
A New Task Model for Streaming Applications and its Schedulability Analysis

Samarjit Chakraborty
Departement of Computer Science
National University of Singapore
samarjit@comp.nus.edu.sg

Lothar Thiele
Computer Engineering and Networks Laboratory

Swiss Federal Institute of Technology (ETH) Zürich
thiele@tik.ee.ethz.ch

Abstract
In this paper we introduce a new task model that

is specifically targeted towards representing stream pro-
cessing applications. Examples of such applications are
those involved in network packet processing (such as a
software-based router) and multimedia processing (such as
an MPEG decoder application). Our task model is made up
of two parts: (i) a new task structure to accurately model the
software structures of stream processing applications such
as conditional branches and different end-to-end deadlines
for different types of input data items, and (ii) a new event
model to represent the arrival pattern of the data items to
be processed, which triggers the task structure. This event
model is more expressive than classical models such as
purely periodic, periodic with jitter or sporadic event mod-
els. We then present algorithms for the schedulability anal-
ysis of this task model. The basic scheme underlying our
algorithms is a generalization of the techniques used for the
schedulability analysis of the recently proposed generalized
multiframe and the recurring real-time task models.

1 Introduction
Of late, there has been a lot of interest in the design of

hardware and software architectures of embedded systems
specifically targeted towards running stream processing ap-
plications. Such systems range from hand-held computers,
portable audio/video players and mobile phones, to network
processors used for implementing complex packet process-
ing tasks in a high-speed router. Many of these devices have
very stringent constraints pertaining to cost, size and power
consumption, and have posed several challenges towards
developing appropriate models, methodologies, languages
and tools for designing them (for example, see [5, 6]).

A natural representation of the software structure of a
stream processing application is a directed acyclic graph
whose nodes represent different processing tasks and the
edges represent precedence constraints among these tasks.
An example of such a graph, representing a simple net-
work packet processing application is shown in Figure 1.
This graph represents the processing of two different classes
of packets: VoIP packets, which have real-time constraints

Figure 1: Task graph for a network packet processing application,
which processes two different packet types.

on their processing time, and all other packet types, which
do not have real-time constraints on their processing time.
The processing of any VoIP packet follows the right hand
side path in this task graph, and the processing of all other
packet types follows the left hand side path in this graph.
The arrival of any packet causes an interrupt, which is pro-
cessed by the receive packet task. This is followed by packet
header parsing and classification, after which the packet
type is known and based on this type either the right or the
left hand side of the task graph is executed. Let us assume
that all the tasks in this task graph are executed on the same
processor. Since the packet type is not known before the
first two tasks are completed, there is a deadline (d1 in the
figure) within which the first two tasks are to be executed af-
ter the arrival of any packet. d1 would usually be determined
by the line speed or the minimum interarrival time between
two packets. VoIP packets have an additional end-to-end
deadline, say d2 (not shown in the figure), within which all
the relevant tasks in the task graph (starting from receive
packet to route lookup) have to be completed from the ar-
rival time of the packet. d2 is determined independently
from d1, and depends only on the QoS requirements of the
application which is fed by the VoIP packets processed by
this task graph.

1530-1591/05 $20.00 © 2005 IEEE

The arrival process of packets which triggers this task
graph is usually bursty in nature and can not be accurately
captured by event models (such as periodic or sporadic) tra-
ditionally studied in the real-time systems literature. Such
an arrival process is usually characterized by bounds on the
burstiness over different time scales and by long-term ar-
rival rates. In the communication networks domain, such a
characterization is done using the theory of Network Calcu-
lus [3, 4], and we formally define this in Section 2.

Typically, a router will have several network interfaces
and each such interface will be associated with a different
packet arrival rate. Corresponding to each interface there
will be a task graph such as the one shown in Figure 1,
which will be triggered by a potentially infinite sequence
of packets coming in through this interface. The structure
of such a task graph and the different tasks in it might
vary from one interface to the other. In the case of a
software-based router, all the tasks belonging to such task
graphs might be executed on a single processor and it is
relevant to ask if all the associated deadlines can be met,
given some bounds on the arrival process of packets at each
of the interfaces.

