
Context-Aware Scheduling Analysis of Distributed Systems with Tree-shaped
Task-Dependencies

Rafik Henia, Rolf Ernst
Technical University of Braunschweig

Institute of Computer and Communication Network Engineering (IDA)
D-38106 Braunschweig, Germany
{henia, ernst}@ida.ing.tu-bs.de

Abstract

In this paper we present a new technique which exploits
timing-correlation between tasks for scheduling analysis
in multiprocessor and distributed systems with tree-shaped
task-dependencies. Previously developed techniques also
allow capturing and exploiting timing-correlation in dis-
tributed systems. However, they are only suitable for linear
systems, where tasks cannot trigger more than one succeed-
ing task. The new technique presented in this paper, allows
capturing timing-correlation between tasks in parallel paths
in a more accurate way, enabling its exploitation to calculate
tighter bounds for the worst-case response time analysis for
tasks scheduled under a static priority preemptive scheduler.

1. Introduction

For simplicity, most formal scheduling analysis techniques
ignore correlations between task execution times or commu-
nication timing. This avoids the growing analysis complex-
ity, in particular when it comes to heterogeneous multipro-
cessor systems. However, such correlations can have a large
influence on system timing as has been shown for special
system topologies [6] [4]. This paper extends the analysis to
more general structures.

Observe the system in figure 1. The system consists of
five tasks mapped on three resources. Due to the data-
dependency between the tasks, their activating events are
time-correlated. We call the information about such cor-
relation inter event stream context[1]. However, a typical
scheduling analysis would ignore the available inter event
stream context and would assume that all tasks are indepen-
dent and that in the worst-case they are activated simulta-
neously [7]. This may lead to a greater calculated maxi-
mum number of interrupts of a lower-priority task by higher-
priority tasks, resulting in a longer calculated worst-case re-
sponse time of the lower priority task.

Methods exploiting inter event stream contexts for the
worst-case response time calculation already exist. How-
ever, they are either limited to linear systems and tasks in

Figure 1. Distributed system with timing-
correlation between tasks in parallel paths

single paths [6] [4], e. g. the correlation betweenT2 andT5

on R2, or enable to capture the complete timing-correlation
between tasks in parallel paths [2] [3], e. g. the correlation
betweenT3 andT4 onR3, in an accurate way. All this meth-
ods only consider the external events (produces bysource)
as references to capture timing-correlation between tasks.

In this paper, we present a new technique to capture the
inter event stream context information for tasks in parallel
paths and exploit it for the worst-case static priority schedul-
ing analysis to calculate tighter response time bounds.

In the following section, we will more deeply review the
existing approaches from literature to exploit inter event
stream contexts for worst-case response time calculation in
distributed systems. In Section 3, we introduce our com-
putational model, then we present some inter event stream
context preliminaries in section 4. In section 5, we show the
limits of existing techniques in exploiting inter event stream
contexts for tasks in parallel paths and introduce the idea of
relative offset and relative jitter. An algorithm for the worst-
case response time calculation considering relative offset and
jitter information is presented in section 6. Experiments are
carried out in section 7. We interpret the experimental re-
sults, before we draw our conclusions.

2. Related Work

Inter event stream contexts capture the timing correlation
between events in a way that can be exploited by schedul-

1530-1591/05 $20.00 © 2005 IEEE

ing analysis. Tindell introduced this idea for tasks scheduled
by a static priority preemptive scheduler [6]. In his paper,
each set of time-correlated tasks is grouped into a so called
transaction. Each transaction is activated by a periodic se-
quence of external events. Each task belonging to a transac-
tion is activated when a relative time, calledoffset, elapses
after the arrival of the external event. An activation of a task
releases the execution of one instantiation of that task, called
job. However, Tindell’s technique did not allow offsets to be
larger than the transaction period.

