
Energy-Efficient, Utility Accrual Real-Time Scheduling
Under the Unimodal Arbitrary Arrival Model ∗

Haisang Wu? Binoy Ravindran? E. Douglas Jensen†
?ECE Dept., Virginia Tech

Blacksburg, VA 24061, USA
{hswu02,binoy }@vt.edu

†The MITRE Corporation
Bedford, MA 01730, USA
jensen@mitre.org

Abstract

We present an energy-efficient real-time scheduling al-
gorithm called EUA∗, for the unimodal arbitrary arrival
model (or UAM). UAM embodies a “stronger” adversary
than most arrival models. The algorithm considers applica-
tion activities that are subject to time/utility function time
constraints, UAM, and the multi-criteria scheduling ob-
jective of probabilistically satisfying utility lower bounds,
and maximizing system-level energy efficiency. Since the
scheduling problem is intractable, EUA∗ allocates CPU
cycles, scales clock frequency, and heuristically computes
schedules using statistical estimates of cycle demands, in
polynomial-time. We establish that EUA∗ achieves optimal
timeliness during under-loads, and identify the conditions
under which timeliness assurances hold. Our simulation ex-
periments illustrate EUA∗’s superiority.

1. Introduction

Mobile and embedded devices are becoming increas-
ingly popular at the workplace and at home. As batteries
are the primary energy source of such devices, increasing
the energy-efficiency of computing and communications is
of critical importance. In many embedded systems, the CPU
consumes a substantial fraction of the total energy, making
it a prime target for energy saving in past efforts. Besides
the CPU, other components also consume energy.

The characteristics of the power/performance trade-
offs of CMOS circuits dictate that the power consump-
tion changes linearly with frequency and quadratically
with voltage, yielding potential energy savings for re-
duced speed/voltage. Dynamic Voltage Scaling (DVS) is
the technique for exploiting this tradeoff—an appropri-
ate clock rate and voltage is determined in response to
dynamic application behaviors (see [2, 8, 13] and the refer-
ences therein).

∗ This work was supported by the US Office of Naval Research under Grant
N00014-00-1-0549 and The MITRE Corporation under Grant 52917.

In this paper, we focus on dynamic, adaptive, embedded
real-time control systems that occur in many domains in-
cluding robotics, space, defense, consumer electronics, and
financial markets. Such systems are fundamentally time-
critical and energy-critical, as they must produce timely
control responses, while running on batteries. Further, they
operate in environments with dynamically uncertain prop-
erties. These uncertainties include transient and sustained
overloads on the CPU (due to context dependent execution
times) and arbitrary arrival patterns for application activi-
ties. Nevertheless, such systems desire assurances on activ-
ity timeliness behaviors, whenever possible. Consequently,
the non-deterministic operating situations must be charac-
terized with stochastic or extensional (rule-based) models.

The most distinguishing property of such systems, how-
ever, is that they are subject to time constraints that are
“soft” (besides hard) in the sense that completing an activ-
ity at any time will result in some (positive or negative) util-
ity to the system, and that utility depends on the activity’s
completion time. These soft time constraints are subject to
optimality criteria such as completing all time-constrained
activities as close as possible to theiroptimal completion
times—so as to yield maximal collective utility. The opti-
mality of the soft time constraints is generally as mission-
and safety-critical as that of the hard ones.

Jensen’s time/utility f unctions [7] (or TUFs) allow the
semantics of soft time constraints to be precisely specified.
A TUF, which generalizes the deadline constraint, specifies
the utility to the system resulting from the completion of an
activity as a function of its completion time. A TUF’s util-
ity values are derived from application-level quality of ser-
vice metrics. Figure 1 shows example time constraints from
real applications specified using TUFs. Figures 1(a)–1(c)
show time constraints of two applications in the defense
domain [4, 12]. The classical deadline is a binary-valued,
downward “step” shaped TUF; 1(d) shows an example.

When activity time constraints are expressed with TUFs,
the timeliness optimality criteria are typically based on
accrued activity utility—e.g., maximizing sum of the ac-
tivities’ attained utilities or assuring satisfaction of lower
bounds on activities’ maximal utilities. Such criteria are

1530-1591/05 $20.00 © 2005 IEEE

-
Time

6Utility

U1

U2

U3

Track
Associationbbbb

tc

(a) Track Asso.

