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Abstract

Test sets that detect each target fault n times (n-detection
test sets) are typically generated for restricted values of n
due to the increase in test set size with n. We perform
both a worst-case analysis and an average-case analysis
to check the effect of restricting n on the unmodeled fault
coverage of an (arbitrary) n-detection test set. Qur
analysis is independent of any particular test set or test
generation approach. It is based on a specific set of target
faults and a specific set of untargeted faults. It shows that,
depending on the circuit, very large values of n may be
needed to guarantee the detection of all the untargeted
faults. We discuss the implications of these results.

1. Introduction
Under an n -detection test set, each target fault is detected
n times, by n different test vectors. If a fault has fewer
than n different test vectors that detect it, all its test vec-
tors are included in an n-detection test set. The motiva-
tion for the use of n-detection test sets is that by increas-
ing the number of detections of target faults, the likeli-
hood of detecting unmodeled faults and defects is
increased as well. In addition, generation of n-detection
test sets for a specific fault model requires only minor
modifications to a test generation procedure for the same
fault model. This is typically simpler than writing a test
generation procedure for a new fault model. Generation
of n-detection test sets and their advantages in detecting
unmodeled faults and defects were studied in [1]-[7].

Determining a value for n is typically done based
on tester memory and test application time constraints.
Since the size of a compact n -detection test set increases
approximately linearly with n, n <10 appears to have
become the accepted bound on n. Several questions arise
when n is restricted. (1) How much unmodeled fault or
defect coverage is missed by restricting n. (2) How much
higher should n be in order to eliminate the fault or defect
coverage loss. The latter is important in deciding whether
higher values of n should be considered.

A model for estimating the defective part level after
the application of a given test set was given in [3] and [4].
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The model is based on the numbers of times fault sites are
activated and observed by the test set, which are improved
by n-detection test generation. This model can provide
answers to the questions above with respect to a given test
set. However, it was not used for providing general
answers that are independent of the test set or the test gen-
eration procedure used. In addition, to answer the second
question it would be necessary to perform test generation
for increasing values of n, and the bound on n is
unknown a-priori.

In this work we investigate a method of analysis to
answer both questions in a way that is independent of any
particular test set or test generation procedure. We per-
form the analysis by considering a specific set of target
faults for n-detection test generation (single stuck-at
faults), and a specific set of untargeted faults (four-way
bridging faults [8], [9]). The four-way bridging fault
model was used for developing manufacturing tests for
static defects in industrial designs [9], [10]. Bridging
faults were also used earlier as surrogates for unmodeled
defects in estimating the defect coverage obtained by a
given test set [3], [4]. The questions we answer become
the following. (1) How much untargeted fault coverage
(coverage of four-way bridging faults) is missed by res-
tricting n. (2) How much higher should n be in order to
ensure that all the untargeted faults (all the four-way
bridging faults) are detected.

We investigate both a worst-case analysis and an
average-case analysis to answer these questions. The
worst-case analysis assumes that if it is possible to gen-
erate an n-detection test set that will fail to detect an
untargeted fault, such a test set will be generated. The
average-case analysis provides the probabilities that an
arbitrary n -detection test set will detect untargeted faults.
The worst-case analysis and its results are described in
Section 2. The average-case analysis and its results are
described in Section 3. The results of Sections 2 and 3 are
analyzed in Section 4, and additional results, using a
stricter definition of an n -detection test set, are presented
to support the analysis.

2. Worst-case analysis
Let F ={fo.f 1, " .fi_1} be the set of faults for which
n-detection test generation is carried out (the set of target



faults). Let G ={g¢.g," " .8n_1} be the set of faults
through which the n -detection test set is evaluated (the set
of untargeted faults). Our goal in this section is to obtain
(1) the number of faults in G that are guaranteed to be
detected by an n-detection test set for F'; and (2) the
minimum value of n required to guarantee that all the
detectable faults in G will be detected.

We base the analysis on the set U of all the input
vectors of the circuit. For every fault h; € FUG,
T(h;) < U is the set of test vectors that detect #;. The
analysis based on the set of all the input vectors can be
done only for circuits with small numbers of inputs. At
the end of Section 4 we discuss how the proposed analysis
can be used for large designs.