Tindell’s work was later generalized by Palencia and Har-
bour [4]. They presented the WCDO (Worst Case Dy-
namic Offsets) algorithm which extends the analysis pre-
sented by Tindell, by allowing the task offsets to be larger
than the transaction period and extending the technique for
distributed systems to dynamic offsets, which vary from one
job to another. In [5], Palencia and Harbour presented a new
analysis technique for tasks with precedence relations in dis-
tributed systems. The presented technique called WCDOPS
(Worst Case Dynamic Offsets with Priority Schemes) ex-
tended the WCDO algorithm by exploiting precedence rela-
tions among tasks during analysis. However, the WCDOPS
algorithms only took into account tasks in linear transac-
tions, where each task is allowed to have at most one suc-
cessor.

In recent works, Redell extended the WCDOPS algorithm
by considering precedence relations between tasks in so
called tree-shaped transactions [2] [3], by allowing tasks to
have more than one successor. However even though the
algorithm he proposed (the WCDOPS+ algorithm) allows
exploiting the inter context information for tasks in parallel
paths, it was based on the inter context capturing technique
presented by Palencia and Harbour, which was developed for
linear systems. Therefore, as we will show, not all available
timing-correlation was exploited.

3. Computational Model

The model that we consider is composed of tasks execut-
ing in a distributed system consisting of computation and
communication resources. Tasks are allowed to have more
than one immediate successor. Each task is assumed to have
exactly one input and is activated due to one activating event.
After finishing its execution, a task produces exactly one
event at each of its outputs. The possible timing of events
is described usingevent models. Event models are described
using two parameters: theperiodand thejitter, notedP and
J . These parameters state that each event generally occurs
periodically with a periodP , but that it can jitter around its
exact position within a jitter intervalJ . If the jitter is larger
than the period, then two or more events can occur at the
same time, leading tobursts. Tasks are also assigned priori-
ties. An execution of a lower priority task can be interrupted
by the execution of a higher priority task mapped on the same
resource. The response timeR of a task is defined as the dif-
ference between its completion and its activation time.

4. Transactions

In this section, we review preliminaries about capturing
the inter event stream context information and exploiting it
for the worst-case response time calculation, as presented
in [6] and [4]. Each set of time-correlated tasks in the dis-
tributed system is grouped into one transaction. In addition,
each task belonging to a transaction is identified by an off-
set parameter which indicates the earliest activation time af-
ter the arrival of the associated external event activating the
transaction. In the following, we call this offsetglobal offset.

To calculate the worst-case response time of a lower pri-
ority taskTl, we must calculate the maximum contribution
from all the transactions to itsbusy period. The busy period
of Tl is a time-interval during which the resource is busy pro-
cessingTl or another task fromhp(Tl), wherehp(Tl) is the
set of higher or equal priority tasks sharing a same resource
with Tl. The instant that starts the busy period is calledcrit-
ical instantand is notedtc. In [6] and [4], it was shown that
the maximum contribution of a transactionΓ to the busy pe-
riod is obtained when the critical instanttc coincides with the
activation time of some taskTc ∈ hpΓ(Tl) (hpΓ(Tl) is the
set of tasks belonging tohp(Tl) andΓ) whenTc is delayed
by its maximum jitter. In order to perform an exact analysis,
it is necessary to check all possible critical instants created
by all tasks fromhpΓ(Tl) and choose the one that leads to
the worst-case response time ofTl.

Figure 2 shows execution timing of a taskTi which be-
longs tohpΓ(Tl). The downward arrows indicate the ex-
ternal events activating the transaction. The upward arrows
indicate the offsetΦi of Ti. Assuming thatTi is activated by
the event model (Pi, Ji), its activation can occur between the
instantst0 + Φi andt0 + Φi + Ji, wheret0 is the instant at
which the associated external event arrived.

Figure 2. Transaction with executions of Tl and
jobs of Ti

The maximum contribution ofTi to the worst-case busy-
period ofTl is obtained, as shown in figure 2, whenTi is
activated if possible at, or as soon as possible aftertc.

