
* The research described is supported by the Deutsche For-
schungsgemeinschaft under grant SL 47/1-1

Efficient Feasibility Analysis for Real-Time Systems with EDF scheduling*

Karsten Albers, Frank Slomka
Department of Computer Science

University of Oldenburg
Ammerländer Heerstraße 114-118

26111 Oldenburg, Germany
{albers, slomka}@informatik.uni-oldenburg.de

Abstract
This paper presents new fast exact feasibility tests for
uniprocessor real-time systems using preemptive EDF
scheduling. Task sets which are accepted by previously
described sufficient tests will be evaluated in nearly the
same time as with the old tests by the new algorithms.
Many task sets are not accepted by the earlier tests
despite them beeing feasible. These task sets will be
evaluated by the new algorithms a lot faster than with
known exact feasibility tests. Therefore it is possible to
use them for many applications for which only sufficient
test are suitable. Additionally this paper shows that the
best previous known sufficient test, the best known
feasibility bound and the best known approximation
algorithm can be derived from these new tests. In result
this leads to an integrated schedulability theory for
EDF.

1. Introduction
The analysis of the time behavior of embedded real-time
systems is essential for the automation of the design
process. A formal verification which guarantees all
deadlines in a real-time system would be the best. This
verification is called feasibility test. Three different
kinds of tests are available:
• Exact tests with long execution times or simple

models [2], [3], [11].
• Fast sufficient tests which fails to accept feasible task

sets, especially those with high utilizations [9], [12].
• Approximations, which are allowing an adjustment of

performance and acceptance rate [1], [8].
For many applications an exact test or an approximation
with a high acceptance rate must be used. For many task
sets a fast sufficient test is adequate.
This paper proposes two new tests for preemptive EDF
scheduling, which have a performance comparable with
the sufficient tests for those tasks sets which can be
recognized by these sufficient tests and outperforms the
existing exact tests by orders of magnitude. These
algorithms are tested and compared using a large
amount of randomly generated task sets and some
examples from literature.
In Section 2 the analysis model is introduced, Section 3
gives an introduction to the existing feasibility tests and

the concepts needed further in this paper. It contains the
first contribution of this work: the proof of equivalence
between the sufficient test given by Devi [9] and the
superposition approximation described in [1]. It is
shown that the test by Devi is a special case of the
superposition approach. Section 4 presents as the main
contribution of the work the new fast sufficient and
necessary feasibility tests and also the proof for deriving
the feasibility bound out of these tests. In Section 5 the
new test algorithms are evaluated followed by a
conclusion in Section 6.

2. Model
We consider the sporadic task system consisting of a set
of tasks Γ={τ1,..., τn}. Each task τi is described by
• an initial release time (or phase) φi,
• a relative deadline Di (measured from the release

time),
• a worst-case execution time Ci and
• a minimal distance (or period) Ti between two

instances of a task.
An invocation of a task is called a job, and the kth

invocation of each job is denoted τi,k. In the following
only the synchronous case is considered, so the first jobs
of all tasks are released simultaneously. This is a
common assumption which also leads to a sufficient test
for the asynchronous case [14]. A good sufficient
condition for the asynchronous case is proposed in [13].
It is based on the tests improved in this paper.
The specific utilization of a task is the part of the
capacity which is needed for executing this task
(). The utilization U of the system is the
sum of the specific utilizations of all tasks. We consider
the uniprocessor feasibility test. The scheduling is done
using earliest deadline first (EDF) which is known to be
optimal [12].
To keep the explanations in this paper simple the
sporadic task model is used. The new tests can be
extended to more advanced task models. Especially the
extension for the event stream model [11] is easy by
following the definitions proposed in [1].