-Time

6Utility

Uc
max S

S
S

SS
0 tf 2tf

Um
max HHHH

Maintenance

Plot Correlation

(b) Corrln. & Maint.

-
Time

6Utility
Intercept

Mid-course

Launch

(c) Missile Control

-
Time

6Utility

(d) A Step TUF

Figure 1. Example TUF Time Constraints from AWACS [4] (a) and Coastal Air Defense [12] (b-c), and a Step TUF (d).

called Utility Accrual (or UA) criteria, and sequencing
(scheduling, dispatching) algorithms that consider UA cri-
teria are called UA sequencing algorithms.

UA criteria facilitate adaptivity during overloads, when
completing activities that are more important than those
which are more urgent is often desirable. During overloads,
UA algorithms that maximize summed utility typically fa-
vor activities that are more important (since more utility can
be attained from them) than those which are more urgent.

Most past efforts on energy-efficient, real-time schedul-
ing consider activity arrival models that are either periodic,
or frame-based (where all periods are equal), or sporadic.
These include past works that consider deadline-based time-
liness optimality criteria (e.g., meeting all or some percent-
age of deadlines) [2, 8, 13, 18], and those that consider UA
criteria (e.g., maximizing summed utility) [14–17]. As far
as we know, the only exception is [15], which allows ape-
riodic arrivals. However, [15] provides no timeliness as-
surances. Thus, prior efforts are concentrated on two ex-
tremes: (1) those that provide timeliness assurances, but un-
der highly restrictive periodic, frame-based, or sporadic ar-
rivals; or (2) those that allow aperiodic arrivals, but provide
no timeliness assurances. Both these extremes are inappro-
priate for the applications/domains of interest to us.

In this paper, we bridge these extremes by consider-
ing the unimodal arbitrary arrival model (or UAM) [5].
UAM embodies a “stronger” adversary than many tradi-
tional arrival models, and subsumes traditional models as
special cases. We consider activities subject to TUF time
constraints, arriving according to UAM. To better account
for uncertainties in execution behaviors, we stochastically
describe activity execution demands. We adopt Martin’s
system-level energy consumption model [11] that accounts
for each system component’s energy consumption and ag-
gregates them to obtain the system’s energy consumption.

For such a model, our objective is to: (1) probabilisti-
cally satisfy lower bounds on individual activity’s maximal
utility; and (2) maximize system-level energy efficiency.

This problem isNP-hard. We present a polynomial-
time, heuristic algorithm for the problem calledEnergy-
efficient Utility Accrual Algorithm∗ (or EUA∗). We estab-
lish that EUA∗’s timeliness behavior subsumes the optimal
timeliness behavior of deadline scheduling as a special case.
Further, we identify the conditions under which EUA∗ pro-
vides timeliness assurances. Our simulation studies confirm

the effectiveness and superior performance of EUA∗.
Thus, the paper’s contribution is the EUA∗ algorithm.

We are not aware of any other efforts that consider the prob-
lem ofTUF/UA scheduling under UAM, solved by EUA∗.

The rest of the paper is organized as follows: Section 2
describes our models and states the scheduling objective.
Section 3 presents EUA∗, and Section 4 establishes EUA∗’s
timeliness properties. Section 5 discusses the simulation
studies. We conclude the paper in Section 6.

2. Models and Objective

2.1. System and Task Model

We consider a preemptive system which consists of a set
of independent tasks, denoted asT = {T1, T2, · · · , Tn}.
The target variable voltage processor can be operated atm
frequencies{f1, · · · , fm

∣∣f1 < · · · < fm}. Each taskTi has
a number of instances (jobs). With the UAM model, we as-
sociate a tuple〈ai, Pi〉 with a taskTi, meaning the maximal
number of its instance arrivals during any sliding time win-
dow of Pi is ai. Instances may arrive simultaneously. Note
that the periodic model is a special case of UAM model with
〈1, Pi〉, 1 being both the upper and lower bound.

We refer to thejth job (or invocation) of taskTi asJi,j .
The basic scheduling entity that we consider is the job ab-
straction. Thus, we useJ to denote a job without being task
specific, as seen by the scheduler at any scheduling event.

