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Abstract

In the recent decade, voltage scaling has become an at-
tractive feature for many system component designs. In this
paper, we consider energy-efficient real-time task scheduling
over a chip multiprocessor architecture. The objective is to
schedule a set of frame-based tasks with the minimum energy
consumption, where all tasks are ready at time 0 and share a
common deadline. We show that such a minimization prob-
lem is NP-hard and then propose a 2.371-approximation al-
gorithm. The strength of the proposed algorithm was demon-
strated by a series of simulations, for which near optimal re-
sults were obtained.

1 Introduction

With the increasing popularity and prevailing supports on
voltage scaling for electronic circuits, energy efficiency has
become a highly important design issue in hardware and soft-
ware implementations [6, 10, 13, 17]. The design of elec-
tronic circuitry is usually done such that a higher supply volt-
age would result in a higher execution speed (or a higher fre-
quency). An example power consumption function [3, 18],
as follows, shows the power consumption of a processor as a
function of the processor speed:

P (s) = CefV
2
dds (1)

where s = kh((Vdd − Vt)2)/Vdd, and P, s, Cef , Vt, Vdd, and
kh denote the power consumption, the processor speed, the
effective switch capacitance, the threshold voltage, the sup-
ply voltage, and a hardware-design-specific constant, respec-
tively (Vdd ≥ Vt ≥ 0, kh > 0, and Cef > 0).

Modern superscalar processors achieve excellent perfor-
mance through pipelined instruction executions and concur-
rent services of independent instruction streams. Further
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performance improvement is often done by increasing the
processor frequency but at the cost of energy consumption.
When energy consumption and system performance must be
considered at the same time, the multiprocessor architecture
seems being a reasonable choice, especially for multipro-
gramming environments (e.g., [16]). The chip-multiprocessor
architecture is proposed as an attempt to overcome the chip-
space constraint and the processor communication delay
problem for the multiprocessor architecture. With a slight
increasing on the die size, multiple processors, i.e., cores,
are mounted on a single die to retain many advantages of the
multiprocessor architecture but with only comparatively low
wire delay. While many excellent research results have been
proposed for uniprocessor energy-efficient scheduling, e.g.,
[2, 5, 12, 14, 19, 20], little work has been done for multi-
processor systems, e.g., [4, 8, 21], even though the multipro-
cessor architecture has become increasingly popular in vari-
ous platforms. The strong demand for multiprocessor energy-
efficient scheduling is not only from server systems but also
from the embedded systems, such as System-on-Chip sys-
tems. In particular, power saving on the chip multiprocessor
architecture received much attention recently, especially due
to its applications to embedded systems. For example, the
adaptive chip-multiprocessor (ACMP) architecture proposed
in [16] allows each core to switch its operation mode among
RUN, STANDBY, and DORMANT in a dynamic manner to
reduce the energy consumption.

Real-time task scheduling over a chip multiprocessor with
the capability of dynamic voltage scaling (abbreviated as
DVS-CMP) is exploited in this paper. The DVS-CMP ar-
chitecture explored in this paper has M homogeneous cores,
where each core could be dormant independently, and all non-
dormant cores must operate at the same voltage supply. The
objective of this research is to schedule a set of frame-based
tasks with the minimum energy consumption on a DVS-CMP
processor, where all tasks are ready at time 0 and share a com-
mon deadline. We show that such a scheduling problem is
NP-hard and propose a 2.371-approximation algorithm. The
strength of the proposed algorithm is demonstrated by a series
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of simulations, for which we have near optimal results.

The rest of this paper is organized as follows: Section 2
presents related work on energy-efficient scheduling. In Sec-
tion 3, we formally define the problem under considera-
tions. An approximation algorithm was proposed for energy-
efficient scheduling in Section 4. Simulation results are
shown in Section 5 to evaluate the capability of the proposed
algorithm. Section 6 is the conclusion.

