
Bound Set Selection and Circuit Re-Synthesis for Area/Delay Driven
Decomposition

Andrés Martinelli Elena Dubrova
Royal Institute of Technology, IMIT/KTH, 164 46 Kista, Sweden

[andres,elena]@imit.kth.se

Abstract

This paper addresses two problems related to disjoint-
support decomposition of Boolean functions. First, we
present a heuristic for finding a subset of variables,
X , which results in the disjoint-support decomposi-
tion f(X, Y) = h(g(X), Y) with a good area/delay
trade-off. Second, we present a technique for re-synthesis of
the original circuit implementing f(X, Y) into a circuit im-
plementing the decomposed representation h(g(X), Y).
Preliminary experimental results indicate that the pro-
posed approach has a significant potential.

1. Introduction

Disjoint-support decomposition of a Boolean
function f : {0, 1}n → {0, 1} is a representa-
tion of the form f(X, Y) = h(g(X), Y) where
X ∩ Y = Ø, g : {0, 1}|X| → {0, 1, ..., k − 1}
and h : {0, 1, ..., k − 1} × {0, 1}|Y | → {0, 1}.
The k-valued function g can be encoded as
f(X, Y) = h(g1(X), g2(X), . . . , gdlog

2
ke(X), Y) giv-

ing a decomposition with all functions being Boolean.
Every set of variables X for which such a decompo-
sition exists is called a bound set for f . This paper
addresses two problems related to disjoint-support de-
composition. First, we present a heuristic for finding
a bound set which results in a disjoint-support achiev-
ing a good area/delay trade-off. Choosing a suitable bound
set is important because disjoint-support decomposi-
tion does not necessarily simplify the function.

Second, we present a technique for transforming the
original circuit implementing f(X, Y) into a circuit imple-
menting the decomposed representation h(g(X), Y). Previ-
ous algorithms computed circuits for the decomposed repre-
sentation from Binary Decision Diagrams (BDDs) of g and
h, by applying various BDD-to-circuit transformation tech-
niques. The algorithm presented in this paper uses BDDs

only for analysis of the decomposition. The actual synthe-
sis of the circuits for g and h is done by restricting the orig-
inal circuit with respect to a given assignment of input vari-
ables. This guarantees that the sizes of the circuits of g and
h are strictly smaller than the size of the original circuit.

2. Bound Set Selection

To find a suitable bound set X for f , we examine all
linear intervals of variables of the BDD representing f . To
check whether a given linear interval is a bound set, we use
INTERVALCUT algorithm [1]. INTERVALCUT is very fast,
because it does not require expensive BDD re-ordering.

If a bound set X with the column multiplicity k < |X |
is found, it is stored together with the following three pa-
rameters characterizing the associated decomposition
f(X, Y) = h(g(X), Y):

1. the number of outputs having X as a bound set: s(X);

2. the number of outputs of g: c(X) = dlog2 ke;

3. the difference in sizes of the bound set X and the free
set Y : d(X) = ||X | − |Y ||, d(X) ∈ {0, 1, . . . , n− 1}.

Let X be the set of bound sets computed by
INTERVALCUT. The best candidate is selected from
X as follows. First, a subset Xs of X containing all
bound sets with the maximum s(X) is chosen. Maxi-
mizing of s(X) increases the sharing of common logic
among different outputs of the circuit. Next, a sub-
set Xc of Xs containing all bound sets with the mini-
mum c(X) is selected. Minimizing of c(X) promotes the
selection of bound sets with the smallest column multi-
plicity (more precisely, smallest log2 k). Finally, a subset
Xd of Xc containing largest bound sets with the min-
imum d(X) is obtained. Minimizing of d(X) allows
balancing the partitioning of logic between the func-
tions g and h.

Any element of Xd is considered to be a ”best” bound set
for f , i.e. the one which produces a decomposition with the
best area/delay trade-off. The original circuit implementing

1530-1591/05 $20.00 © 2005 IEEE

f is transformed into the circuit implementing h(g(X), Y)
by applying the algorithm described in the next section.

3. Transformation Algorithm

Let X be a bound set for f and let Gg and Gh be
BDDs representing the functions g and h in the decompo-
sition f(X, Y) = h(g(X), Y). These BDDs are computed
by INTERVALCUT.