2.2. Timeliness Model and Statistical Requirement

A job’s time constraint is specified using a TUF. Jobs
of a task have the same TUF. We useUi (·) to denote task
Ti’s TUF, and useUi,j (·) to denote the TUF ofTi’s jth job.
Without being task specific,UJk

means the TUF of a jobJk;
completion ofJk at a timet will yield a utility UJk

(t). In
this paper, we restrict our focus tonon-increasing, unimodal
TUFs i.e., those TUFs for which utility never increases as
time advances. Figures 1(a), 1(b), and 1(d) show examples.

Each TUFUi,j , i ∈ {1, · · · , n} has an initial timeIi,j

and a termination timeXi,j . Initial and termination times
are the earliest and the latest times for which the TUF is de-
fined, respectively. We assume thatIi,j is equal to the arrival
time ofJi,j , andXi,j − Ii,j is equal to the sliding time win-
dowPi of the taskTi. If a job’s termination time is reached

and its execution has not been completed, an exception is
raised. Normally, this exception will cause the job’s abor-
tion and execution of exception handlers.

Similar to that in [17], thestatistical timeliness require-
mentof a taskTi is denoted as{νi, ρi}, which implies that
taskTi should accrue at leastνi percentage of its maximum
possible utility with a probability of at leastρi. For step
TUFs,ν can only take the value 0 or 1.

During some situations, it is possible that such statisti-
cal assurances cannot be provided; then the objective is to
maximize the total utility per unit energy consumption.

2.3. Activity Cycle Demands

Both UA scheduling and DVS depend on the prediction
of task cycle demands. Similar to [16] and [17], we esti-
mate the statistical properties (e.g., mean and variance) of
the demand rather than the worst-case demand.

Let Yi be the random variable representingTi’s cycle
demand i.e., the number of processor cycles required by
Ti. We assume that the mean and variance ofYi, denoted
as E(Yi) and V ar(Yi) respectively, are finite and deter-
mined through either online or off-line profiling. Under a
frequencyf (given in cycles per second), the expected exe-
cution time of a taskTi is given byei = E(Yi)

f .

2.4. Energy Consumption Model

We consider Martin’s system-level energy consumption
model to derive the energy consumption per cycle (detailed
model descriptions can be found in [11, 15, 17]). In this
model, when operating at a frequencyf , a component’s dy-
namic power consumption is denoted asPd. Pd of CPU is
given byS3 × f3, whereS3 is constant.

Besides the CPU,other system components also con-
sume energy.Pd of those that must operate at a fixed voltage
(e.g., main memory) is given byS1 × f , while Pd of those
that consume constant power with respect to the frequency
(e.g., display devices) can be represented as an constantS0.
In practice, the quadratic termS2×f2 is also included to ac-
count for the appearance of variations in DC-DC regulator
efficiency across the range of output power, CMOS leak-
age currents, and other second order effects [11].

Summing the power consumption of all components, we
obtain the system-level energy consumption of a task as:
Ei = ei×

(
S3 × f3 + S2 × f2 + S1 × f + S0

)
. Thus, the

expected energy consumption per cycle is given by:

E(f) = S3 × f2 + S2 × f + S1 +
S0

f
(1)

2.5. Scheduling Objective

We consider a two-fold scheduling criterion: (1) assure
that each taskTi accrues the specified percentageνi of its
maximum possible utility with at least probabilityρi; and

(2) maximize the system’s “energy efficiency.” When it is
not possible to satisfy{νi, ρi} for each task, our objective
is to maximize the system-level energy efficiency.

Intuitively, when the system is overloaded, DVS tends
to select the highest frequencyfm for the processor execu-
tion. Therefore, during overloads, with the constant energy
consumption atfm, the scheduling objective becomes util-
ity maximization under energy constraints. During under-
loads, the algorithm delivers the performance assurances.
Thus, the objective becomes the dual criterion problem
of utility maximization, that is, minimizing energy while
achieving the given utility within the given time constraint.