2 Related Work

Energy-efficient scheduling has been an active research
topic in the past decade. Although many excellent results
have been proposed for uniprocessor real-time task schedul-
ing, e.g., [2, 5, 12, 14, 19, 20], little work is done for mul-
tiprocessor systems so far. However, with the strong rais-
ing of the market for various multiprocessor architectures
and their variations, multiprocessor energy-efficient schedul-
ing has started receiving much attention in recent years, e.g.,
[1, 4, 8, 9, 21, 15, 22]. In particular, Chen, et al. [4] pro-
posed an approximation algorithm for multiprocessor energy-
efficient scheduling over a set of independent frame-based
tasks, where all tasks share the same deadline. Gruian pro-
posed a simulated annealing (SA) approach and a list-based
heuristic algorithm with a dynamic priority assignment pol-
icy for the considerations of precedence constraints [8, 9].
Mishra, et al. [15] explored scheduling issues over the com-
munication delay for tasks. Zhu, et al. [22] explored on-line
scheduling for a set of independent/dependent frame-based
tasks. Given an off-line schedule with the worst-case task ex-
ecution times, on-line strategies were proposed to reclaim the
slacks resulted from the early completion times of tasks.

Although some research work has been proposed for mul-
tiprocessor energy-efficient scheduling, many previous re-
sults considered multiprocessor scheduling in which each
processor can operate independently at its own processor
speed. In this research, we are interested in a DVS-CMP ar-
chitecture, in which there are M given homogeneous cores,
where each core could be dormant independently, and all non-
dormant cores must operate at the same voltage supply. Our
objective is to schedule a set of frame-based tasks with the
minimum energy consumption on the given DVS-CMP pro-
cessor, where all tasks are ready at time 0 and share a com-
mon deadline. The work done by Anderson and Baruah [1]
is related to our research in this paper. They proposed al-
gorithms for the synthesizing of a multiprocessor hard-real-
time system with independent periodic tasks and exploited
the trade-offs between the number of processors in the sys-
tem and the energy consumption. Different from their work,
we aim at scheduling for the energy consumption minimiza-
tion on a DVS-CMP processor with a fixed number of cores.

3 Problem Definition

In this paper, we exploit energy-efficient scheduling on a
chip multiprocessor equipped with M homogeneous cores.
The power consumption function in [3, 18], i.e., Formula 1,
is adopted in this paper, where Vt = 0, or Vdd >> Vt. The
power consumption function can be rephrased as P (s) =
αs3, where α is a constant. The available processor speeds
for the DVS-CMP under considerations are assumed being
adjustable in a continuous manner, and no upper bound on
the processor speed is given (that is as the same as that in
[11, 19]). Furthermore, let the overheads on the switching
of the supply voltage be negligible. Suppose that any of the
cores could be turned into a sleep mode (i.e., s = 0) at any
time, but all of non-sleeping cores must operate at the same
processor speed. Let the energy consumed for a core at the
processor speed s for t time units be P (s)t, and the execution
of an amount c (in cycles on a core) of computation at the
processor speed s take c/s time units. The energy-efficient
scheduling problem to be explored in this paper could be de-
fined as follows:

Definition 1 Energy Consumption Minimization for DVS-
CMP Scheduling (ECMS):

Consider a set T of independent tasks on a DVS-CMP,
where all tasks in T are ready at time 0 and share a com-
mon deadline D. Let each task τi ∈ T be associated with an
amount ci (in cycles on a core) of computation requirements.
The objective of this problem is to minimize the energy con-
sumption in the scheduling of tasks in T without violating the
common deadline D, where task migration between any two
cores is not permitted.

A schedule of an input instance for the ECMS problem is
a mapping of the executions of the tasks in the set to cores on
the DVS-CMP with speed assignments and their correspond-
ing time intervals. A schedule is feasible if no task misses
the common deadline D, and the DVS-CMP constraints are
not violated. Let Φ(Ψ) denote the energy consumption of a
schedule Ψ. A schedule is optimal if it is feasible and its en-
ergy consumption is the minimum energy consumption of all
feasible schedules.