3.1. Constructing the circuit for h

Suppose A is an assignment of variables of X leading
to the 0-terminal node in Gg . Then g(A) = 0, and thus
f(A, Y) = h(g(A), Y) = h(0, Y). Therefore, a circuit im-
plementing the co-factor h(0, Y) can be obtained from the
circuit implementing f by applying the assignment A to the
inputs X and propagating the constants through the circuit
using the usual reduction rules. Similarly, circuits imple-
menting co-factors h(i, Y), i ∈ {1, 2, . . . , k−1}, can be ob-
tained by propagating an assignment of variables of X lead-
ing to the i-terminal node of Gg . Recall, that g is a function
of type g : {0, 1}|X| → {0, 1, ..., k − 1}, so Gg is a multi-
terminal BDD with k terminal nodes.

To maximize the sharing of common logic of the i cir-
cuits implementing co-factors h(i, Y), i ∈ {0, 1, . . . , k−1},
i assignments A are chosen so that they differ in the fewest
number of bit positions.

The function h(g(X), Y) is obtained by combining the
co-factors in a Shannon expansion as follows:

h(g(X), Y) =

k−1
∑

i=0

gi1
1 (X)gi2

2 (X) . . . gir

r (X)h(i, Y) (1)

where (i1, i2, . . . , ir) is the binary expansion of i, r =

dlog2 ke, and the term g
ij

j is defined by

g
ij

j =

{

gj if ij = 1
gj otherwise

for j ∈ {1, 2, . . . , r}.

3.2. Constructing the circuit for g

Suppose that B is an assignment of variables of Y such
that h(i, B) 6= h(j, B) for some i, j ∈ {0, 1, . . . , k − 1},
i 6= j. Then f(X, B) = h(g(X), B) where the co-factor
h(g(X), B) is neither constant 0, nor constant 1, i.e. it de-
pends of g(X).

Since h is a function of type {0, 1, ..., k − 1} ×
{0, 1}|Y | → {0, 1}, the co-factor h(g(X), B) is a func-
tion of type {0, 1, ..., k − 1} → {0, 1}. Note that, for
k = 2, h(g(X), B) is either an identity, or a comple-
ment. Thus, at this step, the problem of constructing the

circuit for g(X) is solved for k = 2. For larger val-
ues of k, the following strategy is used.

The k-valued function g(X) can be expressed as

g(X) =
k−1
∑

i=0

i · gi(X)

where gi : {0, 1, . . . , k − 1}|X| → {0, 1} are multiple-
valued literals defined as:

gi(X) =

{

1 if g(X) = i

0 otherwise

For a given encoding of k values of g(K), each of the
functions g1(X), g2(X), . . . , gr(X), r = dlog2 ke, encod-
ing g(X), can be represented as a sum of some literals
gi(X)’s.

Consider a decomposition chart of h(g(X), Y) with
columns representing k values of g(X) and the rows rep-
resent all combinations of the variables of Y . Any non-
constant row of h(g(X), Y) represents a sum of some lit-
erals gi(X), i ∈ {0, 1, . . . , k − 1}.

In the best case, there exist rows in the decomposi-
tion chart corresponding directly to the encoded func-
tions g1(X), g2(X), . . . , gr(X). If h(g(X), A) = gj(X)
for some assignment A of the variables of Y , then the cir-
cuit implementing gj(X) can be obtained from the circuit
implementing f by applying the assignment A to the in-
puts Y and propagating the constants.

In the worst case, the literals gi(X), i ∈
{0, 1, . . . , k − 1}, need to be computed by AND-
ing selected rows of h(g(X), Y). Afterward, the functions
g1(X), g2(X), . . . , gr(X) are obtained as a combina-
tion of gi(X).

4. Conclusion and Future Work

This paper has two contributions: (1) a heuristic for find-
ing a bound set X which results in the disjoint-support de-
composition with a good area/delay trade-off; (2) an algo-
rithm which transforms the original circuit into the decom-
posed circuit.

Our preliminary experimental results on IWLS’02
benchmarks set show that the proposed technique usu-
ally results in a smoother trade-off between area and de-
lay compared to the one of SIS. More experiments are
needed to make a thorough evaluation.

References

[1] A. Martinelli, T. Bengtsson, E. Dubrova, and A. J. Sullivan,
“Roth-Karp decomposition of large Boolean functions with
application to logic design,” in Proceedings of NORCHIP’02,
(Copenhagen, Denmark), November 2002.

	Main Page
	DATE'05
	Front Matter
	Table of Contents
	Author Index