3. Background and related work
The feasibility test for uniprocessor systems using EDF
with deadlines smaller then the periods of the tasks is

U τ() Cτ T⁄
τ

=

1530-1591/05 $20.00 © 2005 IEEE

known to be Co-NP-hard [3]. There are only feasibility
tests with pseudo-polynomial complexity available so far.
It is unknown whether the problem has polynomial
complexity. In the following an introduction to the relevant
feasibility tests of the literature is given. An overview is
given in [14].
3.1. Sufficient tests
For a restricted version of the given model with the
condition Ti = Di for each task τi, Liu and Layland [12]
proved that the task system is feasible if the
utilization .
3.2. Test by Devi
Recently Devi [9] proposed a test which allows task
systems with deadlines smaller than periods with a reduced
complexity:
Def. 1: Test Devi [9]: A task system Γ, arranged in order
of non-decreasing relative deadlines is feasible using EDF
scheduling if and

Unfortunately this test is only sufficient. It allows a fast
evaluation and acceptance of task sets in many cases.
3.3. Processor demand test
In [3] Baruah et al. proposed an exact test for task systems
with deadlines shorter than their periods. The main idea
was to calculate the maximum demand of all tasks within
a time interval and compare it with the available capacity
of the processor. The demand is the cumulated worst-case
execution time of the relevant jobs. The maximum demand
for an interval I can be found if all tasks are released
synchronous at the beginning of I and only those jobs are
considered which have both their release time and their
absolute deadline within I.
Def. 2: Demand bound function Dbf(I) [2]: The max-
imum cumulated execution requirement of jobs having
both request time and deadline within interval I

It is possible to split the demand bound function into
demand bound functions for each single task. dbf(I,τ) is the
cumulated execution requirement of only one task. The
available capacity of execution time in an interval I is
exactly the length of the interval. Testing the demand
bound function for all intervals against the capacity leads
to an exact test. To make the test tractable it is possible to
calculate a maximum test interval (Imax) which is an upper
bound (feasibility bound) and it is only necessary to test the
demand bound function for intervals lower than Imax.
Def. 3: Processor demand test [2]: A task system Γ is
feasible if and only if dbf(I,Γ) ≤ I for all

.
It is only necessary to check those intervals where the
value of dbf(I,Γ) is changed. The absolute deadlines of all
jobs determine these intervals. Other values for Imax are
discussed in Section 4.3.
The test has a pseudo-polynomial complexity if the
considered utilization is bound by a constant. The problem

is that the runtime of the algorithm depends not only on the
utilization but also on the ratio of the different periods and
deadlines in the task set [1]. If the task set contains tasks
with small periods and tasks with large periods, the
runtime can become quite large. See the experiments given
in Section 5 for more details.
3.4. Approximation by superposition
Recently, several approximations have been proposed to
solve the complexity problem of the demand bound
approach: One by Chakraborty et al. [8] and the
superposition approach [1]. They bridge the gap between
the fast but only sufficient test of Devi and the necessary
but slow processor demand test. The algorithms are only
sufficient, but the degree of sufficiency can be adjusted.
The main idea of the superposition approach is to test only
a selectable limited amount of test intervals for each task
and use an approximation to compensate the remaining test
intervals.
Def. 4: Approximated task demand bound function
dbf‘(I,ττττ)))) [1]: An upper bound for the task demand bound
function considering only the jobs up to the selectable
maximum test interval Im(τ) exactly.

The approximation is using the specific utilization of the
task. In the special case of considering only the first job of
each task, the maximum test interval is equal to the
deadline of the task. The approximated demand bound
function is a superposition of the approximated task
demand bound functions.
Def. 5: Approximated demand bound function [1]
dbf‘(I,ΓΓΓΓ):

One advantage of this approximation is that it is not
necessary to calculate dbf‘(I,Γ) for each job separatly.

Lemma 1: Super position test: A task system Γ is
feasible if dbf‘(I,Γ) ≤ I for all
Def. 6: SuperPos(x) : The super position test which
calculates at the maximum the first x jobs of each task
exactly (test level x) is called SuperPos(x)
A higher level of the superpostion test leads to a higher
acceptance rate but also to a longer execution time of the
test. Figure 1 shows measured acceptance rates using
different SuperPos(x). The superposition test is a sufficient
test with a selectable error. It can be regarded as a series of

U 1≤

n Γ=

1 k n≤ ≤()∀
Ci

Ti

i 1=

k

∑ 1
Dk

Ti min Ti Di,()–

Ti
-------------------------------------- 

  Ci⋅
i 1=

k

∑⋅+ 1≤
 
 
 

dbf I Γ,()
I Di–

Ti
------------- 1+ Ci⋅

τ∀ i Γ I Di≥∧∈

∑=

Imax U 1 U–()⁄() max Ti Di–(){ }=

0

0.2

0.4

0.6

0.8

1

70 75 80 85 90 95 100

Devi
SuperPos(2)
SuperPos(3)
SuperPos(4)
SuperPos(5)
SuperPos(6)
SuperPos(7)
SuperPos(8)
SuperPos(9)