Our results and relation to previous work: To the best
of our knowledge, none of the task models studied in the
real-time systems literature naturally model the setup de-
scribed above. Most of well known task models either do
not model conditional branches, and those that model con-
ditional branches (such as the recently proposed recurring
real-time task model [1]) associate deadlines with the in-
dividual nodes of the task graphs. Note that the setup de-
scribed above requires deadlines to be associated with dif-
ferent paths in a task graph, all of which start from the
source node. However, a path can not be “collapsed” into
a node, because there might be deadlines associated with
subpaths and multiple paths might overlap. Additionally,
the event model which triggers our task graphs, has not be
studied in the real-time systems literature from the stand-
point of schedulability analysis. In fact, the main complica-
tion of the schedulability analysis problem that we solve in
this paper stems from this event model.

We present algorithms for both static and dynamic pri-
ority schedulability analysis. Our basic technique is a gen-
eralization of the schedulability analysis developed for the
generalized multiframe [2] and the recently proposed recur-
ring real-time task model [1], and is based on the concept
of demand bound and resource bound functions. One of the
main contributions of this paper is a method for computing
these functions when the task graphs are triggered by our
new event model described in the next section. In [2] and
[1] these functions were computed for the case where the
task graphs are triggered by a sporadic event model.

In the next section we formally define our task model and
also describe the concepts of demand bound and resource

v1

v2 v3

v4

v5

g1

v0

(6,∞)

(3,∞)

(15,6) (14,10)

(9,12)

(3,∞)

g2
…

…

Figure 2: Only one sample task graph g1 ∈ G is shown
in detail. Each node vi of g1 is associated with a tuple
(c(vi),d(vi)), where c(vi) is the node’s worst case resource
demand and d(vi) is its relative deadline.

bound functions. This is followed by our algorithms for
schedulability analysis in Section 3. Finally, in Section 4
we outline some directions for future work.

2 Stream Based Task Model
In this section we formally define the task model we mo-

tivated above. For the purpose of schedulability analysis,
we consider a set of task graphs G, each of which are trig-
gered independently of each other by data or event streams
(where the arrival of a data item may be considered as an
event). The goal of the schedulability analysis is to ascer-
tain if for all graphs g ∈ G, all the associated deadlines are
met for all possible legal triggering sequences. In this paper
we are only concerned with schedulability analysis under
preemption. An example task set is shown in Figure 2.

Definition 2.1 (Task Graph) An acyclic, directed task
graph g = (V,A) consists of nodes v ∈ V and edges
a = (v,w) ∈ A. A node represents a task of the application,
an edge represents a precedence relation. There is a unique
source node v0 ∈ V having no incoming edges. To each
node v there are associated the quantities c(v) ∈ R

≥0 and
d(v) ∈ R

>0 ∪ {∞} which denote the worst case resource
demand and the deadline of the task associated to v
respectively.

The interpretation of the precedence relations and dead-
lines is defined by the dynamic model associated with a task
graph. A task graph is instantiated by a timed event, e.g. at
time t0 (which can be the arrival of a packet in the example
described in the previous section). The release time of the
source task v0 is t0. The execution follows a path (sequence
of nodes) (v0,v1, · · · ,vn−1) through g where the nodes are
connected by edges (vi,vi+1) ∈ A. The release time of a
task vi+1 is the finishing time of task vi. Each task v re-
quires a maximal resource demand of c(v), given in terms
of the number of required processor cycles, the worst case
execution time or any other reasonable unit that describes
the service of the resource (i.e. the processor on which all

the tasks are executed). In addition, each task has a rela-
tive deadline d(v) with respect to the instantiation time t0
of g. Therefore, its finishing time must be equal or smaller
than t0 + d(v). All events in an event stream need not be
processed in the same way. Depending on the type of an
event or its associated data, different paths through the task
graph may be chosen (see Figure 1). In addition, the pro-
cessing of each event type might be associated with a dif-
ferent deadline constraint. If the deadline associated with a
node is ∞ (see Figure 2), it implies that there are no dead-
line constraints on the path starting from the source node
to this node, although there might be deadlines associated
with subpaths of this path.