4 The Proposed Algorithm

4.1 Energy Consumption Minimization with Tasks
Being Partitioned

In this subsection, we shall propose a scheduling algorithm
in energy consumption minimization when tasks are already
partitioned. A task assignment is defined as a partition of
T into M disjoint subsets X ≡def {X1, X2, . . . , XM}. A
schedule that is based on X must have tasks in Xi ∈ X
running on the i-th core. An optimal X-based schedule is a
schedule that has the minimum energy consumption among



X-based schedules. The load Xi of each Xi ∈ X is de-
fined as the total amount of the computation requirements
of the tasks in Xi, and the load distribution X of X is de-
noted as {X1,X2, . . . ,XM}. Without losing the generality,
letXi ∈ X be sorted in a non-decreasing order of their loads.
For the simplicity of discussions, let XM+1 =∞ and X0 = 0.
A schedule Ψ satisfies the deep sleeping property if a core µ
is in the sleep mode at any time t′ for t < t′ < D when µ is
found in the sleep mode at some time 0 ≤ t < D.

Lemma 1 For any task assignment X , there exists an opti-
mal X-based schedule that satisfies the deep sleeping prop-
erty.

Proof. Given a feasible X-based schedule ψ that does
not satisfy the deep sleeping property, let the time interval
(0, D] of ψ be divided into disjoint time fragments such that
the processor speeds of non-sleeping cores are different be-
tween any two different consecutive time fragments. (Note
that the processor speeds of all non-sleeping cores are the
same in each fragment by the definitions of DVS-CMP dis-
cussed in this paper). Let time fragments that have the same
processor speed be merged together such that (0, D] have
k fragments, and each ti of the fragments has a processor
speed si. Without losing of generality, we let 0 < s1 <
s2 < · · · < sk. Let yi,j denote the number of core cycles
needed for the j-th core of the i-th fragment, and |t i| de-
note the total duration of the i-th fragment (note that each
fragment might consist of non-consecutive time intervals). ψ̂
is a schedule derived from ψ as follows: The j-th core exe-
cutes tasks at the speed si in (

∑i−1
h=1 |th|,

∑i−1
h=1 |th|+yi,j/si]

for i = 1, 2, . . . , k and is turned into the sleep mode in
(
∑i−1

h=1 |th| + yi,j/si,
∑i

h=1 |th|] for i = 1, 2, . . . , k. Sched-
ules ψ and ψ̂ have the same energy consumption.

We shall turn the resulted schedule ψ̂ into another sched-
ule ψ′ that satisfies the deep sleeping property: Let t̂ be the
earliest time moment that some core µj goes into the sleep
mode in ψ̂. Let n be the index which satisfies

∑n−1
h=1 |th| ≤

t̂ <
∑n

h=1 |th|. Suppose that µj is non-sleeping at some time
moment t′, where t̂ < t′ < D. Let Y be the total number
of cycles executed after t′ on the core µj (for all fragments).
These Y cycles on µj are then executed in the fragments start-
ing from tn at their corresponding speeds (tn+1, etc) from
the time moment t̂ until all of the Y cycles are done. The
amount of consumed energy is less in the transformation, due
to the convexity of the power consumption function. By re-
peating the same process for every core, we can always trans-
form a feasible X-based schedule into one that satisfies the
deep sleeping property and consumed no more energy than
the original one does.

Based on the deep sleeping property, we can derive an op-
timal schedule based on a given task assignmentX , as shown
in Algorithm 1. Steps 4-7 follow the definition of the power
consumption function. The time complexity of Algorithm 1
is O(|T |+M). The optimality is shown as follows.

Algorithm 1 : MES

Input: (X);
Output: A feasible X-based schedule Ψ with the minimum energy

consumption;
1: Xi ← 0 for i = 0 to M ;
2: for i = 1 to M do
3: Xi ← Xi + cj for ∀τj ∈ Xi;
4: L←�M

i=1(Xi − Xi−1)
3
√

M − i + 1 and t0 ← 0;
5: for i = 1 to M do
6: si ← L

3√M−i+1
and ti ← ti−1 + D

(Xi−Xi−1) 3√M−i+1

L
;

7: let Ψ turn the i-th core into the sleep mode at ti and set the
speed as si in (ti−1, ti] for the non-sleeping cores;

8: return Ψ by executing tasks assigned to each core in an arbitrary
order;

Lemma 2 For any given task assignment X , the X-based
schedule derived by Algorithm 1 is optimal.