5. Relative Offset And Relative Jitter

5.1 Problem Formulation

Observe the system modeled in figure 1. We assume static
priority scheduling onR2 and R3. The priorities are as-
signed as follows:T2 > T5 andT3 > T4. The core execution
times, i.e. assuming no interrupts, are assumed to be [2,8] for
T1 and [2,2] for all other tasks.T1 is assumed to be activated
periodically by events sent by the source tasksource. Let the

activating event model ofT1 be (P1 = 10, J1 = 0). At the
end of each execution,T1 produces exactly one event at each
of its outputs. Due to the data-dependency betweenT1, T2,
T3, T4 andT5, we group all tasks in one transaction. With-
out loss of generality, we assume thatT1 has a global offset
Φ1 = 0. In the following, we will focus on the worst-case
response time of taskT4.

Table 1 shows the input event models and offsets ofT3 and
T4 after having analyzed the resourcesR1 andR2. Note that
the jitter is due to the response time variation ofT1.

taskinput event modeloffset

T3 (P3 = 10, J3 = 6) Φ3 = 4
T4 (P4 = 10, J4 = 6) Φ4 = 2

Table 1. Offsets and input event models of T3

and T4

The worst-case response time of the lower priority taskT4

calculated by the WCDO [4] and WCDOPS+ [2] [3] algo-
rithms isRw

4 = 4. This worst case response time, as shown
in the gantt-chart in figure 3, is obtained whenT4 starts the
critical instant, i.e. thatT4 is activated after having arrived
as late as possible. The maximum contribution ofT3 is ob-
tained by delaying its activation by4 time units which causes
it to coincide with the critical instant. Therefore, one inter-
rupt ofT4 by T3 is calculated.

Figure 3. worst-case response time calcula-
tion of T4 using WCDO and WCDOPS+

Now, let us take a closer look on our system. SinceT1

produces one event at each output after each execution,T2

andT4 are always activated simultaneously. As both tasks
share different resources, there is no conflict between their
execution requests. Therefore, sinceT3 is activated afterT2

finishes its execution (which takes2 time units), an activation
of T3 always occurs2 time units after an activation ofT4. As
no former activation ofT3 can be delayed by an amount of
jitter that cause it to delay or interrupt the execution ofT4,
the true worst-case response time ofT4 is Rw

4 = 2.
The pessimistic worst-case response time calculation of

the WCDO and WCDOPS+ is due to the fact that these al-
gorithms only consider the external events (here events pro-
duced bysource) as references to capture timing correla-
tions between tasks in the system. I.e. they ignore that, other
references in the system could lead to an exacter calcula-
tion. In the example above, since events at both outputs of
T1 are produced simultaneously, it would be more accurate
to consider the completion time ofT1 as a reference to cap-

ture the timing correlation between the tasks in the parallel
paths starting atT1.

5.2 Relative Offset and Relative Jitter Concept
To capture the timing correlation between tasks in parallel

paths, we introduce the concept ofrelative offset and relative
jitter.

Definition 1 (relative offset). A taskTi is said to be acti-
vated after an offsetΦi(Tr) relative to a reference taskTr,
if Ti is activated at the earliest when a relative timeΦi(Tr)
elapses after the completion time ofTr. Φi(Tr) is called
offset ofTi relative toTr.

Definition 2 (relative jitter). The activation of a taskTi

relative to the completion time of a reference taskTr can
vary within a jitter interval of lengthJi(Tr). Ji(Tr) is called
jitter of Ti relative toTr.

The offset and jitter information of a taskTi relative to
taskTr shall be denoted: (Tr, Φi(r), Ji(r)).

The relative offset and relative jitter calculation extends
the global offset and jitter calculation by allowing any ref-
erence task not just external sources. I.e. the relative offset
corresponds to the minimum path latency starting from the
reference task and the relative jitter corresponds to the differ-
ence between the maximum and the minimum path latency
starting from the reference task.

In the example in figure 1, sinceT2 andT4 are activated
immediately after the execution completion ofT1, the offset
and jitter information ofT2 andT4 relative toT1 is: (T1, 0,
0). SinceT3 is activated immediately afterT2 finishes its
execution, which takes2 time units in both best- and worst-
case, the offset and jitter information ofT3 relative toT1 is:
(T1, 2, 0).