As we are concerned with the processing of event
streams, a task graph can be instantiated by successive
timed events. We suppose that even a concurrent instantia-
tion is possible, i.e. there can be a new timed event before
the last task of the previous instance is completely executed.
The timing of any event stream triggering a task graph is
bounded by an arrival function defined as follows.

Definition 2.2 (Arrival Function) The arrival function
α(∆)∈ R

≥0, ∆ ∈ R provides an upper bound on the number
of events that can arrive within any time interval of length
∆. In particular, there are at most α(∆) events within the
time interval [t, t + ∆) for all t ≥ 0 and α(∆) = 0,∀∆ ≤ 0.

In practice, α(∆) will be defined only for a finite number
of values of ∆, and not for all ∆ ≥ 0. An example of such a
specification is: there can not be more than 20 events within
any time interval of duration 2 and no more than 25 events
within any time interval of duration 5 time units. We denote
such a specification using an arrival sequence.

Definition 2.3 (Arrival Sequence) An arrival sequence is
given as: α̃ = 〈〈α1,∆1〉,〈α2,∆2〉, · · · ,〈αn,∆n〉〉 (1)

It is called proper, if in addition δi < δi+1 and αi < αi+1 for
all 1 ≤ i ≤ n−1 hold.

An arrival function α corresponding to an arrival se-
quence α̃ can be determined by the operator Fα̃(∆) defined
as follows

Fα̃(∆) = min{αi|∆i ≥ ∆} ∀ 0 < ∆ ≤ ∆n (2)

and Fα̃(∆) = 0,∀∆ ≤ 0 and Fα̃(∆) = ∞,∀∆ > ∆n.

Given an arrival sequence, we can extend and tighten it
using the sub-additivity property of arrival functions, i.e.
α(s + t) ≤ α(s) + α(t). To this end, we at first add linear
combinations of tuples to the sequence, i.e. tuples of the
form 〈a,d〉 where a = ∑n

i=1 αixi and d = ∑n
i=1 ∆ixi for all

xi ∈ Z
≥0. Finally, we remove redundant tuples, i.e. we re-

move a tuple 〈a,d〉, if there exists another tuple 〈αi,∆i〉 with
∆i ≥ d and αi ≤ a.

In the example arrival sequence mentioned
above, we at first have the following sequence:

2 4 6 8 10

20

40

60

80

2 4 6 8 10 12 14

10

20

30

40

50

60

70

∆

α(∆)

∆

α(∆)

Figure 3: Two possible representations of an event stream
associated with a task graph. The right hand side shows a
continuous arrival function defined using piecewise linear
segments, with three pieces starting at ∆ = 0, 1 and 3 with
slopes 30, 15 and 5 respectively. The left hand side depicts
Fα̃(∆) corresponding to the sequence α̃ = 〈〈20,2〉,〈25,5〉〉
after its sub-additive extension.

〈〈20,2〉,〈25,5〉〉. This sequence can be extended to
〈〈20,2〉,〈40,4〉,〈25,5〉,〈60,6〉,〈45,7〉,〈80,8〉,〈65,9〉, ..〉.
After removing all the redundant tuples, we get
〈〈20,2〉,〈25,5〉,〈45,7〉,〈50,10〉,〈70,12〉,〈75,15〉, ..〉.
Following this concept, two possible representations of ex-
ample event streams (one discrete and the other continuous)
are depicted in Figure 3.

In case of several task graphs, we assume that each one
gk ∈ G is triggered by its own event stream characterized by
the corresponding arrival function αk(∆). For example, if
the task graph g1 in Figure 2 is triggered by an event stream
characterized by one of the arrival functions in Figure 3,
then the additional task graphs (g2, g3, ...) in the task set
will be triggered by other streams which are characterized
by other arrival functions. As mentioned in the previous
section, the different event streams and task graphs are in-
dependent of each other; they only share the common re-
source.

For our schedulability analysis, we use the concept of
demand and resource bound functions, similar to the ones
introduced by Baruah in [1]. The demand bound func-
tion of a task graph describes the minimal amount of re-
source necessary within any time interval, to satisfy its real-
time constraints in the case of a single instantiation of the
graph. We later introduce the concept of a composite de-
mand bound function, which takes into account the trigger-
ing of the graph by a stream of events.