SuperPos(10)
Processor Demand

Utilization (%)

pe
rc

en
ta

ge
 ta

sk
 s

et
s

fe
as

ib
le

 Figure 1: Results for different values for SuperPos(x)

dbf' I τ,() dbf Im τ() τ,()
Cτ

Tτ
------ I Im τ()–()⋅+ I Im τ()>

dbf I τ,() I Im τ()≤





=

dbf' I Γ,() dbf' I τ,()

τ∀ Γ∈
∑=

I Imax≤

sufficient tests, which gets better with declining error.
3.5. Superposition vs. Devi
An interesting point is the relationship of the superposition
test to the best previously known sufficient test given by
Devi [9].

Lemma 2: Relationship Devi: A task set recognized as
feasible by the test of Devi is also recognized as feasible by
SuperPos(1).
In other words, the test by Devi is only a special case of the
superposition approach.
Proof: Consider the test SuperPos(1) (Lemma 1).
Remember that in this special case the maximum test
interval for each task is equal to their deadline (Im(τi) = Di)
as this is the ending time for the first job of the task. The
test can be expressed as follow: (

This test has to be preformed only for the first job of each
task which has a deadline equal to the deadline of the task.
Now consider the test of Devi (Definition 1). It can be
expressed as: (

This test also has to be performed for the deadline of each
task. Setting I = Dk in the above equation results in
SuperPos(1). This proves Lemma 2. The relationship
between the test by Devi and the superposition approach
allows to include the extensions of the test by Devi

described in [9] into the super position approach. The
extensions concern practical relevant issues like switching
time, priority ceiling protocol, self-suspension and limits
for the number of priorities.
3.6. Superposition vs. real-time calculus
In the concept of real-time calculus [7] based on the
network calculus [6] the demand and the capacity of a
system are described by arrival and service curves. The
idea of these functions is the same as in the processor
demand test, apart from that the capacity is not regarded as
bisecting line but also as a function. The idea behind the
real-time calculus is to define mathematical operations on
the arrival and service curves to solve the feasibility test
problem. By definition the curves are unlimited. Therfore
the equations behind this concept are unfortunatly
expensive to compute in the case of general arrival and
service curves [7]. To make the concept practicable a
piecewise linear approximation with up to three staight line
segments is proposed. The error of this approximation is
unkown. By using the results of Section 3.5 it is possible to
calculate a lower bound on the approximation error of the
approximated real-time calculus. Figure 4 shows the real-
time calculus approximation of one task. First the
approximation of a simple periodic task with two lines is
shown (a), second the approximation of a bursty task is
outlined (b). In this case three lines are needed for a good
approximation.
Comparing Figure 3 with Figure 4 a) shows a close
relationship between the approximation of the real-time
calculus and the test given by Devi. The real-time calculus
approximation is a bit worse than the test given by Devi
because of the limited number of curves in the
approximation of the real-time calculus. As shown in the
last section the test by Devi is equal to SuperPos(1) of the
superposition approach. The main difference between the
test by Devi and the real-time calculus is the specification
of bursts which can be only expressed by the real-time
calculus. By using event streams it is easy to analyse burst
by the superposition test [1]. However, this leads to a
higher complexity then the test by Devi because of each
element of the burst has to be handled as a seperate element
of the event stream.