Depending on the system topology a task may have an off-
set and jitter relative to several reference tasks. This is shown
in figure 4 which represents an extension of the system in fig-
ure 1. T5, T6 andT8 have an offset and jitter relative toT1

andT3 while T7, T9 andT10 have an offset and jitter relative
to T1 andT4.

Figure 4. System showing tasks having offset
and jitter relative to several references

6. Worst Case Response Time Analysis
In this section, we derive the worst-case response time cal-

culation for a lower priority taskTl considering the relative

offset and jitter information for higher or equal priority tasks
belonging to the same transactionΓ.

The worst-case scenario for the task under analysis is ob-
tained by constructing a critical instanttc that leads to the
worst-case busy period. Let us assume thattc is started by
some taskTc ∈ hpΓ(Tl). Without loss of generality, we set
the origin of time attc. We will first show the maximum con-
tribution of tasks belonging tohpΓ(Tl) to the busy-period,
by considering global offsets only. Then we will addition-
ally consider the relative offset and jitter.

We assign indexes to each external event,e, activating the
transactionΓ as shown in figure 2. The first external event
that occurs before or attc is denotede0. Previous exter-
nal events are assigned negative indexes. Following external
events are assigned positive indexes. For each taskTi be-
longing to hpΓ(Tl), each job is assigned the index of the
associated external event. A job ofTi with an indexk is
denotedTi,k. The activation instant ofTi,k is denotedti,k.

The earliest job ofTi that can be delayed enough to be
activated at the critical instant is denotedni. In Figure 2,
ni is −2. In [6] and [4], it was proven that the maximum
contribution of a jobTi,k, with k ≥ ni, to the busy period
is obtained by delaying its activation by a certain amount of
jitter to coincide withtc, or to activate it without any delay if
its earliest activation time occurs aftertc: e.g. in figure 2, the
maximum contribution ofTi to the busy period is obtained
by activatingTi,−1 andTi,−2 at tc and all the following jobs
without any delay. Note that jobs with an index smaller than
ni are not considered since they cannot be delayed enough
to be activated attc.

So far, to calculate the maximum contribution of a jobTi,k

to the worst-case busy period, we determined its activation
instant depending on its global offset and jitter only. How-
ever, if a relative offset and jitter information is available,
an other dependency could exist betweenTi,k and jobs trig-
gered by the associated external eventek, i.e. jobs having the
same indexk, and belonging to other tasks fromhpΓ(Tl).
Recall the example in section 5.1. By exploiting the avail-
able offset and jitter information relative toT1, we found out
that an activation ofT4 precedes the activation ofT3 trig-
gered by the same associated external event, by2 time units.
I.e. although each job can be delayed to coincide withtc, it
is impossible to activate them simultaneously attc.

Let Tj be a task which also belongs tohpΓ(Tl). We as-
sume that bothTi andTj have an offset and jitter informa-
tion relative to a reference taskTr. Let (Tr, Φi(Tr), Ji(Tr))
be this information forTi and (Tr, Φj(Tr), Jj(Tr)) for Tj .
Consider the jobsTi,k andTj,k, with k ≥ ni, k ≥ nj and
k ≤ 0. Without loss of generality, let us assume that due
to the available relative offset and jitter information, the ac-
tivation of Ti,k always precedes the activation ofTj,k. If
we assume a maximum contribution ofTi,k to the busy pe-
riod by activating it attc, Tj,k will be activated aftertc, and
thus its activation may occur outside the busy period. On the
other hand, if we assume a maximum contribution ofTj,k to