Proof. Let the energy consumption for the schedule de-
rived by Algorithm 1 be E ∗, where E∗ = α

D2 (
∑M

i=1(Xi −
Xi−1) 3

√
M − i+ 1)3. We shall show that any X-based

schedule Ψ (that satisfies the deep sleeping property) con-
sumes no less energy than E∗. Let z0 be the index such that
Xj is equal to 0 for all z0 ≥ j ≥ 0. zi is recursively de-
fined as the index such that Xj is equal to Xzi−1+1 for all
zi ≥ j > zi−1 and i ≥ 1. Besides, let k the index such that
zk = M . yi is defined to be Xzi − Xzi−1 for all i ≥ 1.

Let βi be the time instant when the (zi−1 + 1)-th core is
turned into sleep (β0 = 0) for Ψ. Due to the deep sleeping
property, there are (M − zi−1) cores that are non-sleeping in
(βi−1, βi], and zi−1 cores are sleeping in (βi−1, βi]. Note that
Xi’s ∈ X are sorted in a non-decreasing order of their loads.
γi is defined as βi − βi−1. Because of the convexity of the
power consumption function, executing y i cycles at the same
speed yi

γi
for γi time units is the best choice for energy con-

sumption. Therefore, Φ(Ψ) ≥ α
∑k

i=1(M − zi−1)( yi

γi
)3γi.

Furthermore, there must exist at least one core that is not
in the sleeping mode before D unless there is no load for
any core (because the speed lower bound of each core is 0).
Let Φ̂(X) be the energy consumption of an optimal X-based
schedule. We have

Φ̂(X) ≥ min�k
i=1 γi=D

α

k∑

i=1

(M − zi−1)(
yi

γi
)3γi (2)

By adopting the Lagrange multiplier method, the right-hand
side of Equations (2) is minimized when

γi = D ·
3
√
M − zi−1yi∑k

j=1
3
√
M − zj−1yj

.



We have1

Φ(Ψ) ≥ Φ̂(X) ≥ α

D2
(

k�

i=1

yi
3
�

M − zi−1)
3

=
α

D2
(

M�

i=1

(Xi − Xi−1) 3�M − i + 1)3 = E∗ ≥ Φ̂(X). (3)

Since E∗ = Φ̂(X), we reach the conclusion.
Let X be any given load distribution of T . A schedule is based
on X if the number of cycles executed on the i-th core is equal
to Xi. Let the minimum energy consumption among sched-
ules based on X be Φ̂(X). We have the following corollary:

Corollary 1 Φ̂(X) = α
D2 (
�M

i=1(Xi − Xi−1)
3
√

M − i + 1)3.

4.2 A 2.371-Approximation Algorithm

We shall first show the NP-hardness of the ECMS problem
and then propose a 2.371-approximation algorithm.

Corollary 2 The ECMS problem is NP-hard.

Proof. Based on Equation (3) in Lemma 2, Φ(Ψ) is mini-

mum if and only if Xj =
�

τi∈T ci

M for j = 1, 2, . . . ,M . This
problem could be reduced from the multiprocessor schedul-
ing problem [SS8] in [7], that is NP-complete.

The proposed 2.371-approximation algorithm (Algorithm
LTF), as shown in Algorithm 2, adopts the Largest-Task-First
strategy to partition T into M disjoint sets. Tasks are consid-
ered in a non-increasing order of their computation require-
ments. For the simplicity of discussions, let T be sorted in
a non-increasing order of the computation requirements of
tasks (where ties could be broken arbitrarily).