 Figure 2: Approximation by Devi for two tasks

Devi

Dbf

I

C

Γ i() τi Γ∈ Dτ Di≤(){ }=

I Ci

i Di I≤()∀
∑

Ci

Ti
----- I Di–()⋅

i Di I≤()∀
∑+≥

Ci

i Di I≤()∀
∑= I

Ci

Ti

Di

Ti
----- Ci⋅

i Di I≤()∀
∑–

i Di I≤()∀
∑⋅+

1 k Γ≤ ≤()∀

Dk Dk

Ci

Ti

i 1=

k

∑⋅
Ti min Ti Di,()–

Ti
-------------------------------------- 

  Ci⋅
i 1=

k

∑+≥

 Dk k
Ci

Ti

i 1=

k

∑⋅
Ti Di–

Ti
---------------- 

  Ci⋅
i 1=

k

∑+≥

 Ci
i 1=

k

∑≥ Dk

Ci

Ti

Di

Ti
----- Ci⋅

i 1=

k

∑–

i 1=

k

∑⋅+

 Figure 3: Approximation by Devi for a single task

C

I

l2

Devi

Dbf

 Figure 4: Real-time calculus approximation

CCCC

I

CCCC

IIII

l2

l1
l1

l2

l3

a) periodic task b) task with burst

4. Improved feasibility tests
Approximated feasibility tests are only sufficient. This is a
problem because not all scheduable task sets are accepted
by this tests. Even if the degree of sufficiency is selectable
the tests fails to recognize feasible task sets (Figure 1).
Even worse, choosing a high degree of sufficiency leads to
a test with long execution time, while choosing a low
degree leads to a bad acceptance rate for the feasible task
sets. The idea is to use different levels of approximation,
starting with a fast approximation (SuperPos(1)) and
switch to a slow one just as necessary.
4.1. Dynamic error test
This idea leads to a fast test for all those task sets which the
sufficient tests could recognize. The algorithm for the new
test is shown in Figure 5. The test starts at the level
SuperPos(1). This level allows all tasks to be
approximated after their first job. The test runs at this level
until either the test succeeds or the approximated demand
(dbf´) exceeds the actual test interval (Iact) and the task set
is not feasible by this approximation. In this case it is
necessary to rise the level and withdraw the
approximations for those tasks which would not be
approximated using the new level (Γrev). It is not necessary
to recalculate the whole test because the values calculated
by the first approximation can be reused.

Lemma 3: If dbf‘(I,G) ≤ I for an interval I than
dbf(I‘,G) ≤ I‘ for all intervals I‘ between I and Inext. Inext is
the next test interval after I which is not approximated.
The prove of this lemma is visualized in Figure 6 and can
also be followed using Lemma 4. Therefore if the test fails
at Inext, the previous test guarantees all intervals which are
smaller than Inext, even if they are approximated.

Lemma 4: Let be two consecutive test intervals for
. If we assume it exists a for which

 and applies then the
approximated demand bound function holds [1].
Proof: See Section 3.2 in [1].
For all tasks for which the approximation is revised due to
the switch of the level the next test interval following Iact
has to be investigated:

Lemma 5: Following test interval

This interval is added to the list of test intervals. It is further
necessary to reduce the approximated demand by the
overestimated approximation costs for these revised tasks.
These costs are given by app. Let Γrev be the set of all tasks
for which the approximation is revised:

Lemma 6: Overestimated approximation costs

If dbf‘≤ Iact the new level is sufficient, otherwise it has to
be increased. If no task is approximated before increasing
the level the demand bound function exceeds the capacity
and the test fails. We propose to double the level at each
step which limits the amount of steps to . This is
small compared to the total amount of test intervals.
Only task sets which cannot be evaluated using a fast level
will need a long evaluation time. These task sets would not
be accepted by existing sufficient tests like the test by
Devi. Task sets accepted by the test by Devi are accepted
by this test running completly on the level SuperPos(1).
This condition holds for all levels of the superpositon test.
It is not necessary for a good average case performance of
the analysis to combine sufficient and necessary tests. The
maximum level for the dynamic test can be limited. The
result is a test with a strictly limited worst-case run-time
and a good average case run-time.
4.2. All approximated test
Despite that the proposed test outperform the existing
approaches by orders of magnitude, it can be improved
even further. Especially for task sets containing very small
and very large tasks, the dynamic test could switch soon
into higher levels. Considering many test intervals may
result in an unnecessary effort. It could be the case that
only a few test intervals are critical and that it is possible to
approximate the others. This leads to a new test. The
algorithm for this test can be found in Figure 7.
The goal of the new algorithm is to reduce the number of
considered test intervals further. Figure 7 shows the
algorithm. Instead of using fixed test bounds for each task,
approximation is done as much as possible. The first test
intervall resulting out of the first job of each task is inserted
into testlist. Testlist is processed in ascending order. All the
following test intervalls are approximated first. Only if a
test fails for an test interval Itest, the approximation of the
demand bound function of each task is step by step revised
until the test either succeds or no task is approximated any
more. The revision is done by replacing the approximated
costs of the task by their real cost. Because of quitting the
approximation in this interval it is necessary to add one