the busy period by activating it attc, Ti,k must be activated
beforetc and thus, is not considered for the busy period. Fig-
ure 5 shows both activation scenarios forTi,k andTj,k. In
general, when considering the available relative offset and
jitter information, and in order to obtain the maximum con-
tribution to the busy period of jobs belonging to different
tasks and having the same index, we have to consider all ac-
tivation scenarios. In each scenario, a maximum contribution
to the busy period is assumed for one job by activating it at
tc. Depending on the activation instant of this job and all
available relative offset and jitter information, activation in-
stants for the other jobs are calculated. Note that this is very
similar to the global offset exploitation concept, where it is
necessary to check all possible critical instant construction
scenarios and choose the one that leads to the worst-case re-
sponse time [4]. In the following, the activation scenario of
jobs triggered by the external eventek is denotedAk. When
a maximum contribution to the busy period is assumed for a
job with indexk, we say that this job determines the activa-
tion scenarioAk.

Figure 5. Activation scenarios for Ti,k and Tj,k

In section 5, we stated that each task may have an offset
and jitter relative to several reference tasks. When construct-
ing an activation scenario, we choose a reference task which
is common to all tasks on the same resource and having rel-
ative offset and jitter information. If there are several com-
mon reference tasks, we choose the most “recent” task as
reference. In the example in figure 4, assuming that we are
constructing an activation scenario forT9 andT10 only, we
choose the taskT4 as reference task among the set of com-
mon reference tasksT1, T4. When constructing an activation
scenario forT9, T10 and T11, the only common reference
task isT1.

After having constructed all activation scenarios for jobs
having the same index, we still need to combine them with
activation scenarios for jobs having other indexes. Assume
thatk−1 ≥ ni andk−1 ≥ nj , i.e. the activations ofTi,k−1

andTj,k−1 can also be delayed to coincide withtc. Figure 6
shows the activation scenariosAk−1 andAk involving jobs
of Ti andTj , assuming a higher priority forTi. Note that
since an activation of a job cannot precede the activation of

an anterior job belonging to the same task,Ti,k−1 andTj,k

cannot respectively determine the activation scenariosAk−1

andAk at the same time. In general, if a job of some task
Ts determines an activation scenario, all activation scenar-
ios having higher indexes can only be determined by jobs
either belonging toTs or belonging to tasks that precedeTs.
This allows a reduction of the number of activation scenar-
ios combinations we need to check. Note that the process
of combining activation scenarios is also very similar to the
process of combining critical instant candidates belonging to
different transactions, when exploiting global offsets [4].

Figure 6. Activation scenarios Ak−1 and Ak in-
volving jobs of Ti and Tj

In the following, we drop the assumption that an activa-
tion of Ti always precedes the activation ofTj . Let us now
assume thatTi,k determines the activation scenarioAk by
activatingTi,k at the instantti,k = tc. Let δi,k be the de-
lay needed by the activation ofTi,k to occur attc (seeδi,k

in figure 5). The earliest occurrence oftj,k, tmin
j,k , can be

expressed by the following equation:

tmin
j,k = tc + Φj(Tr)− Φi(Tr)−min(δi,k, Ji(Tr)) (1)

Proof. Let us first calculate the earliest completion time of
Tr,k as a function ofti,k. The activation ofTi,k occurs af-
ter an offsetΦi(Tr) after the completion time ofTr,k and
can experience a maximum delay ofJi(Tr). On the other
hand, this delay cannot exceedδi,k. Therefore, the max-
imum delay experienced byTi,k, relative to Tr,k, corre-
sponds tomin(δi,k, Ji(Tr)). The earliest completion time
of Tr,k occurs consequently at the instantti,k − Φi(Tr) −
min(δi,k, Ji(Tr)). Now we can calculate the earliest oc-
currence oftj,k as a function ofti,k. Tj,k is activated at
the earliest after an offsetΦj(Tr) after the completion time
of Tr,k. Therefore, the earliest activation instant ofTj,k is
ti,k +Φj(Tr)−Φi(Tr)−min(δi,k, Ji(Tr)). Sinceti,k = tc,
equation 1 holds.