Definition 2.4 (Demand Bound Function (DBF)) The
demand bound function dbf (∆) ∈ R

≥0 with ∆ ∈ R
≥0 of a

task graph g ∈ G denotes the minimal amount of resource
necessary within any time interval of length ∆ such that
all its associated deadlines can be satisfied when the task
graph is instantiated by a single event. The composite
demand bound function (CDBF) dbfC(∆) extends the above
definition to the case where the task graph is triggered by a
sequence of events whose arrival process is bounded by an
arrival function.

For example, the deadline 6 associated with the node
v2 of the task graph shown in Figure 2 implies that within
any time interval of length 6 there must be at least c(v0)+
c(v1)+ c(v2) = 24 resource units available. Otherwise, the
relative deadline of v2 can not be guaranteed. In a simi-
lar way, all other deadlines impose additional constraints.
However, if the task graph is triggered not once, but by a
stream of events, then the resource demand is characterized
by a composite demand bound function which we formally
define in Section 3.2.

Similarly, the resource bound function denotes the max-
imal load that a task graph can possibly impose on the re-
source within any time interval of a specified length.

Definition 2.5 (Resource Bound Function (RBF)) The
resource bound function rbf (∆) ∈ R

≥0 with ∆ ∈ R
≥0 of a

task graph g ∈ G denotes the maximal amount of resource
load within any time interval of length ∆ that can be
imposed by a singly instantiated task graph. The composite
remand bound function (CRBF) rbfC(∆) extends the above
definition to the case where the task graph is triggered by a
sequence of events whose arrival process is bounded by an
arrival function.

The use of the above functions in our schedulability analysis
problem is shown in Section 3.3.

3 Schedulability Analysis
3.1 Demand and Resource Bound Functions

We will describe the demand and resource bound func-
tions in the form of (proper) sequences similar to the one
defined in Def. 2.3, i.e. d̃bf = 〈〈dbf 1,δ1〉,〈dbf 2,δ2〉, ...〉 and
r̃bf = 〈〈rbf 1,δ1〉,〈rbf 2,δ2〉, ...〉. The values of these func-
tions can be determined using the operator Gd̃bf (∆) defined
as follows (the same definition holds for the resource bound
sequence also):

Gd̃bf (∆) = max{dbf i | δi ≤ ∆} ∀ ∆ ≥ δ1

and Gd̃bf (∆) = 0 for all 0 ≤ ∆ < δ1.
Now, we can determine a demand bound function of a

given task graph g. To this end, let us define C(vi) as the
length of the longest path from the source v0 of g to vi using
the worst case resource demand c(v) of the node v:

C(vi) = max{ ∑
v j∈Pi

c(v j) | for all paths Pi}

where Pi denotes a path from source node v0 to node vi. Us-
ing Def. 2.4, we understand that each node of the task graph
g defines a new constraint for the demand bound sequence.
Therefore, we at first construct a sequence that contains a
tuple for each node vi of the task graph g, each tuple con-
taining as its elements the length of the longest source path
C(vi) and the deadline d(vi):

〈〈C(v0),d(v0)〉,〈C(v1),d(v2)〉, ...〉 (3)

5 10 15 20

10

20

30

40

∆

dbf(∆)

Figure 4: Demand bound function corresponding to the task
graph in Figure 2

In order to get a proper demand bound sequence d̃bf , we
must sort these tuples according to the deadlines d(vi) and
remove all tuples that correspond to redundant constraints.
In particular, we remove a tuple 〈c,d〉, if there exists another
tuple 〈ci,di〉 with di ≤ d and ci ≥ c.

In a similar way, we can conclude that the resource
bound sequence is simply given by

r̃bf = 〈〈Cmax,0〉〉 (4)

where Cmax denotes the longest source path in the task graph
g, i.e. Cmax = max{C(vi)|vi ∈V}.