3. The EUA∗ Algorithm

3.1. Determining Task Critical Time and Demand

For non-increasing TUFs, to satisfy the designatedνi on
accrued utility, we should bound taskTi’s sojourn time to
less than its “critical time” (Di). With E(Yi) andV ar(Yi),
by the Chebyshev’s inequality, we can derive the mini-
mal required cyclesci to allocate to each job ofTi, so
that Pr[Yi < ci] ≥ ρi. These are addressed in our prior
work [16, 17], whereDi is calculated fromνi = Ui(Di)

Umax
i

,

andci = E(Yi) +
√

ρi×V ar(Yi)
1−ρi

.

3.2. Utility Accrual Scheduling

We define a performance metric,Utility and Energy
Ratio (UER) to integrate timeliness and energy consump-
tion. A job’s UER measures the utility that can be accrued
per unit energy consumption by executing the job. The UER
of Ti under frequencyf at timet is calculated asUi(t+ci/f)

(ci×E(f)) ,
whereE(f) is derived using Equation 1. Equation 1 indi-
cates that there is an optimal value (not necessarily the low-
est one) for clock frequency that maximizesTi’s UER.

The scheduling events of EUA∗ include the arrival and
completion of a job, and the expiration of a time constraint
such as the arrival of a TUF’s termination time. We define
the following variables and auxiliary functions for EUA∗:
• During a time windowPi, Da

i is taskTi’s earliest invoca-
tion’s absolute critical time;cr

i is its earliest job’s remain-
ing computation cycles.
• Jr = {J1, J2, · · · , Jn′} is the current unscheduled job
set;σ is the ordered schedule.Jk ∈ Jr is a job.
• Jk.D is job Jk ’s critical time; Jk.X is its termination
time;Jk.c is its remaining cycles.T (Jk) returns the corre-
sponding task of jobJk.
• headOf(σ) returns the first job inσ; sortByUER(σ)
sorts σ by each job’s UER, in a non-increasing order.
selectFreq(x) returns the lowest frequencyfi ∈
{f1 < · · · < fm} such thatx ≤ fi.
• offlineComputing() is computed att = 0. For
taskTi, it computesci andDi as described in Section 3.1,

and determines its optimal frequencyfo
Ti
∈ {f1, · · · , fm},

which maximizes the task’s UER.
• insert(T , σ, I) insertsT in the ordered listσ at the
position indicated by indexI; if there are already entries
in σ at the indexI, T is inserted after them.
• feasible(σ) returns a boolean value denoting sched-
uleσ’s feasibility. Forσ to be feasible, the predicted com-
pletion time of each job inσ, calculated at the highest fre-
quencyfm, must not exceed its termination time.

input : T = {T1, · · · , Tn},Jr = {J1, · · · , Jn′}1:
output : selected jobJexe and frequencyfexe2:
offlineComputing (T);3:
Initialization: t := tcur , σ := ∅;4:
switch triggering eventdo5:

casetask release(Ti) cr
i = ci;6:

casetaskcompletion(Ti) cr
i = 0;7:

otherwise Updatecr
i ;8:

for ∀Jk ∈ Jr do9:
if feasible(Jk) =false then abort(Jk) ;10:

else Jk.UER:=UJk
(t +

Jk.c

fm
)
.

(E(fm)× Jk.c);11:

σtmp :=sortByUER(Jr) ;12:
for ∀Jk ∈ σtmp from head to taildo13:

if Jk.UER > 0 then14:
copyσ into σtent: σtent :=σ;15:
insert(Jk, σtent, Jk.D) ;16:
if feasible(σtent) then σ := σtent;17:

else break;18:

Jexe:=headOf(σ) ;19:
fexe:=decideFreq(T, Jexe, t) ;20:
return Jexe andfexe;21:

Algorithm 1 : EUA∗: High Level Description

A high level description of EUA∗ is shown in Algo-
rithm 1. When EUA∗ is invoked at timetcur, the algorithm
first updates each task’s remaining cycles (theswitch
starting from line 5). The algorithm then checks the feasi-
bility of the jobs. If a job is infeasible, then it can be safely
aborted (line 10). Otherwise, its UER is calculated (line 11).

The jobs are then sorted by their UERs (line 12). In each
step of thefor loop from line 13 to 18, the job with the
largest UER is inserted intoσ, if it can produce a positive
UER and keep the schedule after insertion feasible. Thus,σ
is a feasible schedule sorted by the jobs’ critical times, in an
non-decreasing order.