The latest occurrence oftj,k, tmax
j,k , can be expressed by

the following equation:

tmax
j,k = tc + Φj(Tr)− Φi(Tr) + Jj(Tr)

−max(0, δi,k + Ji(Tr)− Ji) (2)

Proof. Let us first calculate the latest completion time of
Tr,k as a function ofti,k. The activation ofTi,k occurs at
the earliest after an offsetΦi(r) after the completion time
of Tr,k, i.e. without experiencing any delay. The delayδi,k

is thus, assumed to be generated only due execution time
variations ofTr,k and jobs of tasks precedingTr and hav-
ing the indexk. However, since this delay can not exceed
Ji − Ji(Tr), the minimum delay experienced byTi,k rel-
ative to Tr,k corresponds tomax(0, δi,k + Ji(Tr) − Ji).
Therefore, the latest completion time ofTr,k occurs at the
instantti,k − Φi(Tr) − max(0, δi,k + Ji(Tr) − Ji). Now
we can calculate the latest occurrence oftj,k as a func-
tion of ti,k. Tj,k is activated at the latest after an offset
Φj(Tr) and a maximum delayJi(Tr) after the completion
time ofTr,k. Therefore, the latest activation instant oftj,k is
ti,k+Φj(Tr)−Φi(Tr)+Jj(Tr)−max(0, δi,k+Ji(Tr)−Ji).
Sinceti,k = tc, equation 2 holds.

Now we can calculate the instanttj,k which leads to a
maximum contribution ofTj,k to the busy period, under the
assumption thatTi,k determinesAk. Since the activation
of Tj,k cannot precede the activation ofTj,k−1, the maxi-
mum contribution ofTj,k to the busy period is obtained when
tj,k = max(tc, tj,k−1). In addition,tj,k belongs to the inter-
val [tmin

j,k , tmax
j,k]. Therefore, we have to distinguish following

cases:

• max(tc, tj,k−1) < tmin
j,k : in this case, the maximum

contribution of Tj,k to the busy period is obtained
when it is activated as soon as possible after the instant
max(tc, tj,k−1). I.e. tj,k = tmin

j,k . In the example in
section 5.1, the maximum contribution ofT3,0 to the
busy period is obtained whent3,0 = tc = 0. However,
sincetmin

3,0 = 2 under the condition thatT4,0 determines
the activation scenarioA0, t3,0 = tmin

3,0 = 2.

• max(tc, tj,k−1) > tmax
j,k : We know thattmax

j,k is greater
or equaltj,k−1. Consequently,max(tc, tj,k−1) = tc.
Therefore, the instanttj,k occurs beforetc. I.e. Tj,k

does not contribute to the busy period. In the example
in section 5.1, the maximum contribution ofT4,0 to the
busy period is obtained whent4,0 = tc = 0. However,
sincetmax

4,0 = −2 under the condition thatT3,0 deter-
mines the activation scenarioA0, t4,0 occurs beforetc.

• max(tc, tj,k−1) ∈ [tmin
j,k , tmax

j,k]: in this case, the maxi-
mum contribution ofTj,k to the busy period is obtained
whentj,k = max(tc, tj,k−1).

Now after having considered jobs with indexes lower or
equal0, we will calculate the activation instants of jobs with

indexes greater than0. In the following, we show that the
activation ofTj,1 cannot be delayed by the activation of pre-
vious jobs and thus, the maximum contribution to the busy
period of jobs with indexes greater than0 is obtained when
they are activated, as before, without experiencing any delay.

The activation ofTj,1 cannot occur before the instanttc +
Φj . I.e. tmin

j,1 ≥ tc + Φj . On the other hand, as stated above,
depending on the relative offset and jitter information,tj,k,
with nj ≤ k ≤ 0, occurs either beforetc, at tc, at tj,k−1 or
at tmin

j,k . We show thattj,k ≤ tc + Φj :

• tj,k ≤ tc: it is obvious thattj,k ≤ tc + Φj

• tj,k = tmin
j,k : using equation 1, we can state thattmin

j,k ≤
tc + Φj(Tr). Therefore, sinceΦj ≥ Φj(Tr), tmin

j,k ≤
tc + Φj .