Using the task graph g1 shown in Figure 2, we
first obtain the sequence (3), which is equal to
〈〈24,6〉,〈23,10〉,〈36,12〉〉. Here each tuple corre-
sponds to one node with a finite relative deadline, i.e.
nodes v2, v3 and v5. As the second tuple corresponds to a
redundant constraint, we obtain d̃bf = 〈〈24,6〉,〈36,12〉〉.
The resource bound function is constant, i.e. rbf (∆) = 36,
∀∆ > 0. The demand bound function corresponding to the
task graph g1 in Figure 2 is shown in Figure 4.

Now, it remains to determine the composite demand and
resource bound functions by taking into account the instan-
tiation of a task graph by an event stream that is bounded by
an arrival function α(∆) or an arrival sequence α̃.

3.2 Composite Demand and Resource Bound
Functions

The computation of the composite demand bound func-
tion of a task graph is given by the following theorem.

Theorem 3.1 (Composite Demand Bound Function)
Given a demand bound sequence d̃bf =
〈〈dbf 1,δ1〉,〈dbf 2,δ2〉, ...〉 and an arrival function as
defined in Def. 2.2. Then the composite demand bound
function according to Def. 2.4 is given by

dbfC(∆) =
m

∑
i=1

(dbf i −dbf i−1) ·α(∆− δi)

where dbf 0 = 0.

Proof: The proof uses induction on the number of tuples
in the demand bound sequence. Let us first suppose that
d̃bf = 〈〈dbf 1,δ1〉〉. Then for one triggering event, the de-
mand is 0 for all 0 ≤ ∆ < δ1 and it is dbf 1 for all δ1 ≤ ∆.

Now, there are at most α(∆) events in any interval of size
∆. Each event triggers the graph g and generates a demand
according to the demand bound sequence d̃bf . Further note,
that the demand of independent tasks is additive. Using this,
one can conclude that the composite demand in an interval
of ∆+δ1 is at most dbf 1 ·α(∆), i.e αD(∆+δ1) = dbf 1 ·α(∆).
As a result, we obtain that dbfC(∆) = 0 for ∆ < δ1 and
dbfC(∆) = dbf 1 ·α(∆− δ1) for ∆ ≥ δ1. Using Eq. (2), we
obtain the relation given in the theorem.

Now, we will use induction on the number of tu-
ples in the DBF sequence. Let us suppose that Theo-
rem 3.1 holds for m elements of the sequence d̃bf

m
=

〈〈dbf 1,δ1〉, · · · ,〈dbf m,δm〉〉, i.e. dbfC
m(∆) = ∑m

i=1(dbf i −
dbf i−1) · α(∆ − δi). From the transformation between a
sequence and the corresponding function in Eq. (2) we
know that dbf m+1(∆) − dbf m(∆) = 0 for ∆ < δm+1 and
dbf m+1(∆)− dbf m(∆) = dbf m+1 − dbf m if ∆ ≥ δm+1. Tak-
ing into account again the additivity of demands, we can
conclude the following. The difference in demand between
m and m + 1 sequence elements is given by the demand
bound function that is defined by the sequence 〈〈dbf m+1 −
dbf m,δm+1〉〉. Following the arguments in the first para-
graph of the proof, this leads to an additional composite de-
mand of (dbf m+1−dbf m) ·α(∆−δm+1) if the task graph g is
triggered by an event stream bounded by α(∆). Therefore,
dbfC

m+1(∆) = dbfC
m(∆)+ (dbf m+1 − dbf m) ·α(∆− δm+1) =

∑m+1
i=1 (dbf i −dbf i−1) ·α(∆− δi).

If the triggering event stream is described by an arrival
sequence according to Def. 2.3, then we can construct a
sequence representation of the composite demand bound
function by including all tuples of the form

〈(dbf i −dbf i−1)α j,∆ j + δi〉 ∀ 1 ≤ i ≤ m, 1 ≤ j ≤ n

and then removing all redundant constraints, i.e. we remove
a tuple 〈c,d〉, if there exists another tuple 〈ci,di〉 with di ≤ d
and ci ≥ c.

The composite resource bound function can be con-
structed in a similar way.

Theorem 3.2 (Composite Resource Bound Function)
Given a resource bound function r̃bf =
〈〈rbf 1,δ1〉,〈rbf 2,δ2〉, ...〉 and an arrival function in
accordance with Def. 2.2. Then the composite resource
bound function according to Def. 2.5 is given by

rbfC(∆) =
m

∑
i=1

(rbf i − rbf i−1) ·α(∆− δi)

where rbf 0 = 0.