We first illustrate the analysis using the example
circuit shown in Figure 1. We use the set of collapsed sin-
gle stuck-at faults as the set F', and the set of four-way
bridging faults as the set G. The fault line / stuck-at a is
denoted by //a. A four-way bridging fault is denoted by
(l1,a,ly,a,). The fault is activated when [, =a; and
I, =a,. It then results in /| = @, in the faulty circuit. We
use the decimal representation of the input vectors to
represent U. For the circuit of Figure 1 we have
U={01,---,15}.

The bridging fault g, =(9,0,10,1) is detected by the
set of input vectors T(gy) ={6,7}. In the first three
columns of Table 1 we show all the single stuck-at faults
in F that are detected by at least one of the input vectors 6
and 7, and the set T'(f;) for every such fault f;. Consider-
ing fo=1/1 with T(f () = {4,5,6,7}, we note that it is pos-
sible to detect f twice, using test vectors 4 and 5, without
detecting g,. A third detection of f will require that
either input vector 6 or input vector 7 will be included in
the test set, thus guaranteeing that g, will be detected.
Considering f | =2/ with T'(f ) = {6,7,12,13,14,15}, it is
possible to detect f| four times, using test vectors 12, 13,
14 and 15, without detecting g,. A fifth detection of f,
will guarantee that g, will be detected.
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Figure 1: Example circuit
In general, for a fault g; € G, let F(g;) < F be
the subset of faults such that T'(f;) " T'(g;) # ¢ for every
fi € F(g;). Let N(f;) be the size of T(f;), and let
M(gj, ;) be the size of the intersection T'(f;) N T(g;). We
can detect f; N(f;)-M(g;.f;) times without detecting g;.
If the number of detections of f; is increased to

Table 1: Faults with test vectors that overlap
with T'(g) = {6.7)

i fi () 7 min(8 0o/ 1)
0| 1/1 4567 3
1 2/0 6712131415 5
3| 3/0 267101415 5
9 | 8/0 261014 4
11 | 9/1 01234567891011 11
12 | 10/0 | 671415 3
14 | 11/0 | 1235679101113 1415 11

N(f;)-M(g;.f)+1, g; is guaranteed to be detected. We
denote N(f;)-M(g;.fi)+1 by ny(g;.f;)- This is the
minimum value of n for which detection of f; guarantees
detection of g;. Considering all the faults in F(g;), we
define n,;,(g;) = min{n ,;,(g;.f;):f; € F(g;)}. This is the
minimum number of detections n that guarantees detec-
tion of g; by an n-detection test set for F'.

In Table 1 we show the values of n;,(g.f;) con-
sidering all the faults in F(g,). Based on the information
given in Table 1, we have n;,(g¢) = 3. Thus, in order to
guarantee that an arbitrary n -detection test set will detect
g0, n must be larger than or equal to three.

Results of the computation of 7,,(g;) for the com-
binational logic of MCNC finite-state machine bench-
marks are shown in Tables 2 and 3 (at the end of the
paper). In Table 2 we are interested in faults out of G that
are guaranteed to be detected by any n -detection test set
for n <n,,. Here, n,, is a constant for which it is practi-
cal to generate an n-detection test set (n,,,, = 10 in our
experiments). In Table 3 we are interested in faults out of
G that require large values of n to guarantee that they will
be detected by an n-detection test set. We report in Table
3 on faults that are guaranteed to be detected by an n-
detection test set only if n >n_,,. We only include in
Table 3 circuits for which such faults exist.

Table 2 is organized as follows. After the circuit
name we show the number of four-way bridging faults
considered (detectable non-feedback four-way bridging
faults between outputs of multi-input gates). Under
column 7,,i,(8;)<n,;,0 We show the percentage of faults
g; € G such that n,;,(g;) <n,,,,- This is the percentage
of faults for which an n-detection test set that guarantees
their detection requires n <n,,;,q. If n =n,,;,q results in
100% coverage of four-way bridging faults, we do not
report on higher values of n. For example, bbara has 858
faults in G. Of these faults, 80.42% require 1 ;,(g;) =1
to guarantee their detection, i.e., they will be detected by
any 1-detection test set; 84.85% of the faults require
N min(g;) <2 to guarantee their detection, i.e., they will be
detected by any 2-detection test set; 97.55% of the faults
are guaranteed to be detected by any 10-detection test set.