Finally, EUA∗ analyzes the demands of the task set and
applies DVS to decide the frequencyfexe with algorithm
decideFreq() . The selected jobJexe at the head ofσ is
executed with the frequencyfexe (line 19–21).

3.3. DVS with the UAM model

We consider the “processor demand approach” [3] to an-
alyze the feasibility of tasks with stochastic parameters.

Theorem 1 For a taskTi with a UAM pattern〈ai, Pi〉 and
critical time Di, all its jobs can meet theirDi, if Ti is exe-
cuted at a frequency no lower thanCi

Di
, whereCi is the total

cycles ofai jobs in the time windowPi, i,e.,Ci = aici.

Proof The necessary and sufficient condition for sat-
isfying job critical times isfL ≥ Ci(0, L),∀L > 0,
where f is the processor frequency allocated toTi, and

Ci(0, L) is the cycle demand on the time interval[0, L],
i.e., Ci(0, L) =

(⌊
(L−Di)

Pi

⌋
+ 1

)
Ci. Thus, we needf ≥

1
L

(⌊
L−Di

Pi

⌋
+ 1

)
Ci ≥ Ci

Pi

(
1 + Pi−Di

L

)
,∀L > 0. Since

Pi ≥ Di, f monotonically decreases withL. Furthermore,
notice that ifL ≤ Di, Ci(0, L) = 0 because no job has
a critical time earlier thanDi. Thus, it is sufficient to con-
sider the case ofL = Di, wheref ≥ Ci

/
Di. ¤

input : T, Jexe, tcur ; output: fexe ;1:
Util := C1/D1 + · · ·+ Cn/Dn;2:
s := 0;3:
for i = 1 to n, Ti ∈ {T1, · · · , Tn

��Da
1 ≥ · · · ≥ Da

n} do4:
/* reverse EDF order of tasks */
Util := Util− Ci/Di;5:
x :=max(0, Cr

i − (fm − Util)× (Da
i −Da

n)) ;6:

Util :=

(
1, if Da

i −Da
n = 0

Util +
Cr

i −x

Da
i
−Da

n
, otherwise ;

7:
s := s + x;8:

f :=min(fm, s/(Da
n − tcur)) ;9:

fexe:=selectFreq (f);10:
fexe:=max(fexe, fo

T (Jexe)) ;11:

Algorithm 2 : decideFreq()

Algorithm 2 shows decideFreq() , the stochas-
tic DVS technique of EUA∗. Based on Theorem 1, we
useCi for utilization analysis. For the current time win-
dow Pi with a′i instances, EUA∗ keeps track of the re-
maining computation cyclesCr

i , which is calculated as
Cr

i = min ((a′i − 1)ci + cr
i , (ai − 1)ci + cr

i). Note that
the actual number of jobsa′i can be larger than the maxi-
mum job arrivalsai, because there may be unfinished jobs
from the previous time window. But we only need to con-
sider at mostai instances of them. In line 2–9, EUA∗ con-
siders the interval until the next task critical time and
tries to “push” as much work as possible beyond the crit-
ical time. Similar to LaEDF [13], the algorithm consid-
ers the tasks in the latest-critical-time-first order in line 4. If
taskTi has more than one jobs inPi, Da

i is set to be its ear-
liest invocation’s absolute critical time.

x counts the minimum number of cycles that a task must
execute before the closest critical time,Da

n, in order for it to
complete by its own critical time (line 6), assuming worst-
case aggregate CPU demandUtil by tasks with earlier crit-
ical times. In line 7,Util is adjusted to reflect the actual
demand of the task for the time afterDa

n, with the consid-
eration of the case that jobs of different tasks have the same
termination times, which can occur, especially during over-
loads.s is simply the sum of thex values calculated for
all of the tasks, and therefore reflects the minimum num-
ber of cycles that must be executed byDa

n in order for all
tasks to meet their critical times (line 8).

Thus,decideFreq() capitalizes on early task com-
pletion by deferring work for future tasks in favor of scal-
ing the current task. Also, during overloads, the required
frequency may be higher thanfm, andselectFreq()
would fail to return a value. In line 9, we solve this by set-
ting the upper limit of the required frequency to be the high-
est frequencyfm. Finally, fexe is compared withfo

T (Jexe).