Algorithm 2 : LTF

Input: (T, D, M);
Output: A feasible schedule ΨLTF with minimal energy consump-

tion;
1: sort all tasks in a non-increasing order of the computation re-

quirements of tasks;
2: Xi ← φ and Xi ← 0 for i = 1 to M ;
3: for i = 1 to |T | do
4: find the smallest Xm; (break ties arbitrarily)
5: Xm ← Xm + {τi} and Xm ← Xm + ci;
6: reorder Xi by a non-decreasing order of their loads and let

XLTF ← {X1, X2, . . . , XM};
7: return the resulted schedule ΨLTF by applying MES(XLTF );

Let T,D, andM denote the task set under discussions, its
common deadline, and the number of cores, respectively. Al-
gorithm LTF always assigns a task to the core with the small-
est load, where tasks are picked up in a non-increasing order
of their computation requirements. The seeking of the core
with the smallest load could be done by the manipulation of

1The detail proof is omitted due to the space limitation.

a heap data structure. The time complexity of Algorithm LTF

is O(|T |(log |T |+ logM) +M), which is dominated by the
cost for task sorting and heap manipulation.

Given a task set T (with D as the common deadline) and
the number M of cores, ΨLTF , XLTF , and X

LTF denote
the schedule, the task assignment, and the load distribution
derived by Algorithm LTF, respectively. For the simplicity
of discussions, let us renumber cores such that elements in
XLTF be sorted in a non-decreasing order of their loads. That
is, X

LTF
i ≤ X

LTF
i+1 for 1 ≤ i < M , whereXLTF

i denotes the
i-th element in XLTF , and X

LTF
i is the load of XLTF

i . For
the abbreviation, X

LTF
i is also referred to as pi.

Lemma 3 Given two load distributions X and X
′ for the

same task set, Φ̂(X) < Φ̂(X′) if there exist two indices i
and j (j > i) such that Xk = X

′
k for k �= i, j, and

0 < Xi − X
′
i < min{Xi − Xi−1,Xj+1 − Xj}.

Proof. Based on Corollary 1, Φ̂(X) =
α

D2 (
�M

k=1(Xk − Xk−1)
3
√

M − k + 1)3 and Φ̂(X′) =
α

D2 (
�M

k=1(X
′
k − X

′
k−1)

3
√

M − k + 1)3, respectively.

Φ̂(X) < Φ̂(X′) because

M�

k=1

(Xk − Xk−1) 3
�

M − k + 1 −
M�

k=1

(X′
k − X

′
k−1) 3
�

M − k + 1

=
�

k=i,j

((Xk − X
′
k) 3
�

M − k + 1 − (Xk − X
′
k) 3
�

M − k)

= (Xi − X
′
i)[(

3
�

M − i + 1 − 3
�

M − i) − ( 3
�

M − j + 1 − 3
�

M − j)]

< 0.

When p1 = 0, Algorithm LTF always generates an optimal
schedule because no core is associated with more than one
task. For the rest of this section, suppose that p1 �= 0. We first
derive an upper bound on Φ(ΨLTF ) for any schedule ΨLTF

derived by Algorithm LTF and then a lower bound on the opti-
mal energy consumption for T (regardless of which algorithm
is adopted). Let m̂k = |{i | pi ≤ k · p1}|, and Pk =

∑m̂k

i=1 pi

for some real k ≥ 1. X
LTF (k) = {p̂1, p̂2, . . . , p̂M} is revised

based on X
LTF by load redistribution as follows:

1. p̂i ← pi if i > m̂k;

2. p̂i ← p1 if 
k·m̂kp1−Pk

p1(k−1) � ≥ i ≥ 1;

3. p̂i ← k · p1 if m̂k ≥ i ≥ �k·m̂kp1−Pk

p1(k−1) 
+ 1;

4. p̂i ← Pk − p1(�k·m̂kp1−Pk

p1(k−1) 
 − 1) − k · p1(m̂k −
�k·m̂kp1−Pk

p1(k−1) 
) if i = �k·m̂kp1−Pk

p1(k−1) 
.

Lemma 4 The minimum energy consumption to schedule
tasks based on X

LTF (k) is no less than that based on X
LTF

for any real k ≥ 1.