Table 3 is organized as follows. After the circuit
name we show the number of four-way bridging faults
considered. Under column 7,,;,(8;)>1,,0 We show the
number (and the percentage in parentheses) of faults



g; € G such that ny,(g;) 2 n,,,o- This is the number (or
percentage) of faults for which an n -detection test set that
guarantees their detection must be computed for n = n,,,;,, (.
For example, considering bbara, none of the faults in G
requires 71,,;,(g;) 2 100 to guarantee its detection. Three
faults require n,,,(g;) 220, and 21 faults require
N min(g;) 2 11 (which is 2.45% of the faults in G).

From Tables 2 and 3 it can be seen that large per-
centages of the faults in G will be detected by any n-
detection test set for n =1, and very large percentages
will be detected by any n-detection test set for n = 10.
Nevertheless, there are non-trivial numbers of faults that
are not guaranteed to be detected by a 10-detection test
set. For the last seven circuits in Table 3, even n =100 is
not sufficient to guarantee the detection of all the faults in
G . We show the distribution of n,,(g;) for dvram in Fig-
ure 2, considering faults for which n,;,(g;) = 100.
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Figure 2: Distribution of n,,(g;) for dvram

3. Average-case analysis

The analysis in Section 2 is a worst-case analysis since it
assumes that as long as n is low enough to allow a fault
g; € G to escape detection, a test for g; will not be
included in an n -detection test set. In practice, this worst
case may not happen. Our goal in this section is to obtain
the probabilities of detecting the faults in G by an arbi-
trary n -detection test set, for different values of n.

We construct several n -detection test sets randomly
for n =12, ,n, using Procedure 1 given below.
Procedure 1 constructs K test sets 7,7y, - ,Tx_; for
every value of n. Initially, 7, =¢ for 0<k < K. Pro-
cedure 1 performs n,,, iterations where it considers every

test set. At the end of iteration n, T}, is an n -detection test
set, for 0 <k < K. In iteration n, Procedure 1 considers
every fault f; € F.For0<k <K, if f; is detected by T}
fewer than n times, and T'(f;) contains tests that are not
included in 7, (i.e., T(f;)-T; # ¢), Procedure 1 selects a
test randomly out of T'(f;)—T}, and adds it to 7}
Procedure 1: Constructing n -detection test sets
(1) Fork=0,1,--- ,K-1,setT, =¢. Setn =1.
(2) Forevery f; € F:
For every testset 7}, k =0,1, - - - ,K—1:
(a) Find the number of times f; is detected by
T} . Let this number be n; ;.
(b) Ifn;, <nand T(f;)-T; # 0:
Select a test ¢+ € T(f;)-T, randomly.
Addt to Ty.
(3) Setn =n+l. If n <ngy,,, go to Step 2.

Using the test sets T, - -+ ,Tx_; produced by Pro-
cedure 1 for every value of n, we estimate the probability
that an arbitrary n-detection test set will detect a fault
g; € G as follows. For every n-detection test set T
such that g; is detected by T (i.e., T(g;)NT; #9), we
increment a count d(n,g;) by one. We define the proba-
bility of detecting g; by an arbitrary n -detection test set as
p(n’gj)=d(n’gj)/K'

For illustration, we consider the example circuit of
Figure 1. In Table 4 we show n-detection test sets for
n =1 and 2. For each value of n we have K = 10 test sets.
We consider the fault g4 with T'(gg) = {12}. For this
fault, n,,;,(g¢) =4. For n =1, the set T(gq) has a non-
empty intersection with 7’5 and 7;. We obtain d(1,g¢) =2
and p(l,gj):O.Z. For n =2, the set T(g¢) has a non-
empty intersection with Ty, T4, Ts5 and 7;. We obtain
d(2,g¢)=4andp(2,g;)=04.