0

0.4

0.8

1.2

1.6

0.2
 0.6
 1
 1.4
 1.8
Load

N
o
rm

a
li

ze
d
 U

ti
li

ty

EUA*

LaEDF-NA

LaEDF

StaticEDF

BaseEDF

(a) Norm. Utility,E1

0

0.4

0.8

1.2

1.6

0.2
 0.6
 1
 1.4
 1.8
Load

N
o
rm

a
li

ze
d
 E

n
er

g
y

EUA*

LaEDF-NA

LaEDF

StaticEDF

BaseEDF

(b) Norm. Energy,E1

0

0.4

0.8

1.2

1.6

0.2
 0.6
 1
 1.4
 1.8
Load

N
o

rm
a

li
ze

d
 U

ti
li

ty

EUA*

LaEDF-NA

LaEDF

StaticEDF

BaseEDF

(c) Norm. Utility, E3

0

0.4

0.8

1.2

1.6

0.2
 0.6
 1
 1.4
 1.8
Load

N
o
rm

a
li

ze
d
 E

n
er

g
y

EUA*

LaEDF-NA

LaEDF

StaticEDF

BaseEDF

(d) Norm. Energy,E3

Figure 2. Normalized Energy and Utility vs. Load under E1 and E3

The higher frequency is selected—to provide performance
assurances, we cannot decreasefexe, but may increase it to
maximize the system-level energy efficiency.

4. EUA∗’s Timeliness Properties

The periodic model is a special case of UAM. Thus, un-
der the conditions: (1) a set of periodic tasks with〈1, Pi〉
subject to downward step TUFs; and (2) absence of CPU
overloads (i.e., the conditions in [9]), we establish:

Theorem 2 Under conditions (1) and (2), a schedule pro-
duced by EDF [6] is also produced by EUA∗, yielding equal
total utilities. This is a critical time ordered schedule.

Corollary 3 Under conditions (1) and (2), EUA∗ always
meets all task critical times.

Corollary 4 Under conditions (1) and (2), EUA∗ mini-
mizes the maximum lateness.

Theorem 5 Under conditions (1) and (2), EUA∗ meets the
statistical performance requirements.

The proofs can be found in [17]. In Theorem 6, we also
derive the above theorems’ counterparts for non-step and
non-increasing TUFs, with which critical times are less than
termination times. The proof for it can be found in [3].

Theorem 6 For a set of independent periodic tasks, where
each task has a single computational thread with a non-
increasing TUF, the task set is schedulable and can meet all
statistical performance requirements under the condition of
Baruah, Rosier, and Howell [3].

5. Experimental Results

We simulate EUA∗ on the AMD k6 processor with
PowerNow! mechanism [1], which operates at seven fre-
quencies,{360, 550, 640, 730, 820, 910, 1000 MHz}. For
comparison, we consider StaticEDF, LaEDF [13], and
LaEDF-NA. While StaticEDF and LaEDF abort infeasi-
ble tasks during overloads, LaEDF-NA is LaEDF with-
out abortion. We normalize the results to BaseEDF, which
is EDF that always uses the highest frequency.

We select task sets with10 to 50 tasks in three applica-
tions, whose parameters are summarized in Table 1. Within

each range, the time windowP is uniformly distributed.
The synthesized task sets simulate the varied mix of short
and long time windows. For each task cycle demandYi, we
keepV ar(Yi) ≈ E(Yi), and generate normally-distributed
demands. Finally, according to the calculation ofci in Sec-
tion 3.1,E(Yi)s are scaled by a constantk, andV ar(Yi)s
are scaled byk2; k is chosen such that the system load
(Load = 1

fm

∑n
i=1

Ci

Di
) reaches a desired value. TheUmax

of the TUFs inA1, A2, andA3 are uniformly generated in
the range[50, 70], [300, 400], and[1, 10], respectively.