• tj,k = tj,k−1: sincetj,k−1 also occurs either beforetc,
at tc, at tj,k−2 or at tmin

j,k−1, we can replacek − 1 by k
and repeat the same process described above.

Since no job having an index lower or equal0 can delay
the activation ofTj,1, jobs with indexes greater than0 can be
considered activated as before, without any delay. Therefore,
there is no need to exploit the potential relative offset and
jitter information for these jobs.

As explained above, to exploit relative offset and jitter for
the worst-case response time calculation we need to consider
all combinations of activation scenarios with indexes lower
or equal0. Since for each task, the number of jobs that can be
delayed to coincide withtc is bounded, the relative offset and
jitter exploitation only adds a polynomial number of cases to
check to the global offset exploitation algorithm WCDO.

7. Experiments

We have performed a large number of experiments us-
ing randomly generated systems with tree-shaped task-
dependencies. Tasks mapping, event models, core execu-
tion times and priorities were also assigned randomly. We
have compared the results obtained using our technique con-
sidering relative offset an jitter with the results obtained by
the inter event stream context blind analysis (i.e. without
considering timing-correlation between tasks), WCDO, and
WCDOPS+.

Figure 7 shows the response time average ra-
tios Rblind/Rrelative, RWCDO/Rrelative and
RWCDOPS+/Rrelative as function of the system uti-
lization. The results show that a large improvement can be
obtained due to the relative offset and jitter exploitation: up
to 66% compared to the inter event stream context blind
analysis, up to57% compared to the WCDO and up to
41% compared to WCDOPS+. It is also interesting to
note that in general, a larger improvement is obtained for
large system utilization. This is due to the fact that a large
system utilization leads to higher calculated worst-case
response times. This in turn leads to larger task global jitters
on which, the response times themselves depend. When

Figure 7. Response time average ratios as a
function of utilization

considering relative jitters, the effect of global jitters on
response times calculation can be reduced and thus, lower
response-times are calculated.

8. Conclusion
In this paper we presented a new technique to capture

timing-correlation between tasks in distributed systems with
tree-shaped task-dependencies. We have seen that consid-
ering the external system events activating tasks as unique
timing reference does not allow to capture the complete ex-
isting timing-correlation between tasks in parallel paths. Our
solution consists in considering tasks with several successors
as additional timing-references. We also developed an algo-
rithm to exploit this approach for the worst-case response
time analysis under a static priority scheduler. Through our
experiments, we showed that our technique allows to cal-
culate considerably tighter bounds compared to other tech-
niques. We consider that our approach is an important ex-
tension of the collection of analysis techniques exploiting
timing-correlation between tasks in distributed systems.

References

[1] M. Jersak, R. Henia, and R. Ernst. Context-aware performance
analysis for efficient embedded system design. InProc. of De-
sign, Automation and Test in Europe (DATE’04), Paris, France,
Mar. 2004.

[2] O.Redell. Accounting for precedence constraints in the analy-
sis fo fixed priority scheduled tasks. Technical Report 2003:4,
TRITA-MMK, 2003.

[3] O.Redell. Analysis of tree-shaped transactions in distributed
real time systems. InProc. of 16th Euromicro Conference on
Real-Time Systems, Catania, Italy, June 2004.

[4] J. C. Palencia and M. G. Harbour. Schedulablilty analysis for
tasks with static and dynamic offsets. InProc. 19th IEEE Real-
Time Systems Symposium (RTSS98), 1998.

[5] J. C. Palencia and M. G. Harbour. Exploiting precedence re-
lations in the schedulablilty analysis of distributed real-time
systems. InProc. 20th Real-Time Systems Symposium, 1999.

[6] K. W. Tindell. Adding time-offsets to schedulability analysis.
Technical Report YCS 221, Univ. of York, 1994.

[7] K. W. Tindell. An extendible approach for analysing fixed pri-
ority hard real-time systems.Journal of Real-Time Systems,
6(2):133–152, Mar 1994.

	Main Page
	DATE'05
	Front Matter
	Table of Contents
	Author Index