Table 4: Test sets for example circuit

T,
k n=1 n=2
0 | 681013 256810121314
1 0271113 024579101113 14
2 | 36813 34568911131415
3 |1 45111415 0345910111415
4 15681015 25689101215
510579101112 | 0567910111214
6 | 489111415 458910111415
7 1346812 134689101213 14
8 [ 357891314 3457891013 14
9 | 2568915 245689101415

We computed p (n,g;) using K = 10000 test sets for
n=12, n,.,. where n . =10. We report the results
considering only faults g; that are not guaranteed to be
detected by a 10-detection test set, and considering only
circuits that have such faults. In addition, we only report
the results for n = 10 (the detection probabilities for lower
values of n are lower). The results are shown in Table 5
(at the end of the paper). After the circuit name we repeat
the number of faults that are not guaranteed to be detected
by a 10-detection test set (the number of faults with



Nmin(g;) 2 11). We then show the numbers of faults for
which the probability of detection p(lO,gj) is at least 1,
09, 0.8, -+, 0.1, 0. We do not enter a number for a
given probability if all the faults have a higher probability
of detection. The fault with the lowest probability for ex 2
has p (10,g;) = 0.052. The two faults with the lowest pro-
babilities for bbsse have p (10,g;) =0.093 and 0.091. The
fault with the lowest probability for cse has
p(10,g;)=0.043.

From Table 5 it can be seen that some of the faults
in G, that are not guaranteed to be detected by a 10-
detection test set, have very high probabilities of being
detected by such a test set. However, there are also non-
trivial numbers of faults with lower probabilities. These
faults may be left undetected by a 10-detection test set.
Increasing n to detect such faults may sometimes require
very high values of n as can be seen from Table 3.
Overall, the average-case analysis is consistent with the
worst-case analysis in pointing to the existence of untar-
geted faults that are not likely to be detected by a 10-
detection test set.

4. Discussion
The results of the previous sections indicate the following.

An n-detection test set for a reasonable value of n
(around n = 10) is guaranteed to detect a high percentage
of the untargeted faults, and will detect most of the
remaining untargeted faults with a high probability. How-
ever, there are also faults that are likely to escape detec-
tion by an n-detection test set. The values of n required
for such faults can be very high. Thus, increasing n is not
likely to be an effective solution for improving the effec-
tiveness of an n -detection test set.

In some situations the small loss in untargeted fault
coverage may be acceptable. When it is not, direct test
generation for additional fault models can be carried out.
Alternatively, methods to improve the effectiveness of an
n -detection test set can be used. To illustrate this point we
use an alternate method to generate n-detection test sets,
based on a different definition of an n-detection test set.
The definition we used so far is the standard one. For
completeness, we repeat this definition next.

Definition 1: Let 7 be a test set where no test is dupli-
cated. A fault f is detected n times by T if T contains n
tests that detect f .

Under the alternate definition from [5], two tests
that detect a target fault f are required to be sufficiently
different in order to be counted as different detections of
f . The definition given in [5] is the following.

Definition 2: Let T be a test set where no test is dupli-
cated. A fault f is detected n times by T if there exist n
tests 71,t5, - - ,t, in T such that the following condition is
satisfied. For every i and j such that 1 <i <n and
1 <j <i,lett; be the test which is specified in bits where

1; and 7; are specified to the same value, and unspecified
in other bits. The test z; does not detect f .

Definition 2 simulates f under a test #; that con-
tains the common bits of 7 and 7;. If these bits are
sufficient for detecting f', then the two tests #; and #; are
considered similar, and are not counted as two detections
of f. If #;; does not detect f', then 7; and #; are considered
sufficiently different, and they are counted as different
detections of f.