Table 1: Task Settings

App.] tasks
UAM
〈a, P 〉

A1 4 〈5, 22–28〉
A2 18 〈8, 50–70〉
A3 8 〈3, 2.4–9.6〉

Table 2: Energy Settings
Energy
Model

S3 S2 S1 S0

E1 1.0 0 0 0
E2 0.75 0 0 0.25f3

m

E3 0.5 0 0 0.5f3
m

The energy consumption per cycle at a particular fre-
quency is calculated using Equation 1. In practice, theS3,
S2, S1, and S0 terms depend on the power management
state of the system and its subsystems [11,15]. We test three
energy settings similar to those in [17], as shown in Table 2.
Note thatE1 is the same as the conventional energy model,
which only considers the CPU’s energy consumption.

5.1. Performance with Step TUFs

We first focus on step TUFs, for which EUA∗ can be
compared with the other strategies. We set{νi = 1, ρi =
0.96}, and apply different schemes on periodic task sets
under different energy settings. The other strategies, e.g.,
LaEDF, are based on the worst case workload; here we use
cycles allocated by EUA∗ as their inputs.

Figure 2 shows the normalized utility and energy under
energy settingE1 andE3, asLoad varies from 0.2 to 1.8.
From Figure 2(b) and 2(d), we observe that EUA∗ saves
more energy than others during under-loads. LaEDF-NA’s
energy consumption increases linearly withLoad, because
it does not abort jobs and executes all jobs that arrive. Dur-
ing overloads, the results of all schemes except LaEDF-NA
converge to1, because they select the highest frequency.

As Figure 2(a) and 2(c) show, during under-loaded sit-
uations, all schemes accrue the same (optimal) utility be-
cause of EDF’s optimality in such cases [6]. But during

overloads, LaEDF-NA suffers domino effects [10] and ac-
crues almost no utility. On the other hand, EUA∗ schedules
jobs with higher UERs, and thus accrues remarkably higher
utility than others. Results underE2 are similar.

Thus, the performance gap demonstrates that EUA∗ ac-
crues higher utility during overloads, and handles the dual
criterion problem during under-loads—saving energy while
achieving the given utility within the given time constraint.

5.2. Performance with Non-Increasing TUFs

We now consider non-step and non-increasing TUFs
with EUA∗, and study the impact of UAM model on the en-
ergy consumption. We allocate a linear TUF to each task,
and its slope is calculated as−Umax

P , whereP is the time
window. We set{νi = 0.3, ρi = 0.9} to each task, and use
the energy modelE1 in the experiments of this section.

We change the parameterai in the UAM model〈ai, Pi〉
for each task from1 to 3, and run EUA∗ on the task set. Fig-
ure 3 shows the energy consumption of EUA∗ under differ-
ent system loads. The energy consumption is normalized to
the results of EUA∗without DVS, which always selectsfm.

0

0.2

0.4

0.6

0.8

1

1.2

0.2
 0.5
 0.8
 1.2
 1.5

Load

N
o

rm
a

li
ze

d
 E

n
er

g
y

C
o

n
su

m
p

ti
o

n

E, <1,P>

E, <2,P>

E, <3,P>

‘

Figure 3. Energy Consumption of Different UAM Settings

We observe that, during overloads, the energy consump-
tion does not change withai, because EUA∗ tends to select
the highest frequency. However, during under-loads, asai

increases, EUA∗’s energy consumption increases, even un-
der the sameLoad. For example, whenLoad = 0.5, the
normalized energy consumption of〈1, P 〉 is 0.26; that of
〈2, P 〉 is 0.41, and with〈3, P 〉, this number increases to
0.61. This is because DVS is dependent on the prediction
of future workload and slack time estimation. Whenai in-
creases, more complicated job arrivals negatively affect the
accurate estimation of slack times.

6. Conclusions, Future Work

We present an energy-efficient, UA scheduling algo-
rithm called EUA∗, which allows activities to arrive ac-
cording to the UAM model. UAM embodies a “stronger”
adversary than most arrival models. The algorithm con-
siders TUF time constraints and the scheduling objec-
tive of probabilistically satisfying utility lower bounds,

and minimizing system-level energy consumption (dur-
ing under-loads). During overloads, EUA∗ considers the
dual criterion problem, utility maximization under en-
ergy constraints. EUA∗ allocates cycles, scales CPU
frequency, and computes schedules using statistical esti-
mates of cycle demands. We establish the conditions under
which EUA∗’s timeliness assurances hold. Our simula-
tion experiments confirm EUA∗’s timeliness behavior and
improvement on system-level energy efficiency.