 Figure 5: Dynamic Test

ALGORITHM DynamicError
IF U > 1 ⇒ not feasible
Imax = minimum feasibility interval;

:testlist.add(τι,Ti+ Di)
WHILE (testlist ≠ {} AND Iact < Imax)

τi, Iact = testlist.getNext()
dbf‘ = dbf‘+ Cτ + (Iact - Iold) * Uready
WHILE (dbf‘ > Iact)

IF (ApproxList = {}) ⇒ NOT FEASIBLE
increase level;

: Uready = Uready - Cj, / Tj,
dbf‘ = dbf‘ - app(Iact,τj)
testlist.add(τj, NextInt(Iact,τj))

END WHILE
IF (Iact < Testboarder(τ)

testlist.add(τ, Iact + Ti)
ELSE

Uready = Uready + Ci / Ti
ApproxList.add(τ);

Iold =Iact
END WHILE
⇒ FEASIBLE

τi∀ Γ∈

τj∀ Γrev∈

I

C

I Inext

{approximated

 Figure 6: Possible proven test intervals

DbfDbf‘

I Inext,
dbf′ I() I∆
I I I∆+ Inext< < dbf I I∆+() I I∆+>

dbf′ I() I>

NextInt I τ,()
I Dτ–

Tτ
-------------- 1+ 

  Tτ Dτ+=

app I Γrev,()
I Di–

Ti

I Di–

Ti
-------------–

 
 
 

τi∀ Γrev∈

∑ Ci=

nmax

additional test interval for each revised task into testlist.
These additional test intervals can be calculated using
Lemma . Note that it is only necessary to calcultate the
interval following Itest because the approximation has
already verified all test intervals smaller than Itest. The
algorithm terminates if it is possible to approximate all
tasks successfull in one test interval or if the test fails. If the
initial test interval is accepted for each task without
generating new test intervals, the behaviour and the
performance of the test is equal to the test given by Devi
[9].
4.3. Feasibility bound
A feasibility bound describes the upper limit for all
intervals which are necessary to be tested. It is important to
find a short one because this limits the effort for the
feasibility test. A good overview of the different feasibility
bounds can be found in [14]. Baruah et al. [3] defined such
a bound for the processor demand test, which is part of
Definition 3. Another one can be derived from the busy
period condition [14]. George et al. [10] define a bound
which is smaller than the bound given by Baruah et al:

The new all approximated superpositon approach delivers
a new feasibility bound. It is reached (and no further test
interval is needed) if for a test interval the difference
between the demand bound function and the capacity
allows the approximation of all tasks. A task system with a
utilization lower 100% can never exceed the capacity
beyond this interval. Using Lemma 6 the sum of the
demand bound function and the approximation errors can
be calculated:

This gives the new feasibility bound:

If the condition Isup ≥ Dmax is used, it can be followed:

Using leads to the following bound:

For the case that all Cτ ≤ Dτ this bound is the same as the
bound given by George et al., for the other cases this new
bound is lower than this bound. This relationship allows a
better understanding of the bound and leads to a integrated
feasibility theory for EDF. The main contribution of this
result is that it is not necessary for the new test to calculate
and check the feasibility bound by George et al. The
superposition bound is tighter and is checked in an implicit
way. It might be interesting to calculate the busy period of
the system as outlined in [14], because this bound might be
tighter than the superposition bound under some
conditions. Calculating this bound however has
exponential complexity and may need more effort than the
test without this bound.