Proof. Initially, let X = X
LTF . We could repeat the fol-

lowing revision procedure of X until i ≥ j (where i and j are
the smallest and the largest indices which satisfy Xi > p1 and



Xj < kp1, respectively): Xi ← Xi − δ and Xj ← Xj + δ,
where δ ← min{Xi − p1, kp1 − Xj}. The final load dis-
tribution X would be as the same as X

LTF (k) after a finite
number of the above procedure applied. Based on Lemma 3,
Φ̂(XLTF (k)) ≥ Φ̂(XLTF ).

For the simplicity of representation, we denote k·m̂kp1−Pk

p1(k−1)

as χ. We have the following inequality:

Φ̂(XLTF (k)) ≤ α

D2
[

3
√

Mp̂1 + 3
�

M − χ(k − 1)p̂1

+
M�

i=m̂k+1

(p̂i − p̂i−1)
3
√

M − i + 1]3, (4)

where the inequality comes from the following inequal-
ity: 3

√
M − 
χ�(p̂�χ� − p̂1) + 3

√
M − �χ
(p̂m̂k

− p̂�χ�) ≤
3
√
M − χ(k − 1)p̂1.

Let T ′ = {τi | ci ≥
�|T |

j=i+1 cj

M−i }. We shall show that one
core will be selected to service only one task in T ′, regardless
of whether XLTF or an optimal task assignment XOPT is
considered. When a task τj /∈ T ′ is considered in Algorithm
LTF (i.e., Steps 3-5), there must exist a core m∗ whose load
pm∗ is no more than ci for any τi ∈ T ′. Therefore, no other
task will be assigned to any core occupied by any τ i ∈ T ′

by Algorithm LTF. Consider any task assignment X derived
by some algorithm. If some task τi ∈ T ′ and some other
task τj are assigned on the same core where ci ≥ cj , another
task assignment X ′ could always be generated by moving τj

to another core m′ where Xm′ < ci. The optimal X ′-based
schedule consumes less energy than that based onX . ThusX
must not be the optimal task assignment. Therefore, one core
will be selected to service only one task in T ′ for an optimal
task assignment XOPT . Let X

OPT = {q1, q2, . . . , qM} be
the load distribution for an optimal solution. Note that m̂k =
|{i | pi ≤ k · p1}|. We could prove the following lemma.

Lemma 5 If k = 2, then qm̂k+i = pm̂k+i, for all 1 ≤ i ≤
M − m̂k.

Proof. Let j be the largest index for a core to which a task
τn ∈ T − T ′ is assigned, and τn ∈ XLTF

j . Let the last

task inserted into XLTF
j be τr. Since cn <

�|T |
j=|T ′|+1

cj

M−|T ′| ,

|XLTF
j | ≥ 2. It is clear that cr ≤ p1 and pj − cr ≤ p1.

Therefore, pj ≤ 2p1. Since X
LTF
h > 2p1 for any h > m̂2,

we have j ≤ m̂2. Furthermore, we know that qj+i = pj+i,
for all 1 ≤ i ≤M − j.

Note that Pk =
∑m̂k

i=1 pi, where m̂k is defined by
X

LTF (k). Similar to the definition of X
LTF (k), we de-

fine X̄
OPT (k) as an adjusted load distribution according to

X
OPT by re-distributing

∑m̂k

i=1 qi so that q̂1 = q̂2 = · · · =

q̂m̂k
=
�m̂k

i=1 qi

m̂k
. Similar to the proof in Lemma 4, we have

Φ̂(XOPT ) ≥ Φ̂(X̄OPT (k)) for any k ≥ 1. We conclude this
section by showing the following theorem.

Theorem 1 Algorithm LTF has a 2.371-approximation ratio
for the ECMS problem.