Future work includes scheduling under finite energy bud-
gets, and considering activity models where activities ac-
crue utility as a function of their progress.

References

[1] Advanced Micro Devices Corporation. Mobile AMD-K6-2+ Proces-
sor Data Sheet. Publication #23446, June 2000.

[2] H. Aydin, R. Melhem, D. Mosse, and P. Mejia-Alvarez. Dynamic and
Aggressive Scheduling Techniques for Power-Aware Real-Time Sys-
tems. InIEEE RTSS, pages 95 –105, December 2001.

[3] S. K. Baruah, L. E. Rosier, and R. R. Howell. Algorithms and Com-
plexity Concerning the Preemptive Scheduling of Periodic, Real-
Time Tasks on One Processor.Real-Time Systems, 2(4):301–324,
Nov. 1990.

[4] R. Clark, E. D. Jensen, and et al. An Adaptive, Distributed Airborne
Tracking System. InIEEE WPDRTS, volume 1586 ofLNCS, pages
353–362. Springer-Verlag, April 1999.

[5] J.-F. Hermant and G. L. Lann. A Protocol and Correctness Proofs
for Real-Time High-Performance Broadcast Networks. InThe 18th
ICDCS, pages 360–369, 1998.

[6] W. Horn. Some Simple Scheduling Algorithms.Naval Research Lo-
gistics Quaterly, 21:177–185, 1974.

[7] E. D. Jensen, C. D. Locke, and H. Tokuda. A Time-Driven Schedul-
ing Model for Real-Time Systems. InIEEE RTSS, pages 112–122,
Dec. 1985.

[8] W. Kim, J. Kim, and S. L. Min. Dynamic Voltage Scaling Algorithm
for Fixed-Priority Real-Time Systems Using Work-Demand Analy-
sis. InACM/IEEE ISLPED, August 2003.

[9] C. L. Liu and J. W. Layland. Scheduling Algorithms for Multipro-
gramming in a Hard Real-Time Environment.JACM, 20(1):46–61,
1973.

[10] C. D. Locke.Best-Effort Decision Making for Real-Time Scheduling.
PhD thesis, Carnegie Mellon University, 1986. CMU-CS-86-134.

[11] T. Martin. Balancing Batteries, Power and Performance: System
Issues in CPU Speed-Setting for Mobile Computing. PhD thesis,
Carnegie Mellon University, August 1999.

[12] D. P. Maynard, S. E. Shipman, et al. An Example Real-Time Com-
mand, Control, and Battle Management Application for Alpha. Tech-
nical Report Archons Project TR-88121, CMU CS Dept., Dec. 1988.

[13] P. Pillai and K. G. Shin. Real-Time Dynamic Voltage Scaling for
Low-Power Embedded Operating Systems. InACM SOSP, pages
89–102, 2001.

[14] C. Rusu, R. Melhem, and D. Mosse. Multi-Version Scheduling in
Rechargeable Energy-aware Real-time Systems. InEuromicro Con-
ference on Real-Time Systems, pages 95–104, July 2003.

[15] J. Wang, B. Ravindran, and T. Martin. A Power Aware Best-Effort
Real-Time Task Scheduling Algorithm. InIEEE WSTFES/ISORC
Workshop, pages 21–28, May 2003.

[16] H. Wu, B. Ravindran, E. D. Jensen, and P. Li. CPU Scheduling for
Statistically-Assured Real-Time Performance and Improved Energy
Efficiency. InIEEE/ACM CODES+ISSS, pages 110–115, Sept. 2004.

[17] H. Wu, B. Ravindran, E. D. Jensen, and P. Li. Energy-Efficient, Util-
ity Accrual Scheduling under Resource Constraints for Mobile Em-
bedded Systems. InACM EMSOFT’04, pages 64–73, Sept. 2004.

[18] W. Yuan and K. Nahrstedt. Energy-Efficient Soft Real-Time CPU
Scheduling for Mobile Multimedia Systems. InACM SOSP, pages
149–163, 2003.

	Main Page
	DATE'05
	Front Matter
	Table of Contents
	Author Index