5. Experiments
We have generated a large number of random task sets to
evaluate the performance gain due to the new tests. As a
metric we counted the test intervals checked by each of the
algorithms. This metric is common to evaluate feasibility
tests [5], [13] and shows exactly the behavior of the
different algorithms.
The generation of the random task sets follows the uniform
distribution proposed by Bini [4]. In Figure 8 a test was
performed using 18,000 task sets with a utilization
between 90% and 99% (high utilizations are hard to test).
It shows the average and the maximum iterations needed
for the tests. The size of the task sets varied between 5 and
100 tasks using a uniformed random distribution. They had
an average gap of 20%, 30% and 40%. The gap describes
the difference between deadline and period. The sizes of
periods are also equally distributed, the ratio between the
maximum and the minimum period was of no concern for
this experiment. The result of the experiment is that the all
approximation test needs 10 to 20 times less iterations than
the processor demand test, which goes up to 200 times less
effort considering the maximum amount of iterations.
Figure 9 shows the result of another experiment which
investigates the effect of the ratio Tmax/Tmin. Therefore the
test was performed with a ratio varying from 100 to
1,000,000. The results are presented using an exponential
scale. Such high ratios could for example be possible if
system interrupts and the schedulability overhead are
defininded as tasks. For each value 4,000 tasks set where
generated randomly with a size between 5 and 100 tasks
and an average gap between 10% and 50% and an
utilization varying between 90% and 100%. The first graph
shows the maximum measured effort needed for the
processor demand test which increases up to more than 50
million iterations. The effort of the other values is
visualized in the second graph. Also there are some
variations due to the random values especially for the
dynamic test. The measured effort of both new tests are far
below the effort needed for the old test. The maximum
effort measured for the dynamic test was about 9,000. For
the all approximation test it is about 3,000 iterations.
Another interesting point is that the effort doesn’t depend
on the ratio of the periods. This becomes even more
obvious when investigating the average effort needed. For

 Figure 7: All approximated test

ALGORITHM AllApprox
IF U > 1 ⇒ not feasible

: testlist.add(τ,Ti + Di)
WHILE (testlist ≠ {})

τi, Itest = testlist.getNext()
dbf‘ = dbf‘+ Cτ + (Itest- Iold) * Uready
WHILE (dbf‘ > Iact)

IF (ApproxList = {}) ⇒ not feasible
τ, = ApproxList->getAndRemoveFirstTask;
Uready = Uready - Cτ, / Tτ,
dbf‘ = dbf‘ - app(Itest,τ

,)
testlist.add(τ,, NextInt(Itest,τ

,))
END WHILE
Uready = Uready + Ci / Ti
ApproxList.add(τ);

END WHILE
⇒ feasible

τi∀ Γ∈

Igeorge

1
Di

Ti
-----– 

  Ci⋅
τi Γ∈ Di Ti≤∧

∑

1 U–
---=

I app I τ,() dbf I τ,()+

τ Γ∈
∑≥

Isup

Isup Dτ–

Tτ

I Dτ–

Tτ
--------------–

 
 
 

Cτ
I Dτ–

Tτ
-------------- 1+ Cτ⋅

τ∀ i Γ∈
I Dτ≥

∑+

τ Γ∈
∑=

Isup Isup

Cτ

Tτ

τ Γ∈

∑⋅
Cτ Dτ⋅

Tτ

τ Γ∈
∑– Cτ

τ Γ∈

∑+=

U C T⁄∑=

Isup min Dmax

1 Di Ti⁄–() Ci⋅

τi∀ Γ∈
∑

1 U–
--,()=

the all approximation test it varies between 102 and 116
iterations, as opposed to 465 to 955,053 for the processor
demand test.
 Tab. 1 contains some results for task sets coming from real
examples. The task set of Burns and of the modified set of
Ma & Shin can be found in [1], the Generic Avionics
Platform example (GAP) in [14] and the other two task sets
in [11]. The amount of tasks are small (7 to 21 tasks) but
even for such small examples the new tests need between
5 and 100 times less iterations than the processor demand
test. The run-time overhead of one iteration ot the new tests
is small compared to both alternative algorithms, the
processor demand test and the test by Devi. Only the
approximation leads to a some more effort. Compared to
the algorithm of Devi the overhead can be completely
eliminated.

6. Conclusion
We proposed two new feasibility test for EDF. They are
exact and outperform the existing tests by orders of
magnitude. Task sets which are recognized by the existing
sufficient test or approximations can be evaluated by the
new test with a comparable effort. We proved that the new
concept integrates the processor demand test, the
feasibility bound by George et al. and the sufficient
feasibility test by Devi.

7. References
[1] K. Albers, F.Slomka. An Event Stream Driven Approxima-

tion for the Analysis of Real-Time Systems, IEEE Proceed-
ings of the 16th Euromicro Conference on Real-Time
Systems, pp. 187-195, 2004.