Using Eq. (4), the composite resource bound function
can be determined as rbfC(∆) = Cmax ·α(∆), or

r̃bf
C

= 〈〈Cmaxα1,∆1〉, ...,〈Cmaxαm,∆m〉〉

5 10 15 20

500

1000

1500

2000

2500

3000

3500

5 10 15 20

1000

2000

3000

4000

5000

∆

rbf C(∆)

∆

dbf C(∆)

Figure 5: Composite resource and demand bound functions
corresponding to the task graph g1 in Figure 2 and the ar-
rival function shown at the right hand side of Figure 3.

in case of an arrival sequence in accordance with Def. 2.3.
As an example, let us suppose that the task graph g1 in Fig-
ure 2 is triggered by an event stream characterized by the
continuous arrival function shown at the right hand side of
Figure 3. Based on the demand bound function in Figure 4,
Figure 5 shows the resulting composite resource and de-
mand bound functions.

3.3 Conditions for Schedulability
In order to perform a schedulability analysis for our task,

we make use of known results based on the resource and
demand bound functions for static and dynamic priority
schedulability analysis (see [1] for details). We can use
these results because of our task independence assumptions.

Let us suppose that the task graphs gk ∈ G for 1 ≤ k ≤ N
are ordered according to the priority of their tasks, i.e. all
nodes of gk have a higher priority than those of gk+1. More-
over, we assume that the resource (or the processor) deliv-
ers at least β(∆) resource units within any time interval of
length ∆. For example, if the resource demand is directly
given in terms of time, then we have β(∆) = ∆ for an un-
loaded processor. We then have the following result:

A set of task graphs g ∈ G is schedulable under a fixed
priority scheme, if and only if

dbfC
k (∆) ≤ sup

0≤λ≤∆

{
β(λ)−

k−1

∑
j=1

rbfC
j (λ)

}
(5)

holds for all graphs gk and for all ∆ > 0. Intuitively, the right
hand side represents the remaining resource capability after
the maximum resource load due to all higher priority tasks
has been taken into account. The left hand side represents
the composite demand by the tasks of graph gk. Using this
test, one can also determine a feasible priority assignment
efficiently (again, see [1] for details).

In a similar way, we can perform a schedulability analy-
sis for preemptive dynamic priority scheduling. In this case,
a set of task graphs gk ∈ G is schedulable if and only if

N

∑
k=1

dbfC
k (∆) ≤ β(∆) (6)

holds for all ∆ ≥ 0. The right hand side represents the accu-
mulated resource demand of all tasks graphs gk and the left

hand side denotes the available resource capacity. In the
particular case where the task graphs are scheduled using
an EDF scheduling policy, the relative deadlines associated
with the nodes of a graph might have to be adjusted (since
some of them might be equal to ∞) in a way such that they
are still compatible with the demand bound function. The
new relative deadline of a node vi can be assigned as the
minimum of its specified deadline d(vi) and deadlines of all
its direct and indirect successors in the task graph. In the
case of the graph g1 shown in Figure 2, the new deadlines
are d(v0) = 6, d(v1) = 6, d(v2) = 9, d(v3) = 10, d(v4) = 12
and d(v5) = 12. The nodes of this graph can now be sched-
uled with these deadlines.

Just for the purpose of illustration, let us assume that
there is only one input stream with a composite demand
bound function as depicted in Figure 4. Figure 6 represents
a schedulability test for EDF according to Eq. (6), with the
assumption that the computing resource can deliver 195 re-
source units per time unit, i.e. β(∆) = 195 ·∆. As it turns
out, the stream is just schedulable.

The schedulability tests given above can also be applied
to sequence representations of the composite demand and
resource bound functions. But the way they have been for-
mulated so far, the relations in Eqs. (5) and (6) need to
be checked for all ∆ ≥ 0, at least in principle. Even if
we restrict ourselves to ∆ ∈ Z≥0, this is virtually infeasi-
ble. Therefore, we are interested in a maximal value ∆max

with the following property. If the inequalities hold for all
0 ≤ ∆ ≤ ∆max then they hold for all ∆ ≥ 0. In what follows,
we derive such a bound for dynamic priority schedulability
analysis. The derivation for the fixed priority case is similar.