We use Definition 2 in Procedure 1 for the construc-
tion of n -detection test sets as follows. When we find the
number of detections n; ; of a fault f; under a test set 7},
we use Definition 2 to compute n; ;. If n; ;, <n, we find
the tests out of 7(f;)-T, that, if added to T, will be
counted as different detections of f; according to
Definition 2. If the number of detections of f; cannot
reach n according to Definition 2, we use Definition 1
instead. This is done to avoid situations where faults are
detected much fewer than n times.

Results of average-case analysis based on
Definition 1 and based on Definition 2 are shown in Table
6. In this case we used K = 1000 test sets for the analysis.
On the first row for every circuit we show the results
obtained using Definition 1, and on the second row we
show the results obtained using Definition 2. We target the
same set of faults in both cases.

Table 6 demonstrates that Definition 2 can improve
the quality of an n -detection test set by increasing the pro-
bability that an untargeted fault will be detected by the test
set. For example, out of the 474 four-way bridging faults
with n.,,(g;) 2 11 in the circuit keyb, 381 faults are
detected with probability greater than or equal to 0.8 by a
standard 10-detection test set generated using Definition 1,
whereas 440 faults are detected with probability greater
than or equal to 0.8 if the test set is generated using
Definition 2. The probabilities of detection given in
Tables 5 and 6 can be used to calculate the probability that
an untargeted fault escapes detection.

As noted earlier, the analysis proposed requires
information regarding which targeted and untargeted
faults are detected by each input vector of the circuit, and
hence can be directly used for circuits with small numbers
of inputs. However, as the data in Table 6 shows, the
analysis can be used to evaluate the relative effectiveness
of different n-detection test generation methods. Addi-
tionally, one can partition a larger circuit into smaller sub-
circuits and apply the analysis to the subcircuits. Such
analysis can be used to evaluate the effectiveness of a
chosen value of n, and to estimate the probability of
untargeted faults escaping detection.

5. Concluding remarks
In order to restrict the test set size, n-detection test sets
are typically generated for restricted values of n. We



addressed the following questions related to this restric-
tion. (1) How much unmodeled fault or defect coverage is
missed by restricting n. (2) How much higher should n
be in order to eliminate the fault or defect coverage loss.
Our analysis was independent of any particular test set.
We used single stuck-at faults as target faults, and four-
way bridging faults as untargeted faults for the purpose of
this study.

Table 2: Worst-case percentages of detected faults (small )

We used both a worst-case analysis and an
average-case analysis to provide answers for these ques-
tions. The worst-case analysis assumed that if it is possi-
ble to generate an n-detection test set that will fail to
detect an untargeted fault, such a test set will be gen-
erated. The average-case analysis provided the probabili-
ties for an arbitrary n-detection test set to detect untar-
geted faults.
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2 66 78 78 78 78 78 78 78 79
dvram 1653 1 1076 1493 1532 1564 1573 1610 1611 1618 1623 1637 1653
2 1382 1597 1620 1625 1628 1635 1635 1643 1645 1649 1653
ex2 1 1 0 0 0 0 0 0 0 0 0 0 1
2 0 0 0 0 0 0 0 0 0 0 1
ex3 3 1 0 0 0 0 0 0 0 0 0 2 3
2 0 0 0 0 0 0 0 0 0 2 3
ex4 82 1 40 82
2 61 82
ex6 16 1 1 14 15 15 15 15 15 15 16
2 2 16
fetch 708 1 564 680 695 695 696 701 705 708
2 601 693 704 704 705 705 705 708
keyb 474 1 186 371 381 418 424 429 434 443 446 453 474
2 274 426 440 458 461 465 468 470 473 473 474
log 199 1 121 167 172 172 172 172 172 193 193 199
2 164 193 193 193 199
mark1 100 1 50 87 93 95 98 98 98 100
2 59 90 95 100
opus 49 1 15 40 46 47 49
2 27 44 46 47 49
rie 1197 1 796 1046 1068 1070 1070 1134 1134 1134 1179 1179 1197
2 1071 1144 1146 1169 1177 1179 1179 1179 1179 1179 1197
sla 5934 1 3412 4984 5263 5432 5495 5599 5659 5777 5833 5879 5934
2 4617 5566 5673 5756 5794 5855 5891 5912 5924 5925 5934
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