[2] S. Baruah, D. Chen, S. Gorinsky, A. Mok. Generalized
Multiframe Tasks. The International Journal of Time-Criti-
cal Computing Systems, 17, 5-22, 1999.

[3] S. Baruah, A. Mok, L. Rosier. Preemptive Scheduling
Hard-Real-Time Sporadic Tasks on One Processor. Pro-
ceedings of the Real-Time Systems Symposium, 182-190,
1990.

[4] E. Bini, G. Buttazzo. Biasing Effects in Schedulability
Measures. IEEE Proceedings of the 16th Euromicro Con-
ference on Real-Time Systems, pp. 196-203, 2004

[5] E. Bini, G. Buttazzo. The Space of Rate Monotonic Sched-
ulability. Proceedings of the 23th IEEE Real-Time Systems
Symposium, 2002.

[6] J.Y. Le Boudec, P. Thiran. Network Calculus - A Theory of
deterministic Queuing Systems for the Internet. LNCS
2050, Springer Verlag, 2001.

[7] S. Chakraborty, S. Künzli, L. Thiele. A. Herkersdorf, P.
Sagmeister. Performace Evaluation of Network Processor
Architectures: Combining Simulation with Analytical Esti-
mation, ComputerNetworks, Vol. 41, No. 5, pp. 641-665,
2003.

[8] S. Chakraborty, S. Künzli, L. Thiele. Approximate Schedu-
lability Analysis. 23rd IEEE Real-Time Systems Sympo-
sium (RTSS), IEEE Press, 159-168, 2002.

[9] M. Devi. An Improved Schedulability Test for Uniproces-
sor Periodic Task Systems. Proceedings of the 15th Euro-
micro Conference on Real-Time Systems, 2003.

[10] L George, N. Rivierre, M. Spuri. Preemptive and Non-Pre-
emptive Real-Time Uni-Processor Scheduling. Rapport de
Recherche RR-2966, INRIA, France, 1996.

[11] K. Gresser. Echtzeitnachweis Ereignisgesteuerter Realzeit-
systeme. Dissertation (in german), VDI Verlag, Düsseldorf,
10(286), 1993.

[12] C. Liu, J. Layland. Scheduling Algorithms for Multipro-
gramming in Hard Real-Time Environments. Journal of the
ACM, 20(1), 46-61, 1973.

[13] R. Pellizzoni, G. Lipari. A New Sufficient Feasibility Test
for Asynchronous Real-Time Periodic Task Sets. Proceed-
ing of the 16th Euromicro Conference on Real-Time Sys-
tems, pp. 204-211, 2004.

[14] J.A. Stankovic, M. Spuri, K. Ramamritham, G.C. Buttazzo.
Deadline Scheduling for Real-Time Systems EDF and Re-
lated Algorithms. Kluwer Academic Publishers, 1998.

0

20000

40000

60000

80000

100000

120000

140000

160000

90 91 92 93 94 95 96 97 98 99

 I
te

ra
tio

ns

Utilization (%)

Maximum effort for different utilizations

Dynamic
Processor Demand

All approximated

0

1000

2000

3000

4000

5000

6000

7000

90 91 92 93 94 95 96 97 98 99

 I
te

ra
tio

ns

Utilization (%)

Average effort for different utilizations

Dynamic
Processor Demand
All Approximated

 Figure 8: Results with different utilizations

0

10M

20M

30M

40M

50M

60M

100 10000 500000

 I
te

ra
tio

ns

 Tmax / Tmin

Max execution effort using different values for Tmin / Tmax

Dynamic
Processor Demand
All Approximated

0

20000

40000

60000

80000

100000

100 10000 500000

 I
te

ra
tio

ns

 Tmax / Tmin

Max execution effort using different values for Tmin / Tmax

Dynamic
Processor Demand
All Approximated

 Figure 9: Results with different values for Tmin / Tmax

Test Devi Dyn. All Appr. Proc. Dem.

Burns 14 14 14 1,112

Ma & Shin FAILED 16 11 61

GAP 18 18 18 1,228

Gresser 1 FAILED 24 20 307

Gresser 2 FAILED 34 25 205

 Table 1: Iterations for example task graphs

	Main Page
	DATE'05
	Front Matter
	Table of Contents
	Author Index