Proof. The approximation ratio ALTF is:

ALTF =
Φ̂(X

LT F )

Φ̂(XOP T )
≤

Φ̂(X
LT F (2))

Φ̂(X̄OP T (2))

≤
(( 3√

M + 3√M − χ)p̂1 +
�M

i=m̂2+1(p̂i − p̂i−1) 3√M − i + 1)3

( 3√
Mq̂1 + 3�M − m̂2(2p̂1 − q̂1) +

�M
i=m̂2+1(p̂i − p̂i−1) 3√M − i + 1)3

≤
(( 3√

M + 3√M − χ)p̂1)3

( 3√
Mq̂1 + 3�M − m̂2(2p̂1 − q̂1))3

≤ (
( 3√

M + 3
�

L−Mp̂1
p̂1

)p̂1

3√
M L

M

)3, (5)

where L is q̂1m̂2 + 2p̂1(M − m̂2). Note that q̂1m̂2 =∑m̂2
i=1 qi = P2. We haveL = χp̂1+2p̂1(M−χ). Let f(x) be

defined as f(x) = ( 3√M+ 3
√

K−Mx
x )x

3√
M K

M

for any rational number

K where x · a + 2x · (M − a) = K for some non-negative
rational number a. By solving the equation f ′(x) = 0, where
f ′′(x) < 0, we have

f(x) ≤ 4
3
, (6)

where the maximal value stands when x = 8K
9M . According

to Equations (5) and (6), we have ALTF ≤ (4
3 )3 < 2.371.

5 Simulation Results

The purpose of this section is to provide performance eval-
uation of Algorithm LTF. Algorithm RAND was also simu-
lated for reference, where the Algorithm RAND greedily as-
signed a task to any core with the minimum load without sort-
ing tasks. The relative energy consumption ratio, which was

defined as Φ(ΨLT F )
Φ(ΨOP T )

, was adopted as the performance metric,

where ΨOPT is an optimal schedule for the ECMS problem.
ΨOPT can be obtained via an exhaustive search with a branch
and bound strategy. When |T | was a large number, the re-
laxed relative energy consumption ratio, which was defined

as Φ(ΨLT F )

Φ̂(X̄OP T (2))
(please refer to Section 4 for the definition of

X̄
OPT (k)) was adopted as the performance metric. By defini-

tions, Φ̂(X̄OPT (2)) can be obtained in an efficient manner2.
D was set as any arbitrary positive rational number in the

simulations. The amount of cycles ci for a task τi was gen-
erated randomly in the range (0, D]. The power consumption
function P (s) was s3. 100 independent simulations were run
for each parameter configuration. When the results were for
the average relative energy consumption ratio, their results
were averaged. When they were for the maximum relative
energy consumption ratio, the maximum value was returned.
Figure 1(a) and (b) show the average and maximum relative
energy consumption ratios for the simulated algorithms, when
the number of cores ranged from 3 to 8, and the task set size
ranged from 10 to 15. Figure 1(c) and (d) show the average
and maximum relaxed relative energy consumption ratios for
the simulated algorithms, when the number of cores ranged
from 8 to 32, and the task set size ranged from 50 to 100. The

2Since the problem is NP-hard, the performance metric relaxed relative
energy consumption ratio aimed at the providing of an approximate index
when the optimal solution could not be obtained “efficiently”.
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Figure 1. The simulation results of Algorithm LTF and Algorithm RAND: (a) The average relative energy consumption ratio when |T | = 10...15 and M = 3...8 (b)
The maximum relative energy consumption ratio when |T | = 10...15 and M = 3...8 (c) The average relaxed relative energy consumption ratio when |T | = 50...100 and
M = 8...32 (d) The maximum relaxed relative energy consumption ratio when |T | = 50...100 and M = 8...32

maximum and average relative energy consumption ratios for
Algorithm LTF were less than 1.36 and 1.07 respectively. Fur-
thermore, the maximum and average relaxed relative energy
consumption ratios for Algorithm LTF were less than 2.00 and
1.44, respectively.

6 Conclusion

In this paper, we explore real-time energy-efficient
scheduling on a chip multiprocessor with dynamic voltage
scaling. We consider frame-based task sets, in which all tasks
are ready at time 0 and share a common deadline. When a task
partition is given, we present an optimal scheduling algorithm
for the minimization of energy consumption. When task par-
titioning and scheduling must be resolved, we first prove
the NP-hardness of the problem and then propose a 2.371-
approximation algorithm withO(|T |(log |T |+logM)+M),
where T is a given task set, andM is the number of cores for
a chip multiprocessor. A series of simulations was conducted
the strength of our proposed algorithm, for which we have
very encouraging results.
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