its work when the writer is still running. Thus, the
final section of the access sequence is again composed of
writes only.
5.2.2. Application Kernels The analysis of the synthetic
applications shows that caching a variable is an energy-
efficient solution when more reads than writes occurs on
that variable; this rule can be used as a guideline when de-
veloping applications.
This is what have been done with the MM application
which shows both an energy and a performance improve-
ments when shared data are cached. This application, in-
deed, uses many shared variables as read-only objects (the
source operands). Moreover, the variables accessed for writ-
ing (the result matrix slices), even if shared in principle, are
actually used by just one processor. This is because each
processor is in charge of computing a mutually exclusive
portion of the result.
For applications that are not written with the optimization of
the access patterns to shared variables in mind, the results
are less effective. Both the FFT and the LU applications use
shared data to perform their computation. Such data are ac-
cessed with several different patterns and it is unlikely that a

Figure 8. Relative Energy, Performance, Power
and EDP for the RW Application for Varying Exe-
cution Speed Ratios.

“good” pattern does exist. Therefore both applications show
slightly better performance, but, at the same time, a higher
energy consumption, due to the energy wasted to keep the
data synchronized and consistent into different caches.
Concerning power, we notice that power increases even
when energy is decreased when cache coherence is in-
volved. This is because when the energy decreases the per-
formance increase even more, and their ratio increases. In
practice, the whole system is working with a higher effi-
ciency, removing CPU stall cycles which unfavorably con-
sume energy without doing any useful work. Conversely,
when enforcing coherence wastes energy, performance are
impacted less significantly, because the high speed of the
cache memories allows to recover many of the cycles
wasted to keep data consistence.

Figure 9. Relative Energy, Performance, Power
and EDP for the Application Kernels.

6. Conclusions
This paper compares three different approaches for guaran-
teeing cache coherence for MPSoC architectures, namely,
snoop-based coherence, a software-based approach which
prevents caching of shared data, and an OS-based approach.

All three solutions are in principle viable for tightly con-
strained architectures, because they have limited overhead.
Our analysis reveals that the OS-based approach has exces-
sively high cost. Hardware-based cache coherence appears
to be competitive in terms of performance, but it has sig-
nificant power cost when coherence traffic grows, thereby
casting some doubts on its viability when power constraints
become tighter and the degree of multiprocessing grows.
Light-weight schemes which avoid caching of non-shared
data are scalable and energy efficient, but they imply maxi-
mum programming effort.

Acknowledgements
We wish to thank Prof. Luca Benini from Università di
Bologna for the helpful suggestions on the experimental
analysis.

References
[1] “Broadening the Reach of the Intel Itanium 2 Processor Family,” Techni-

cal White Paper,
www.intel.com/ebusiness/pdf/prod/itanium/wp reach.pdf

[2] M. Tremblay, J. Chen, S. Chaudry, A. Conigliaro, S.-S. Tse. “The MAJC Ar-
chitecture: A Synthesis of Parallelism and Scalability,”, IEEE Micro, Vol. 20,
No. 6, Nov.-Dec. 2000, pp 12-25.

[3] J.M. Tendler, J.S. Dodson, J.S. Fields Jr., H. Le, B. Sin-Haroy. “POWER4 Sys-
tem Microarchitecture,” IBM Journal of Research and Development, Vol. 46,
No. 1, January 2002.

[4] P. Cumming “The TI OMAP Platform Approach to SoC,” in Winning the SOC
Revolution, Kluwer Academic Publishers, 2003.

[5] S. Richardson, “MPOC: A Chip Multiprocessor for Embedded Systems,”, HP
Technical Report, HPL-2002-186, July 2002.

[6] B. Ackland et al., “A Single Chip, 1.6 Billion, 16-b MAC/s Multiprocessor
DSP,” IEEE Journal of Solid State Circuits, Vol. 35, No. 3, March 2000.

[7] Philips Semiconductor, “Philips Nexperia Platform”,
www.semiconductors.philips.com/products/nexperia/home
S. Dutta, R. Jensen, A. Rieckmann,

[8] M. Grammatikakis, M. Coppola, F. Sensini, “Software for Multiproces-
sor Networks-on-Chip,” Networks on Chip, Kluwer Academic Publishers,
pp. 281–303, 2003.

[9] M. Ekman, F. Dahlgren, P. Stenström “Evaluation of Snoop-Energy Reduction
Techniques for Chip-Multiprocessors,” ISCA’02, May 2002.

[10] M. Ekman, F. Dahgren, P. Stenström, “TLB and Snoop Energy-Reduction Us-
ing Virtual Caches in Low-Power Chip-Multiprocessors,” ISLPED’02, August
2002, pp. 243–246.

[11] P. Stenström, “A Survey of Cache Coherence Schemes for Multiprocessors,”
IEEE Computer, Vol. 23, No. 6, June 1990, pp. 12–24.

[12] D.E. Culler, A. Gupta. J.P. Singh, Parallel Computer Architecture: A Hard-
ware/Software Approach Morgan Kaufmann Publishers, 1997.

[13] M. Tomasevic, V. M. Milutinovic, ”Hardware Approaches to Cache Coher-
ence in Shared-Memory Multiprocessors,” IEEE Micro, Vol. 14, No. 5–6, pp.
52–59, October/December 1994.

[14] I. Tartalja, V. M. Milutinovic, “Classifying Software-Based Cache Coherence
Solutions,” IEEE Software, Vol. 14, No. 3, pp. 90–101, March 1997.

[15] A. Moshovos, B. Falsafi, A. Choudhary, “JETTY: Filtering Snoops for Re-
duced Energy Consumption in SMP Servers”, HPCA’01 January 2001, pp.
85-97.

[16] C. Saldanha and M. Lipasti, “Power Efficient Cache Coherence”, High Per-
formance Memory Systems, Springer-Verlag, 2003, pp. 63–78.

[17] M. Loghi, F. Angiolini, D. Bertozzi, L. Benini, R. Zafalon, “Analyzing On-
Chip Communication in a MPSoC Environment”, DATE’04,February 2004,
pp. 752–757.

[18] Software ARM, www.g141.com/projects/swarm.
[19] ARM Ltd.,

www.arm.com/products/solutions/AMBAHomePage.html
[20] RTEMS home page, www.rtems.com.
[21] L. Benini et al. ”A power modeling and estimation framework for VLIW-based

embedded systems,” PATMOS’01, October 2001, pp. 26–28.
[22] M. Chinosi, R. Zafalon, C. Guardiani, “Automatic Characterization and Mod-

eling of Power Consumption in Static RAMs,” ISLPED’98, Aug. 1998,
pp. 112–114.

[23] A. Bona, V. Zaccaria, R. Zafalon, “System-Level Power Modeling and Simu-
lation of High-End Industrial Network-on-chip”, DATE’04,pp. 318–323.

[24] J. P. Singh, W.-D. Weber, A. Gupta, “SPLASH: Stanford Parallel Applications
for Shared-Memory”, Computer Architecture News, Vol. 20, No. 1, pages 5-
44, March 1992.

	Main Page
	DATE'05
	Front Matter
	Table of Contents
	Author Index