We bound all the arrival functions αk (associated with the
graph gk ∈G) by a linear function: αk(∆)≤ sα

k +tα
k ·∆ for all

∆ ≥ 0. In a similar way, we can bound β(∆) using β(∆) ≥
sβ + tβ ·∆. Now, we know from Eq. (3) that the demand
bound functions can be bounded by d̃bf k = 〈〈Cmax

k ,dmin
k 〉〉

whereCmax
k denotes the maximal accumulated weight of any

path in the task graph gk using weights c(v j) and dmin
k de-

notes the smallest deadline in the task graph gk. Therefore,
we can derive the bound

N

∑
k=1

dbfC
k (∆) ≤

N

∑
k=1

Cmax
k (sα

k −dmin
k tα

k)+ (
N

∑
k=1

Cmax
k tα

k)∆

From Eq. (6), we can conclude that the above expression
needs to be equal to sβ + tβ ·∆max, and therefore

∆max =
(∑N

k=1 Cmax
k (sα

k −dmin
k tα

k)− sβ

tβ − (∑N
k=1 Cmax

k tα
k)

In our running example, we have sα = 46, tα = 5 (see
Figure 3) and sβ = 0, tβ = 195 (see Figure 6). From the task
graph in Figure 2, we conclude that Cmax = 36 and dmin = 6.
Therefore, we obtain ∆max = 36(46−30)/(195−36∗5)=

5 10 15 20

1000

2000

3000

4000

β(∆)
dbf C(∆)

∆
Figure 6: EDF schedulability test for the composite demand
bound function given in Figure 4 and β(∆) = 195 ·∆.

38.4, i.e. we would need to check the inequality given by
Eq. (6) for all 0 ≤ ∆ ≤ 38.4. The same holds, if the bound
functions are represented in the form of sequences.

4 Concluding Remarks
In this paper we introduced a new task model that nat-

urally captures some of the essential properties of stream
processing applications. For this class of applications, we
believe that our model is more pragmatic compared to the
task models recently studied in the real-time systems liter-
ature (such as [1]), although they can also model program
structures like conditional branches. We did not present a
formal complexity analysis of our scheduling algorithms.
In all realistic setups, there will only be a small number
of deadline constraints associated with any task graph (al-
though the graph might have exponential number of paths
from its source to its sink node). Bounds on typical event
streams will also be specified using a small number of tu-
ples (such as a burst and a long-term rate). In such cases,
our schedulability analysis will certainly have a reasonably
low computational cost. It should be noted that even in such
cases, it might not be possible to ascertain schedulability
by avoiding the test we presented, and instead using some
straightforward calculation. In future, we plan to extend this
model to incorporate variable task execution times (packet
payload processing) and timeouts.

References

[1] S. Baruah. Dynamic- and static-priority scheduling of recur-
ring real-time tasks. Real-Time Systems, 24(1):93–128, 2003.

[2] S. Baruah, D. Chen, S. Gorinsky, and A. Mok. Generalized
multiframe tasks. Real-Time Systems, 17(1):5–22, 1999.

[3] R. Cruz. A calculus for network delay, Parts 1 & 2. IEEE
Transactions on Information Theory, 37(1), 1991.

[4] J.-Y. Le Boudec and P. Thiran. Network Calculus - A The-
ory of Deterministic Queuing Systems for the Internet. LNCS
2050, Springer, 2001.

[5] A. Maxiaguine, S. Künzli, S. Chakraborty, and L. Thiele. Rate
analysis for streaming applications with on-chip buffer con-
straints. In Asia and South Pacific Design Automation Con-
ference (ASP-DAC), 2004.

[6] W. Thies, M. Karczmarek, and S. Amarasinghe. StreamIt: A
language for streaming applications. In 11th Conference on
Compiler Construction (CC), LNCS 2304, 2002.

	Main Page
	DATE'05
	Front Matter
	Table of Contents
	Author Index

